8. Multi-cores

Credits to A. Burns and A. Wellings

and to B. Andersson and J. Jonsson for their work in
Proc. of the the IEEE Real-Time Systems Symposinm, WiP
Session, 2000, pp. 53—-56

| State of the art

= Some task sets may be unschedulable even though they
have low utilization
0 Much less than the number of processors
0 This is known as the Dhall’s ¢ffect [Dhall & Liu, 1978]

m The known exact schedulability tests have exponential time
complexity
0 The known sufficient tests have polynomial time complexity but are

pesslmlstlc

= Rate-monotonic priority assignment is not optimal

= No optimal priority assignment scheme with polynomial
time complexity has been found yet

2010/11 UniPD, T. Vardanega Real-time systems 325 0f 372

| Fundamental issues

m Hardware architecture taxonomy
Q Homogeneous VS. heterogeneous processors

m Current research is focused on SMP (symmetric multiprocessors) for
which the scheduling problem is much simpler

m Scheduling approach

a Global or partitioned or alternatives between these extremes

= Partitioning is an allocation problem followed by single processor
scheduling

= Optimality criteria
o EDF is no longer optimal
o EDF is not always better than FPS
0 Global scheduling is not always better than partitioned

Real-time systems 323 0f 372

2010/11 UniPD, T. Vardanega

Interference

m We know what is the interference I; suffered by a
task 7 for single-processor scheduling

0 How does this change for multiprocessors?

m For global multiprocessor scheduling with 7
processors interference only occurs for tasks from
m+1 onward

m Multiprocessor interference can be computed as the
sum of all intervals when 7 higher-priority tasks
execute in parallel on all 7 processors

Real-time systems. 326 of 372

2010/11 UniPD, T. Vardanega

| Hardware architecture taxonomy

= A multiprocessor (or multi-core) is zghtly conpled

o Global status and workload information on all processors (cores)
can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler
0 When each processor (core) has its own scheduler, the decisions
and actions of all schedulers are coherent
= Scheduling in this model is an NP-hard problem
m A distributed system is loosely coupled
o Itis too costly to keep global status

a There usually is a dispatcher / scheduler per processor

2010/11 UniPD, T. Vardanega Real-time systems 324 0f 372

| Example (Dhall’s effect) — 1

Task T D
10 10
b 10 10
c 12 12

U

0.5 On 2 processors

0.5 YU =167<2
0.67

o ||, | O

= Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors

= But this would leave no time for ¢ to complete
0 7 time units on each processor, 14 in total, but 8 on neither

m Even if the total system is underutilized ()

2010/11 UniPD, T. Vardanega Real-time systems. 327 of 372

| Example — 2

Task T D | C U
d 10 10 | 9 0.9
e 10 10 | 9 0.9 S U =2
f 10 10 | 2 0.2

On 2 processorts

m Partitioned scheduling does not work here either

m Task f cannot reside on just one processor: it needs to migrate
from one to the other to find room for execution

m And it also needs that d and e are willing to use cooperative
scheduling for it complete in time

2010/11 UniPD, T. Vardanega Real-time systems 328 0f 372

| Anomaly 1 (cont’d)

m If we reduce T, to 4 we decrease system load to) U, = 1.67

m But then I_ éncreases from 4 to 6 and task ¢ misses its

deadline (!)

2010/11 UniPD, T. Vardanega Real-time systems 331 0f 372

| Global scheduling anomalies

m In real-time scheduling for single-processors, the deadline
miss ratio often highly depends on the system load
0 This suggests that increasing the period should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1
0 A decrease in processor demand from higher-priority tasks can
increase the interference on a lower-priority task because of the
change in the time when the tasks execute
= Anomaly 2
0 A decrease in processor demand of a task negatively affects the task

itself because the change in the task arrival times make it suffer
more intetference

2010/11 UniPD, T. Vardanega Real-time systems 329 0f 372

| Anomaly 2

Task
a 4 4
b 5 5
c 10 | 10

0.5 m = 2 processors and > U; = 1.8 but
0.6 task c is saturated

~N|Ww N[O

0.7

2010/11 UniPD, T. Vardanega Real-time systems 3320f 372

| Anomaly 1

Task | T D | C U
m = 2 processors and 2 U, = 1.83 but
a 3 3 2 | 0.67 task c is saturated because C. + 1.=D. and
4 4 2 | 0.50 thus any increase in C_ would makes it
c 121121 8 | 067 unschedulable

