
9. Sustainable multiprocessor
scheduling of sporadic task systems
(or: how an inexact schedulability test might be better)

Ted Baker
Florida State University, USA

Sanjoy Baruah
University of North Carolina, USA
@ ECRTS 2009

2010/11 UniPD, T. Vardanega Real-time systems 351 of 372

Overview

Sustainability
What is it?
Why do I want it?
How do I get it?

Sustainability of FTP (a.k.a FPS), EDF, EDZL
applied to global multi-processor scheduling
Sustainability of some global EDF tests

2010/11 UniPD, T. Vardanega Real-time systems 352 of 372

Schedulability test

Will a workload W meet all deadlines if scheduled
by algorithm A on platform P ?
Exact test : “yes” ⇔ W is schedulable
Sufficient test : “yes” ⇒ W is schedulable
Goal

Validate timing properties on which correctness,
reliability, safety depend

2010/11 UniPD, T. Vardanega Real-time systems 353 of 372

Weakness

Real systems differ from models
Clock and timer inaccuracies
Blocking / non-preemption
Execution time variation

Differences must not invalidate test (!)
Solution

Use pessimistic assumptions

2010/11 UniPD, T. Vardanega Real-time systems 354 of 372

What is pessimistic?

Should cover full range of possibilities
How to validate over such a range?
People tend to assume that system behavior is
monotonic

So that they can rely on boundary testing
This can be dangerous (!)

For example: does WCET of individual jobs give
worst-case behavior of the entire system?

2010/11 UniPD, T. Vardanega Real-time systems 355 of 372

Goals

Our notion of what is “pessimistic” should be
consistent with the analysis that underlies the
schedulability test
The test should be monotonic with respect to any
workload parameters that are considered to be
bounds on actual values

2010/11 UniPD, T. Vardanega Real-time systems 356 of 372

Predictability [Ha & Liu, 1994]

For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving 1), preemptive, global (with
migration), with fixed job priorities

Job completion times are monotonically related to job execution
times

Hence it is safe to consider only upper bounds for job
execution times in schedulability tests
This is not true for non-preemptive scheduling

1) A scheduling algorithm is work conserving if processors are not idle
while tasks eligible for execution are not able to execute on other
processors

2010/11 UniPD, T. Vardanega Real-time systems 357 of 372

Sustainability [Baruah & Burns, 2006]

Extends the notion of predictability to wider range of
relaxations of workload parameters

Shorter execution times
Longer periods
Less release-time jitter
Later deadlines

Relaxation should preserve schedulability
Much like predictability does for increase

Cited work considers single-processor systems
Here we consider multi-processors

2010/11 UniPD, T. Vardanega Real-time systems 358 of 372

Why to relax?

Safety
Run-time behavior may fall short of pessimistic model
parameters

Modular design
Start with pessimistic parameters, relax as design evolves

Efficiency
Revise estimates at job arrival, schedule more precisely

2010/11 UniPD, T. Vardanega Real-time systems 359 of 372

How?

Actual/nominal?
Actual maximum job execution time < Ci, or
Value Ci used by scheduler is reduced

Per job/task?
Ci reduced differently for each job, or
Ci reduced for all jobs of task

Use in scheduling decisions, or not?
These may or may not make a difference in sustainability,
depending on context

2010/11 UniPD, T. Vardanega Real-time systems 360 of 372

Getting specific

Sustainability depends on
The platform
The workload model
The scheduling algorithm

Platform : SMP
Workload model : sporadic task set
Scheduling algorithms : global FTP, EDF, EDZL

2010/11 UniPD, T. Vardanega Real-time systems 361 of 372

SMP platform

M identical processors
Bounded cost for migration, context switch

2010/11 UniPD, T. Vardanega Real-time systems 362 of 372

Sporadic [task workload] model

Fixed set of tasks
Each generates a sequence of jobs
Each job of a task has parameters

Execution time
Ci is an upper bound

Inter-arrival time
Ti is a lower bound

Deadline
Di , relative to arrival time

2010/11 UniPD, T. Vardanega Real-time systems 363 of 372

Where is pessimism?

