9. Sustainable multiprocessor

scheduling of sporadic task systems

(or: how an inexact schedulability test might be better)

Ted Baker

Florida State University, USA
Sanjoy Baruah

University of North Carolina, USA
@ ECRTS 2009

| Weakness

m Real systems differ from models

o Clock and timer inaccuracies

o Blocking / non-preemption

o Execution time variation
m Differences must not invalidate test (!)
m Solution

0 Use pessimistic assumptions

2010/11 UniPD, T. Vardanega Real-time systems 353 0f 372

Overview

m Sustainability
a What is it?
0 Why do I want it?
0 How do I get it?
m Sustainability of FTP (a.k.a FPS), EDF, EDZL
applied to global multi-processor scheduling

m Sustainability of some global EDF tests

2010/11 UniPD, T. Vardanega

Real-time systems 351

of 372

What is pessimistic?

m Should cover full range of possibilities

m How to validate over such a range?

m People tend to assume that system behavior is
monotonic
0 So that they can rely on boundary testing

m This can be dangerous (1)

0 For example: does WCET of individual jobs give
worst-case behavior of the entire system?

2010/11 UniPD, T. Vardanega

| Schedulability test

= Will 2 workload IV meet all deadlines if scheduled
by algorithm .4 on platform P ?

m Exact test “yes” <> W is schedulable

m Sufficient test

m Goal

0 Validate timing properties on which correctness,

reliability, safety depend

“yes” = W is schedulable

2010/11 UniPD, T. Vardanega

| Goals

m Our notion of what is “pessimistic”” should be
consistent with the analysis that underlies the
schedulability test

m The test should be monotonic with respect to any
workload parameters that are considered to be
bounds on actual values

2010/11 UniPD, T. Vardanega

| Predictability [Ha & Liu, 1994]

m For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving V, preemptive, global (with
migration), with fixed job priorities

0 Job completion times are monotonically related to job execution
times

m Hence it is safe to consider only upper bounds for job
execution times in schedulability tests

m This is not true for non-preemptive scheduling

1) A scheduling algorithm is work conserving if processors are not idle
while tasks eligible for execution are not able to execute on other
pr()CCSS()rS

Real-time systems 356 of 372

2010/11 UniPD, T. Vardanega

How?

m Actual/nominal?
0 Actual maximum job execution time < C, or
0 Value C, used by scheduler is reduced
m Per job/task?
o C; reduced differently for each job, or
o C; reduced for all jobs of task
m Use in scheduling decisions, or not?

0 These may or may not make a difference in sustainability,
depending on context

2010/11 UniPD, T. Vardanega Real-time systems 359 of 372

| Sustainability [Baruah & Burns, 2000]

m Extends the notion of predictability to wider range of
relaxations of workload parameters
0 Shorter execution times
o Longer periods
0 Less release-time jitter
o Later deadlines
= Relaxation should preserve schedulability
0 Much like predictability does for increase
m Cited work considers single-processor systems

m Here we consider multi-processors

2010/11 UniPD, T. Vardanega Real-time systems 357 of 372

| Getting specific

m Sustainability depends on
a The platform
o The workload model
0 The scheduling algorithm
m Platform : SMP
m Workload model : sporadic task set
m Scheduling algorithms : global FTP, EDF, EDZL

2010/11 UniPD, T. Vardanega Real-time systems. 360 of 372

| Why to relax?

m Safety

a Run-time behavior may fall short of pessimistic model
parameters

m Modular design
0 Start with pessimistic parameters, relax as design evolves
m Efficiency

0 Revise estimates at job arrival, schedule more precisely

2010/11 UniPD, T. Vardanega Real-time systems 358 of 372

| SMP platform

m M identical processors

m Bounded cost for migration, context switch

2010/11 UniPD, T. Vardanega Real-time systems. 361 of 372

| Sporadic [task workload] model

m Fixed set of tasks
m Each generates a sequence of jobs

m Each job of a task has parameters
o Execution time
m Cis an upper bound
o Inter-arrival time
m T, is a lower bound
0 Deadline

= D, relative to arrival time

2010/11 UniPD, T. Vardanega Real-time systems 362 of 372

| Longer inter-arrival times

m Sustainability is built into the sporadic workload
model
a Per-job or per-task

0 Actual, nominal too for algorithms that do not make use
of T, in scheduling decisions

w Global FTP, EDF, EDZL. are sustainable w.r.t. longer

inter-arrival times

2010/11 UniPD, T. Vardanega Real-time systems 365 of 372

| Where is pessimism?