Real-time systems 330 of 372

2010/11 UniPD, T. Vardanega

| Anomaly 2 (cont’d)

w If we extend T, to 11 we decrease system load to) U, = 1.74

m But then I increases from 3 to 5 (!) as becomes visible in
the second job of task ¢

N

2010/11 UniPD, T. Vardanega Real-time systems 333 of 372

| P-fair scheduling [Baruah et al. 1990]

w Proportional progress is a form of proportionate fairness (a.k.a.
P-fairness)
0 Each task T, is assigned resources in proportion to its wejght
W, = C,/T; hence it progresses proportionately
o Useful e.g., for real-time multimedia applications
m At every time t task T, must have been scheduled either
L\X/i xt] or [W, x t 7 time units
0 Preemption is assumed to only occur at integral time units (without
loss of generality) and the workload model is periodic

2010/11 UniPD, T. Vardanega Real-time systems 334 0f 372

| P-fair scheduling — 4

m Properties of a P-fair schedule S
o For task T; abead at time t under S
= Ifo(T) = - and T, is not scheduled at time t then T; is ahead at time t+1
fregr {- If a (1) = 0 and T; is not scheduled at time t then T; is punctual at time t+1
= Ifo(T) = + and it is not scheduled at time t then it is bebind at time t+1
m Ifa(t) = + and T; is scheduled at time t then T; is abead at time t+1
o For task T; behind at time t under S
» Ifa(T) = - and T, is scheduled at time t then T; is @head at time t+1
» Ifo(T) = - and T, is not scheduled at time t then T; is behind at time t+1
If a (1)) = 0 and T; is scheduled at time t then T; is punctual at time t+1

urgent
= Ifo(T) =+ and T, is scheduled at time t then T; is bebind at time t+1

2010/11 UniPD, T. Vardanega

Real-time systems 337 of 372

| P-fair scheduling — 2

m lag (S, T, , t) is the difference between the total
resource allocations that task T; should have received
in [0,t) and what it received under schedule S

m For a P-fair schedule S at time t
o Task T, is abead iff lag (S, T;,t) <0
a Task T;is bebind iff lag (S, T;,t) > 0
a Task T;is punctual iff lag (S, T;,t) = 0

2010/11 UniPD, T. Vardanega Real-time systems 335 0f 372

| P-fair scheduling — 5

= General principle of P-fairness

o Every task ugent at time t must be scheduled at time t to preserve P-
fairness

0 No task zegru at time t can be scheduled at time t without breaking
P-fairness
m Possible pitfalls for n, zegru, n, contending, n, nrgent tasks at
time t with m resources and n=n,+n,+n,
o If n,>m the scheduling algorithm cannot schedule all #gent tasks

o If ny>n-m the scheduling algorithm is forced to schedule some
Inegru tasks

2010/11 UniPD, T. Vardanega Real-time systems. 338 of 372

| P-fair scheduling — 3

m (T, t) is the characteristic substring of task T, at time t
o Finite string over {-, 0, +} of 0 {(X) Ol45(X)...0(x)
m Where t =mini:i>t:ox)=0

a ax) = sign (w,x (+1) = Lw,xt] - 1)

m For a P-fair schedule S at time t
a Task T; is #rgent at time ¢ iff T; is behind and o (T) F -

0 Task T;is #egru (inverse of urgent) at time t iff T, is abead
and o (T) * +

o Task T; is contending otherwise

2010/11 UniPD, T. Vardanega Real-time systems 336 of 372

| P-fair scheduling — 4

m The PF scheduling algorithm
0 Schedule all wrgent tasks
0 Allocate the remaining resources to the highest-priotity contending
tasks according to the total order function = with ties broken
arbitrarily
" x 2yiffa) za,
m And the compatison between the characteristics substrings is resolved
lexicographically with - <0 < +
m With PF we have er[o,n) w,=m
0 A dummy task may need to be added to the task set to top
utilization up

m The feared pitfalls cannot happen with the PF algorithm

2010/11 UniPD, T. Vardanega Real-time systems. 339 of 372

| Example (PF scheduling) — 1

®m m = 3 processors
Task | C | T w _
m n =4 tasks
v 1 3 0.333...| ®™ Taskzisadummy used to top
system utilization up
w 2 4 0.5 m In general its period is set to the
X 5 7 0.714... system hyperperiod
y 8 11 0.727... o This time we halved it
m With PF we always have
z | 335|462 30| " S mandng < nm

