
8. Multi-cores
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Fundamental issues

Hardware architecture taxonomy
Homogeneous vs. heterogeneous processors

Current research is focused on SMP (symmetric multiprocessors) for 
which the scheduling problem is much simpler

Scheduling approach
Global or partitioned or alternatives between these extremes

Partitioning is an allocation problem followed by single processor 
scheduling

Optimality criteria
EDF is no longer optimal
EDF is not always better than FPS
Global scheduling is not always better than partitioned
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Hardware architecture taxonomy

A multiprocessor (or multi-core) is tightly coupled
Global status and workload information on all processors (cores)
can be kept current at low cost
The system may use a centralized dispatcher and scheduler
When each processor (core) has its own scheduler, the decisions 
and actions of all schedulers are coherent

Scheduling in this model is an NP-hard problem

A distributed system is loosely coupled
It is too costly to keep global status 
There usually is a dispatcher / scheduler per processor
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State of the art

Some task sets may be unschedulable even though they 
have low utilization 

Much less than the number of processors
This is known as the Dhall’s effect [Dhall & Liu, 1978]

The known exact schedulability tests have exponential time 
complexity

The known sufficient tests have polynomial time complexity but are 
pessimistic

Rate-monotonic priority assignment is not optimal
No optimal priority assignment scheme with polynomial 
time complexity has been found yet
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Interference

We know what is the interference Ii suffered by a 
task i for single-processor scheduling

How does this change for multiprocessors?

For global multiprocessor scheduling with m
processors interference only occurs for tasks from 
m+1 onward
Multiprocessor interference can be computed as the 
sum of all intervals when m higher-priority tasks 
execute in parallel on all m processors
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Example (Dhall’s effect) – 1

Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors
But this would leave no time for c to complete 

7 time units on each processor, 14 in total, but 8 on neither
Even if the total system is underutilized (!)
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Example – 2

Partitioned scheduling does not work here either
Task f cannot reside on just one processor: it needs to migrate 
from one to the other to find room for execution
And it also needs that d and e are willing to use cooperative 
scheduling for it complete in time

0.2

0.9

0.9

U

21010f

91010e

91010d

CDTTask

On 2 processors

∑ Ui = 2

2010/11 UniPD, T. Vardanega Real-time systems 329 of 372

Global scheduling anomalies

In real-time scheduling for single-processors, the deadline 
miss ratio often highly depends on the system load

This suggests that increasing the period should decrease the 
utilization and thus decrease the deadline miss ratio

Anomaly 1
A decrease in processor demand from higher-priority tasks can 
increase the interference on a lower-priority task because of the 
change in the time when the tasks execute

Anomaly 2
A decrease in processor demand of a task negatively affects the task 
itself because the change in the task arrival times make it suffer 
more interference 
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Anomaly 1
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Anomaly 1 (cont’d)

If we reduce Ta to 4 we decrease system load to ∑ Ui = 1.67 
But then Ic increases from 4 to 6 and task c misses its 
deadline (!)
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Anomaly 2
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Anomaly 2 (cont’d)

If we extend Tc to 11 we decrease system load to ∑ Ui = 1.74
But then Ic increases from 3 to 5 (!) as becomes visible in 
the second job of task c 
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P-fair scheduling [Baruah et al. 1996]

Proportional progress is a form of proportionate fairness (a.k.a. 
P-fairness)

Each task τi is assigned resources in proportion to its weight
Wi = Ci/Ti hence it progresses proportionately
Useful e.g., for real-time multimedia applications

At every time t task τi must have been scheduled either 
⎿Wi × t⏌ or ⎡ Wi × t ⎤ time units

Preemption is assumed to only occur at integral time units (without 
loss of generality) and the workload model is periodic
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P-fair scheduling – 2

lag (S, τi , t) is the difference between the total 
resource allocations that task τi should have received 
in [0,t) and what it received under schedule S

For a P-fair schedule S at time t 
Task τi is ahead iff lag (S, τi , t) < 0 
Task τi is behind iff lag (S, τi , t) > 0 
Task τi is punctual iff lag (S, τi , t) = 0
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P-fair scheduling – 3

α(τi , t) is the characteristic substring of task τi at time t
Finite string over {-, 0, +} of αt+1(x) αt+2(x)…αt’(x)

Where t’ = min i : i > t : αi(x)=0
αt(x) = sign (wx × (t+1) – ⎿wx × t⏌- 1)

For a P-fair schedule S at time t
Task τi is urgent at time t iff τi is behind and αt(τi) ≠ -
Task τi is tnegru (inverse of urgent) at time t iff τi is ahead
and αt(τi) ≠ + 
Task τi is contending otherwise
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P-fair scheduling – 4

