
DP-FAIR: A Simple Model for Understanding Optimal Multiprocessor Scheduling

Greg Levin†, Shelby Funk‡, Caitlin Sadowski†, Ian Pye†, Scott Brandt†
†Computer Science Department ‡Department of Computer Science

University of California, Santa Cruz University of Georgia, Athens, GA
{glevin, supertri, ipye, sbrandt}@soe.ucsc.edu shelby@cs.uga.edu

Abstract

We consider the problem of optimal real-time schedul-
ing of periodic and sporadic tasks for identical multipro-
cessors. A number of recent papers have used the notions
of fluid scheduling and deadline partitioning to guarantee
optimality and improve performance. In this paper, we
develop a unifying theory with the DP-FAIR scheduling
policy and examine how it overcomes problems faced by
greedy scheduling algorithms. We then present a simple
DP-FAIR scheduling algorithm, DP-WRAP, which serves
as a least common ancestor to many recent algorithms. We
also show how to extend DP-FAIR to the scheduling of spo-
radic tasks with arbitrary deadlines.

1. Introduction

Multiprocessor systems are becoming commonplace as
more computers, even desktops, have multiple cores. Many
implications of using a multiprocessor system, including
scheduling issues, are still not well understood. Multipro-
cessor scheduling is particularly difficult in the presence
of hard real-time constraints. Real-time scheduling algo-
rithms that are known to perform very well on uniprocessor
systems, such as Earliest Deadline First (EDF) [21], do not
perform as well on multiprocessors.

Broadly, there are two types of multiprocessor schedul-
ing algorithms: global and partitioned. Global algorithms
use a single scheduler for all processors and allow tasks
to migrate between processors. Partitioned algorithms start
by partitioning tasks among processors; scheduling is then
handled by simpler uniprocessor algorithms, and no migra-
tion is allowed. Partitioned approaches are easy to imple-
ment, as they reduce multiprocessor scheduling to unipro-
cessor scheduling. However, they are not optimal, in the
sense that they can fail to schedule theoretically feasible
task sets1.

1In fact, examples may be constructed where partitioned schedulers
fail to successfully schedule tasks sets that only require (50 + ε)% of
processor capacity [7, 22].

In 1996, Baruah et al. [5] introduced the PFAIR algo-
rithm, the first optimal multiprocessor scheduler for peri-
odic tasks. By migrating tasks between processors, PFAIR
can successfully schedule any task set whose utilization
does not exceed processor capacity. More recently, a num-
ber of papers have exploited deadline partitioning (sub-
dividing time into slices where all tasks have the same
deadline) to achieve optimality while greatly reducing the
number of required context switches and process migra-
tions [3, 9, 26]. These and other algorithms, while superfi-
cially different, have achieved optimality by expanding on
the core idea of tracking the fluid schedule, or average rate
curve. A better understanding of their shared traits will aid
in the ability to understand, compare, and contrast these al-
gorithms, to consolidate their insights, and to point towards
new avenues of study.

The contributions of this papers are:

• We explore the difficulties of optimal multiprocessor
scheduling and the failure of greedy algorithms.

• We give a simple set of guidelines, called DP-FAIR,
for designing optimal schedulers for periodic task sets.

• We describe the DP-FAIR scheduling algorithm DP-
WRAP (similar to EKG [3] and BF [26]), the simplest
optimal scheduler to date, with reasonably good mi-
gration bounds and limited computational overhead.

• We demonstrate the flexibility of the DP-FAIR guide-
lines and the DP-WRAP algorithm by extending them
to handle sporadic task sets with arbitrary deadlines.

The remainder of this paper is organized as follows.
Section 2 formalizes the problem under consideration and
provides relevant definitions. Section 3 examines why
greedy scheduling algorithms (like EDF) tend to fail in a
multiprocessor environment. Section 4 presents the DP-
FAIR scheduling principles and proves their correctness; it
also presents the simple DP-WRAP scheduling algorithm.
Section 5 extends the DP-FAIR conditions to handle spo-
radic tasks with arbitrary deadlines. Finally, Section 6 gives
a brief survey of recent schedulers in the context of DP-
FAIR.