2010/11 UniPD, T. Vardanega Real-time systems 340 of 372

| Some results — 2

Q Partitioned EDF first-fit can sustain

u<M+1
N IB =+ 1 Pe'rAtask

0 For high U this bound gets rapidly lower than 0.6 X 7,
but can get close to 7 for some examples

max

m Again this is a sufficient test only [Lopez e al, 2004]

2010/11 UniPD, T. Vardanega Real-time systems 343 0f 372

| Example (PF scheduling) — 2

These tasks are scheduled and they become ahead

lagy = poriofl charactoristic string || urgent sforntending g

w is ahead and its current substring indicates it need not be scheduled

2010/11 UniPD, T. Vardanega) {' Real-time systems 341 0f 372

Some results — 3

Q Global EDF can sustain

U<M-—(M-1U

max

a For high U___ this bound can be as low as 0.2 x »
but also close to # for other examples

m Again, only sufficient [Goossens ez al., 2003]

2010/11 UniPD, T. Vardanega Real-time systems. 344 of 372

| Some results — 1

m For the simplest workload model made of
independent periodic and sporadic tasks
a A P-fair scheme can theoretically sustain U = » for »
processors but its run-time overheads are excessive

= Especially because tasks incur very many preemptions and are
frequently required to migrate across processors

Q Partitioned FPS first-fit (on decreasing task utilization) can
sustain. U <M (v/2-1) (e, 0.414 x m)
= But this is a sufficient test only [Oh & Baker, 1998]

2010/11 UniPD, T. Vardanega Real-time systems 3420372

Some results — 4

o Combinations
m FPS (higher band) to those tasks with U, > 0.5
m EDF for the rest

M +1
2

0 Again, only sufficient [Baruah, 2004]

Uc<

2010/11 UniPD, T. Vardanega Real-time systems. 345 of 372

| Multiprocessor PCP — 1 | Summary
m Proposed by [Sha, Rajkumar, & Lehoczky, 1988] for globally shared m Issues and state of the art
resoutces
m Assumes tasks and resources statically bound to processors m Dhall’s effect: examples
0 The host processor for a resoutce is called the synchronization processor for . .
g o PO oA p m Scheduling anomalies: examples
0 The FPS scheduler for each synchronization processor knows the m P-fair schedulin:
priorities and resources tequirements of all tasks requiring access to its S
globally shared resources m Sufficient tests for simple workload model
m We need actual locks to guarantee protection from true parallelism (which . .
makes lock-free algorithms attractive) m Incorporating global resource sharing
0 The task that holds a lock should not be preempted locally
0 The task that is denied a lock spin-locks (!)
2010/11 UniPD, T. Vardanega Real-time systems 346 of 372 2010/11 UniPD, T. Vardanega Real-time systems 349 of 372

| Multiprocessor PCP — 2

m Access to globally shared resources is controlled
locally on the synchronization processor according
to the Priority-Ceiling Protocol (PCP) except that
a Access to a globally shared resource is modeled as the

task executing a global critical section on the
synchronization processor for the resource

a All global critical sections are executed at higher priorities
than local tasks on the synchronization processor

2010/11 UniPD, T. Vardanega Real-time systems 347 of 372

| Blocking under M-PCP

m Consequently task T, incurs five types of blocking

a Local blocking time due to contention for local resources

a Local preemption delay due to the preemption by global critical
sections used by remote tasks on T;’s local processor

Q Remote blocking time due to contention with lower-priority tasks for
remote resources on their synchronization processors

a Remote preemption delay due to preemption by higher-priority global
critical sections on synchronization processors of the remote
resources required by T;

a Deferred blocking time due to the suspended execution of local higher-
priority tasks

2010/11 UniPD, T. Vardanega Real-time systems 348 of 372