Properties of a P-fair schedule S
For task τi ahead at time t under S

If αt(τi) = - and τi is not scheduled at time t then τi is ahead at time t+1
If αt(τi) = 0 and τi is not scheduled at time t then τi is punctual at time t+1
If αt(τi) = + and it is not scheduled at time t then it is behind at time t+1
If αt(τi) = + and τi is scheduled at time t then τi is ahead at time t+1

For task τi behind at time t under S
If αt(τi) = - and τi is scheduled at time t then τi is ahead at time t+1
If αt(τi) = - and τi is not scheduled at time t then τi is behind at time t+1
If αt(τi) = 0 and τi is scheduled at time t then τi is punctual at time t+1
If αt(τi) = + and τi is scheduled at time t then τi is behind at time t+1

urgent

tnegru
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P-fair scheduling – 5

General principle of P-fairness
Every task urgent at time t must be scheduled at time t to preserve P-
fairness
No task tnegru at time t can be scheduled at time t without breaking 
P-fairness

Possible pitfalls for n0 tnegru, n1 contending, n2 urgent tasks at 
time t with m resources and n=n0+n1+n2

If n2>m the scheduling algorithm cannot schedule all urgent tasks
If n0>n-m the scheduling algorithm is forced to schedule some 
tnegru tasks
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P-fair scheduling – 4

The PF scheduling algorithm
Schedule all urgent tasks
Allocate the remaining resources to the highest-priority contending
tasks according to the total order function ⊇ with ties broken 
arbitrarily

x ⊇ y iff α(x, t) ≥ α(y, t) 
And the comparison between the characteristics substrings is resolved 
lexicographically with - < 0 < +

With PF we have ∑x∈[0,n) wx = m 
A dummy task may need to be added to the task set to top 
utilization up

The feared pitfalls cannot happen with the PF algorithm
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Example (PF scheduling) – 1

3-U462335z

0.727…118y

0.714…75x

0.542w

0.333…31v

WTCTask
m = 3 processors
n = 4 tasks
Task z is a dummy used to top 
system utilization up
In general its period is set to the 
system hyperperiod

This time we halved it
With PF we always have 
n2 > m and n0 ≤ n-m
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Example (PF scheduling) – 2
These tasks are scheduled and they become ahead

w is ahead and its current substring indicates it need not be scheduled
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Some results – 1

For the simplest workload model made of 
independent periodic and sporadic tasks

A P-fair scheme can theoretically sustain U = m for m
processors but its run-time overheads are excessive

Especially because tasks incur very many preemptions and are 
frequently required to migrate across processors

Partitioned FPS first-fit (on decreasing task utilization) can 
sustain                                     (i.e., 0.414 × m)

But this is a sufficient test only [Oh & Baker, 1998]
)12( −≤ MU
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Some results – 2

Partitioned EDF first-fit can sustain

For high Umax this bound gets rapidly lower than 0.6 × m, 
but can get close to m for some examples

Again this is a sufficient test only [Lopez et al., 2004]
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Some results – 3

Global EDF can sustain

For high Umax this bound can be as low as 0.2 × m
but also close to m for other examples

Again, only sufficient [Goossens et al., 2003]

max)1( UMMU −−≤
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Some results – 4

Combinations
FPS (higher band) to those tasks with Ui > 0.5
EDF for the rest

Again, only sufficient [Baruah, 2004]
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Multiprocessor PCP – 1

Proposed by [Sha, Rajkumar, & Lehoczky, 1988] for globally shared 
resources
Assumes tasks and resources statically bound to processors

The host processor for a resource is called the synchronization processor for 
that resource
The FPS scheduler for each synchronization processor knows the 
priorities and resources requirements of all tasks requiring access to its 
globally shared resources

We need actual locks to guarantee protection from true parallelism (which 
makes lock-free algorithms attractive)

The task that holds a lock should not be preempted locally
The task that is denied a lock spin-locks (!)
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Multiprocessor PCP – 2

Access to globally shared resources is controlled 
locally on the synchronization processor according 
to the Priority-Ceiling Protocol (PCP) except that

Access to a globally shared resource is modeled as the 
task executing a global critical section on the 
synchronization processor for the resource
All global critical sections are executed at higher priorities 
than local tasks on the synchronization processor
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Blocking under M-PCP

Consequently task Ti incurs five types of blocking 
Local blocking time due to contention for local resources
Local preemption delay due to the preemption by global critical 
sections used by remote tasks on Ti’s local processor
Remote blocking time due to contention with lower-priority tasks for 
remote resources on their synchronization processors
Remote preemption delay due to preemption by higher-priority global 
critical sections on synchronization processors of the remote 
resources required by Ti
Deferred blocking time due to the suspended execution of local higher-
priority tasks
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Summary

Issues and state of the art
Dhall’s effect: examples
Scheduling anomalies: examples
P-fair scheduling
Sufficient tests for simple workload model
Incorporating global resource sharing