22nd Euromicro Conference on Real-Time Systems

1068-3070/10 $26.00 © 2010 IEEE

DOI 10.1109/ECRTS.2010.34

3

m number of processors
n number of tasks
τ set of tasks {T1, . . . , Tn}
Ti ith task
pi period (minimum interarrival time) of Ti
ei workload of each job of Ti
Di time between arrival and deadline of Ti
ai,h arrival time of hth job of Ti
δi ei/min{pi, Di} (density of Ti)

∆(τ)
∑

i δi (total density of τ)
S(τ) m−∆(τ) (total slack of τ)

σj jth time slice, time interval = [tj−1, tj)
tj jth system deadline (end time of σj)
Lj tj − tj−1 (length of σj)
li,t local execution remaining for Ti at t
ri,t li,t/(tj − t) (local utilization of Ti at t)
Lt total local execution at t
Rt total local utilization at t

ci,t local capacity remaining for Ti at t
αi,j(t) time Ti has been active in σj as of t
fi,j(t) time Ti has freed slack in σj as of t
wi,j(t) work executed by Ti in σj as of t
Fj(t)

∑
i δifi,j(t) (total slack freed in σj as of t)

Ij(t) total idle time in σj as of t

Figure 1. Summary of Notation
The first group of symbols defines a task set, the second
group is used in Section 4, and the third in Section 5.

2. Background

This paper considers the scheduling of n periodic or
sporadic tasks on a system ofm identical processors. With-
out loss of generality, we assume the speed of each proces-
sor is 1, i.e., each processor performs one unit of work per
unit of time. Each task will invoke a series of jobs, and
each job requires a certain amount of work be performed
before its deadline. Given a collection of periodic or spo-
radic tasks, the basic problem is to find a schedule to spec-
ify which task (if any) runs on each processor at any given
instant, with the restriction that no task can run on mul-
tiple processors at the same time. We allow tasks to be
preempted or to migrate between processors at any time.

A task Ti = (pi, ei, Di) is a process that invokes a se-
quence of jobs {Ti,h}h≥1. Each job Ti,h arrives at time
ai,h, and has an execution requirement ei and a deadline at
ai,h +Di. Thus Ti,h must be allowed to execute for ei time
units during the interval [ai,h, ai,h + Di). The minimum
time between the arrivals of the jobs of Ti is pi. IfDi = pi,
we refer to this as an implicit deadline and, dropping the
implicitDi, use the abbreviated notation Ti = (pi, ei); oth-
erwise, we say the task has an arbitrary deadline. If Ti is

Figure 2. Simple Scheduling Problem
Three tasks, each with a rate of 2/3, can run successfully
on two processors with migration.

a periodic task, then it invokes its first job at time t = 0
and all its remaining jobs are invoked exactly pi time units
apart, i.e., ai,h = (h − 1)pi for all h. If Ti is a sporadic
task, then it invokes its first job at any time t ≥ 0 and the
remaining jobs are invoked no less than pi time units apart,
i.e., ai,1 ≥ 0, and ai,h ≥ ai,h−1 + pi for all h > 1. We let
τ = {T1, T2, . . . , Tn} denote a set of n periodic or sporadic
tasks.

One important parameter used to describe a task Ti is
its utilization ui = ei/pi. For periodic tasks, the utiliza-
tion measures the proportion of time a task executes on
average. For sporadic tasks, the utilization measures the
“worst-case average”, i.e., the average proportion of re-
quired computing time assuming a worst case sequence of
arrivals (ai,j = ai,j−1+pi). The total utilization of task set
τ , denoted U(τ), is the sum of the individual utilizations:

U(τ) =
n∑

i=1

ui .

When deadlines are not equal to periods, we instead use
the task’s density, δi = ei/min{pi, Di}, and we let ∆(τ)
denote the total density of the task set τ . Notice that if
Di = pi then ui = δi. For the remainder of the paper,
we will use δ and ∆ for consistency, even when discussing
utilization for tasks with implicit deadlines.

A valid schedule is one where all jobs meet their dead-
lines. We say that a set of tasks is feasible if some valid
schedule exists, and a scheduling algorithm is optimal if it
can successfully schedule any feasible task set. A simple
example depicted in Figure 2 demonstrates a set of 3 tasks
that can be successfully scheduled on two processors only
when one of them divides its time between both CPUs.

