
8. Multi-cores

Credits to A. Burns and A. Wellings

and to B. Andersson and J. Jonsson for their work in
Proc. of the the IEEE Real-Time Systems Symposium, WiP
Session, 2000, pp. 53–56

2010/11 UniPD, T. Vardanega Real-time systems 323 of 372

Fundamental issues

Hardware architecture taxonomy
Homogeneous vs. heterogeneous processors

Current research is focused on SMP (symmetric multiprocessors) for
which the scheduling problem is much simpler

Scheduling approach
Global or partitioned or alternatives between these extremes

Partitioning is an allocation problem followed by single processor
scheduling

Optimality criteria
EDF is no longer optimal
EDF is not always better than FPS
Global scheduling is not always better than partitioned

2010/11 UniPD, T. Vardanega Real-time systems 324 of 372

Hardware architecture taxonomy

A multiprocessor (or multi-core) is tightly coupled
Global status and workload information on all processors (cores)
can be kept current at low cost
The system may use a centralized dispatcher and scheduler
When each processor (core) has its own scheduler, the decisions
and actions of all schedulers are coherent

Scheduling in this model is an NP-hard problem

A distributed system is loosely coupled
It is too costly to keep global status
There usually is a dispatcher / scheduler per processor

2010/11 UniPD, T. Vardanega Real-time systems 325 of 372

State of the art

Some task sets may be unschedulable even though they
have low utilization

Much less than the number of processors
This is known as the Dhall’s effect [Dhall & Liu, 1978]

The known exact schedulability tests have exponential time
complexity

The known sufficient tests have polynomial time complexity but are
pessimistic

Rate-monotonic priority assignment is not optimal
No optimal priority assignment scheme with polynomial
time complexity has been found yet

2010/11 UniPD, T. Vardanega Real-time systems 326 of 372

Interference

We know what is the interference Ii suffered by a
task i for single-processor scheduling

How does this change for multiprocessors?

For global multiprocessor scheduling with m
processors interference only occurs for tasks from
m+1 onward
Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors

2010/11 UniPD, T. Vardanega Real-time systems 327 of 372

Example (Dhall’s effect) – 1

Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors
But this would leave no time for c to complete

7 time units on each processor, 14 in total, but 8 on neither
Even if the total system is underutilized (!)

0.67

0.5

0.5

U

81212c

51010b

51010a

CDTTask

On 2 processors

∑ Ui = 1.67 < 2

2010/11 UniPD, T. Vardanega Real-time systems 328 of 372

Example – 2

Partitioned scheduling does not work here either
Task f cannot reside on just one processor: it needs to migrate
from one to the other to find room for execution
And it also needs that d and e are willing to use cooperative
scheduling for it complete in time

0.2

0.9

0.9

U

21010f

91010e

91010d

CDTTask

On 2 processors

∑ Ui = 2

2010/11 UniPD, T. Vardanega Real-time systems 329 of 372

Global scheduling anomalies

In real-time scheduling for single-processors, the deadline
miss ratio often highly depends on the system load

This suggests that increasing the period should decrease the
utilization and thus decrease the deadline miss ratio

Anomaly 1
A decrease in processor demand from higher-priority tasks can
increase the interference on a lower-priority task because of the
change in the time when the tasks execute

Anomaly 2
A decrease in processor demand of a task negatively affects the task
itself because the change in the task arrival times make it suffer
more interference

2010/11 UniPD, T. Vardanega Real-time systems 330 of 372

Anomaly 1

0.67
0.50
0.67

U

81212c

244b

233a

CDTTask
m = 2 processors and ∑ Ui = 1.83 but
task c is saturated because Cc + Ic=Dc and
thus any increase in Cc would makes it
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2010/11 UniPD, T. Vardanega Real-time systems 331 of 372

Anomaly 1 (cont’d)

If we reduce Ta to 4 we decrease system load to ∑ Ui = 1.67
But then Ic increases from 4 to 6 and task c misses its
deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2010/11 UniPD, T. Vardanega Real-time systems 332 of 372