= T, : lower bound
= C, : upper bound
= D, : lower bound?

= Sustainability means allowing for the following
relaxations
a Longer inter-arrival times
a Shorter execution times

a Longer deadlines

2010/11 UniPD, T. Vardanega Real-time systems 363 of 372

Shorter execution times

m Depends on scheduling algorithm
Studied by Ha & Liu (1994)

m Non-preemptive scheduling not sustainable

Preemptive work-conserving fixed-job-priority SMP
scheduling with migration is sustainable
Q FTP and EDF are sustainable

Proved for job sets, covers sporadic tasks

o Actual/nominal, per job/task

2010/11 UniPD, T. Vardanega Real-time systems. 366 of 372

| Global scheduling

m Fixed Task Priority (FTP), a.k.a. FPS
0 M tasks with highest task priority allowed to execute
m EDF

0 M jobs with carliest deadlines allowed to execute

= EDZL
0 Same, except that jobs with zero laxity preempt
o Laxity = ining-time-to-deadline — remaining-WCET

= Common property

o Limit of 1 (or 2, for EDZL) preemption per job allows us to bundle
wortst-case preemption/migration overhead into WCET of jobs

2010/11 UniPD, T. Vardanega Real-time systems 364 of 372

EDZI1. & shorter execution time

m Difference from FIP & EDF
0 Job priority can change

m Breaks Ha & Liu assumption

w EDZIL. is sustainable

a Piao, Han, Kim et al., 2006 (new proof in this work!)
m Perjob/task

s Nominal and actual, or just actual

2010/11 UniPD, T. Vardanega Real-time systems. 367 of 372

| Longer deadlines?

m FTP is sustainable for sporadic tasks

n EDF & EDZL sustainability open for sporadic tasks
Not sustainable for job sets*

Exact test (if one exists) might be risky

Or scheduler should ignore deadline changes

0O o o o

Sustainable tests are of interest

* Appatently also not sustainable for sporadic task sets, with respect
to relaxation of a single job deadline (see appendix). However, it
might be sustainable w.r.t. uniform relaxation of deadline over all
jobs of a task

2010/11 UniPD, T. Vardanega Real-time systems 368 of 372

| Self-sustainable test (new)

m If the test says a task set is schedulable, then the test
still says it is schedulable if we reduce pessimism in
our assumptions, e.g.

o Decrease task execution times
0 Increase task periods
0 Reduce release-time jitter

0 Lengthen job deadlines

Do we know any self-sustainable tests for global EDF?

2010/11 UniPD, T. Vardancga Real-time systems 371 0f 372

| Sustainable schedulability test

m If the test says a task set is schedulable, then it
remains schedulable if we reduce pessimism in our
assumptions, e.g.,

0 Decrease task execution times
a Increase task periods
a Reduce release-time jitter

0 Lengthen job deadlines

2010/11 UniPD, T. Vardanega Real-time systems 369 of 372

| Summary

m Sustainability depends on workload model as well as
platform and scheduling algorithm

m For sporadic tasks and SMP
o Global FTP is fully sustainable
o Global EDF & EDZL are (only?) exec. time and inter-arrival time
sustainable
m Self-sustainability is a strong form of sustainability
for tests
o Not all tests are deadline self-sustainable

o But at least one is

Real-time systems. 372 0f 372

2010/11 UniPD, T. Vardanega

Relationships

m Algorithm sustainable = Test sustainable

= Algorithm not sustainable = Exact test not
sustainable

m So an inexact test might be better,
if it is sustainable and the algorithm is not

This might be true for global EDF
Do we know any sustainable tests?

2010/11 UniPD, T. Vardanega Real-time systems 370 of 372