Ti : lower bound
Ci : upper bound
Di : lower bound?
Sustainability means allowing for the following
relaxations

Longer inter-arrival times
Shorter execution times
Longer deadlines

2010/11 UniPD, T. Vardanega Real-time systems 364 of 372

Global scheduling

Fixed Task Priority (FTP), a.k.a. FPS
M tasks with highest task priority allowed to execute

EDF
M jobs with earliest deadlines allowed to execute

EDZL
Same, except that jobs with zero laxity preempt
Laxity = remaining-time-to-deadline – remaining-WCET

Common property
Limit of 1 (or 2, for EDZL) preemption per job allows us to bundle
worst-case preemption/migration overhead into WCET of jobs

2010/11 UniPD, T. Vardanega Real-time systems 365 of 372

Longer inter-arrival times

Sustainability is built into the sporadic workload
model

Per-job or per-task
Actual, nominal too for algorithms that do not make use
of Ti in scheduling decisions

Global FTP, EDF, EDZL are sustainable w.r.t. longer
inter-arrival times

2010/11 UniPD, T. Vardanega Real-time systems 366 of 372

Shorter execution times

Depends on scheduling algorithm
Studied by Ha & Liu (1994)
Non-preemptive scheduling not sustainable
Preemptive work-conserving fixed-job-priority SMP
scheduling with migration is sustainable

FTP and EDF are sustainable
Proved for job sets, covers sporadic tasks

Actual/nominal, per job/task

2010/11 UniPD, T. Vardanega Real-time systems 367 of 372

EDZL & shorter execution time

Difference from FTP & EDF
Job priority can change

Breaks Ha & Liu assumption

EDZL is sustainable
Piao, Han, Kim et al., 2006 (new proof in this work!)

Per job/task
Nominal and actual, or just actual

2010/11 UniPD, T. Vardanega Real-time systems 368 of 372

Longer deadlines?

FTP is sustainable for sporadic tasks
EDF & EDZL sustainability open for sporadic tasks

Not sustainable for job sets*
Exact test (if one exists) might be risky
Or scheduler should ignore deadline changes
Sustainable tests are of interest

* Apparently also not sustainable for sporadic task sets, with respect
to relaxation of a single job deadline (see appendix). However, it
might be sustainable w.r.t. uniform relaxation of deadline over all
jobs of a task

2010/11 UniPD, T. Vardanega Real-time systems 369 of 372

Sustainable schedulability test

If the test says a task set is schedulable, then it
remains schedulable if we reduce pessimism in our
assumptions, e.g.,

Decrease task execution times
Increase task periods
Reduce release-time jitter
Lengthen job deadlines

2010/11 UniPD, T. Vardanega Real-time systems 370 of 372

Relationships

Algorithm sustainable ⇒ Test sustainable
Algorithm not sustainable ⇒ Exact test not
sustainable

So an inexact test might be better,
if it is sustainable and the algorithm is not

This might be true for global EDF
Do we know any sustainable tests?

2010/11 UniPD, T. Vardanega Real-time systems 371 of 372

Self-sustainable test (new)

If the test says a task set is schedulable, then the test
still says it is schedulable if we reduce pessimism in
our assumptions, e.g.

Decrease task execution times
Increase task periods
Reduce release-time jitter
Lengthen job deadlines

Do we know any self-sustainable tests for global EDF?

2010/11 UniPD, T. Vardanega Real-time systems 372 of 372

Summary

Sustainability depends on workload model as well as
platform and scheduling algorithm
For sporadic tasks and SMP

Global FTP is fully sustainable
Global EDF & EDZL are (only?) exec. time and inter-arrival time
sustainable

Self-sustainability is a strong form of sustainability
for tests

Not all tests are deadline self-sustainable
But at least one is