Anomaly 2

0.7
0.6
0.5
U

71010c

355b

244a

CDTTask

m = 2 processors and ∑ Ui = 1.8 but
task c is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2010/11 UniPD, T. Vardanega Real-time systems 333 of 372

Anomaly 2 (cont’d)

If we extend Tc to 11 we decrease system load to ∑ Ui = 1.74
But then Ic increases from 3 to 5 (!) as becomes visible in
the second job of task c

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

2010/11 UniPD, T. Vardanega Real-time systems 334 of 372

P-fair scheduling [Baruah et al. 1996]

Proportional progress is a form of proportionate fairness (a.k.a.
P-fairness)

Each task τi is assigned resources in proportion to its weight
Wi = Ci/Ti hence it progresses proportionately
Useful e.g., for real-time multimedia applications

At every time t task τi must have been scheduled either
⎿Wi × t⏌ or ⎡ Wi × t ⎤ time units

Preemption is assumed to only occur at integral time units (without
loss of generality) and the workload model is periodic

2010/11 UniPD, T. Vardanega Real-time systems 335 of 372

P-fair scheduling – 2

lag (S, τi , t) is the difference between the total
resource allocations that task τi should have received
in [0,t) and what it received under schedule S

For a P-fair schedule S at time t
Task τi is ahead iff lag (S, τi , t) < 0
Task τi is behind iff lag (S, τi , t) > 0
Task τi is punctual iff lag (S, τi , t) = 0

2010/11 UniPD, T. Vardanega Real-time systems 336 of 372

P-fair scheduling – 3

α(τi , t) is the characteristic substring of task τi at time t
Finite string over {-, 0, +} of αt+1(x) αt+2(x)…αt’(x)

Where t’ = min i : i > t : αi(x)=0
αt(x) = sign (wx × (t+1) – ⎿wx × t⏌- 1)

For a P-fair schedule S at time t
Task τi is urgent at time t iff τi is behind and αt(τi) ≠ -
Task τi is tnegru (inverse of urgent) at time t iff τi is ahead
and αt(τi) ≠ +
Task τi is contending otherwise

2010/11 UniPD, T. Vardanega Real-time systems 337 of 372

P-fair scheduling – 4

Properties of a P-fair schedule S
For task τi ahead at time t under S

If αt(τi) = - and τi is not scheduled at time t then τi is ahead at time t+1
If αt(τi) = 0 and τi is not scheduled at time t then τi is punctual at time t+1
If αt(τi) = + and it is not scheduled at time t then it is behind at time t+1
If αt(τi) = + and τi is scheduled at time t then τi is ahead at time t+1

For task τi behind at time t under S
If αt(τi) = - and τi is scheduled at time t then τi is ahead at time t+1
If αt(τi) = - and τi is not scheduled at time t then τi is behind at time t+1
If αt(τi) = 0 and τi is scheduled at time t then τi is punctual at time t+1
If αt(τi) = + and τi is scheduled at time t then τi is behind at time t+1

urgent

tnegru

2010/11 UniPD, T. Vardanega Real-time systems 338 of 372

P-fair scheduling – 5

General principle of P-fairness
Every task urgent at time t must be scheduled at time t to preserve P-
fairness
No task tnegru at time t can be scheduled at time t without breaking
P-fairness

Possible pitfalls for n0 tnegru, n1 contending, n2 urgent tasks at
time t with m resources and n=n0+n1+n2

If n2>m the scheduling algorithm cannot schedule all urgent tasks
If n0>n-m the scheduling algorithm is forced to schedule some
tnegru tasks

2010/11 UniPD, T. Vardanega Real-time systems 339 of 372

P-fair scheduling – 4

The PF scheduling algorithm
Schedule all urgent tasks
Allocate the remaining resources to the highest-priority contending
tasks according to the total order function ⊇ with ties broken
arbitrarily

x ⊇ y iff α(x, t) ≥ α(y, t)
And the comparison between the characteristics substrings is resolved
lexicographically with - < 0 < +

With PF we have ∑x∈[0,n) wx = m
A dummy task may need to be added to the task set to top
utilization up

The feared pitfalls cannot happen with the PF algorithm

2010/11 UniPD, T. Vardanega Real-time systems 340 of 372

Example (PF scheduling) – 1

3-U462335z

0.727…118y

0.714…75x

0.542w

0.333…31v

WTCTask
m = 3 processors
n = 4 tasks
Task z is a dummy used to top
system utilization up
In general its period is set to the
system hyperperiod

This time we halved it
With PF we always have
n2 > m and n0 ≤ n-m

2010/11 UniPD, T. Vardanega Real-time systems 341 of 372

Example (PF scheduling) – 2
These tasks are scheduled and they become ahead

w is ahead and its current substring indicates it need not be scheduled

2010/11 UniPD, T. Vardanega Real-time systems 342 of 372

Some results – 1

For the simplest workload model made of
independent periodic and sporadic tasks

A P-fair scheme can theoretically sustain U = m for m
processors but its run-time overheads are excessive

Especially because tasks incur very many preemptions and are
frequently required to migrate across processors

Partitioned FPS first-fit (on decreasing task utilization) can
sustain (i.e., 0.414 × m)

But this is a sufficient test only [Oh & Baker, 1998]
)12(−≤ MU

2010/11 UniPD, T. Vardanega Real-time systems 343 of 372

Some results – 2

Partitioned EDF first-fit can sustain

For high Umax this bound gets rapidly lower than 0.6 × m,
but can get close to m for some examples

Again this is a sufficient test only [Lopez et al., 2004]

1
1

+
+

≤
β
βMU

⎥
⎦

⎥
⎢
⎣

⎢
=

max

1
U

β

Per task

2010/11 UniPD, T. Vardanega Real-time systems 344 of 372

Some results – 3

Global EDF can sustain

For high Umax this bound can be as low as 0.2 × m
but also close to m for other examples

Again, only sufficient [Goossens et al., 2003]

max)1(UMMU −−≤

2010/11 UniPD, T. Vardanega Real-time systems 345 of 372

Some results – 4

Combinations
FPS (higher band) to those tasks with Ui > 0.5
EDF for the rest

Again, only sufficient [Baruah, 2004]

⎟
⎠
⎞

⎜
⎝
⎛ +

≤
2

1MU

2010/11 UniPD, T. Vardanega Real-time systems 346 of 372

Multiprocessor PCP – 1

Proposed by [Sha, Rajkumar, & Lehoczky, 1988] for globally shared
resources
Assumes tasks and resources statically bound to processors

The host processor for a resource is called the synchronization processor for
that resource
The FPS scheduler for each synchronization processor knows the
priorities and resources requirements of all tasks requiring access to its
globally shared resources

We need actual locks to guarantee protection from true parallelism (which
makes lock-free algorithms attractive)

The task that holds a lock should not be preempted locally
The task that is denied a lock spin-locks (!)

2010/11 UniPD, T. Vardanega Real-time systems 347 of 372

Multiprocessor PCP – 2

Access to globally shared resources is controlled
locally on the synchronization processor according
to the Priority-Ceiling Protocol (PCP) except that

Access to a globally shared resource is modeled as the
task executing a global critical section on the
synchronization processor for the resource
All global critical sections are executed at higher priorities
than local tasks on the synchronization processor

2010/11 UniPD, T. Vardanega Real-time systems 348 of 372

Blocking under M-PCP

Consequently task Ti incurs five types of blocking
Local blocking time due to contention for local resources
Local preemption delay due to the preemption by global critical
sections used by remote tasks on Ti’s local processor
Remote blocking time due to contention with lower-priority tasks for
remote resources on their synchronization processors
Remote preemption delay due to preemption by higher-priority global
critical sections on synchronization processors of the remote
resources required by Ti
Deferred blocking time due to the suspended execution of local higher-
priority tasks

2010/11 UniPD, T. Vardanega Real-time systems 349 of 372

Summary

Issues and state of the art
Dhall’s effect: examples
Scheduling anomalies: examples
P-fair scheduling
Sufficient tests for simple workload model
Incorporating global resource sharing