Not all valid schedules are equally good. In order to re-
duce overhead, scheduling algorithms must have short ex-
ecution times and also try to minimize other costs, such as
those associated with context switches and migrations. Al-
though highly system-dependent, task migrations generally
take longer than context switches, sometimes prohibitively
longer. Because global scheduling algorithms migrate tasks
and also tend to be complex (and, therefore, have long

4

run times), partitioned schemes are preferred in practice.
Newer multiprocessor architectures, such as multicore pro-
cessors, have significantly reduced the migration overhead.
The preference for partitioned scheduling may no longer be
necessary on these types of multiprocessors.

If we assume preemptions and migrations can occur in-
stantly, then in theory it does not matter which processor
is hosting a given task, only which tasks are running at a
given time. This assumption can lead to clearer schedul-
ing descriptions (e.g., Figures 2 & 4). In fact, some recent
algorithms give no explicit prescription for how to assign
tasks to processors [9, 13].

For now, we will focus on periodic task sets with im-
plicit deadlines, and save the more general cases for Sec-
tion 5. We will assume no scheduling overhead2, so that
we should have enough CPU time to complete all jobs (i.e.,
the task set is feasible) provided:

(i) Total task workload doesn’t exceed total CPU capacity
(∆(τ) ≤ m).

(ii) No task’s workload exceeds its period or deadline
(δi ≤ 1 ∀i).

(iii) Process migration is allowed.

Given unlimited context switching and migration, it is
not hard to see that any task set satisfying these conditions
will be feasible. This fact is just an extension of the unipro-
cessor case presented by Liu and Layland [21]. Imagine
that we can reschedule our jobs after each ε of time. As
ε→ 0, we can turn each task Ti on or off sufficiently often
so that it appears to be constantly running on only a fraction
δi of a processor. In the limit, each job executes at exactly
its necessary rate and, when all rates sum to no more than
m, all jobs finish on time. Srinivasan et al. [25] refer to this
as a fluid scheduling model. Figure 3 shows the fluid and
actual scheduling of a task.

Determining the feasibility of a periodic task set with
implicit deadlines is easy; much more challenging is ac-
tually finding a valid schedule that minimizes context
switches and migrations. This has been the goal of recent
papers in this problem domain, and is our primary interest.
To motivate our approach, we explore the shortcomings of
greedy schedulers.

3. Greedy Schedulers
An attractive (and common [7]) first approach to

scheduling is to try to find a simple greedy solution. Greedy
algorithms are straightforward to explain, prove and im-
plement. They often attempt to encapsulate the criticality

2Alternatively, we can assume the overhead costs are included in the
tasks’ execution requirements. This is a valid assumption if the worst-
case number of preemptions and migrations can be determined in advance,
which is often the case. However, this implementation could lead to very
pessimistic worst case execution times.

Figure 3. Fluid versus Practical Schedules

(likeliness of a missed deadline) of a job into a single quan-
tity and then use that to greedily schedule jobs.

Two common greedy algorithms for uniprocessor
scheduling are Earliest Deadline First (EDF) [21] and Least
Laxity First (LLF) [24]. As their names imply, these algo-
rithms give execution priority to the job with the earliest
deadline or least laxity, respectively. The laxity of a job is
the difference between its time and work remaining until
its deadline. Although LLF has a higher scheduling over-
head, both algorithms are optimal on a single processor;
unfortunately, neither is optimal on a multiprocessor ([18],
Figure 4a).

The LLF scheduler is based partially on the observation
that a schedule has become infeasible if any job ever has
negative laxity (more work than time remaining). Clearly,
any job whose laxity has reached zero must be immediately
activated and run continuously until its deadline in order to
complete its work on time. This observation leads us to
our second consideration when designing a greedy algo-
rithm. The “greedy” part tells us which tasks to schedule,
but we must also specify when the algorithm will do the
scheduling. That is, at what times should re-sorting and the
application of the greedy preference occur? Three standard
scheduling events are:

RELEASE: A task is at the beginning of its period;
WORK COMPLETE: A task has finished its work for its

current period, and must be turned off;
ZERO LAXITY: A task has no remaining laxity for its

current period, and must be turned on.

Any simple greedy algorithm must specify its greedy
sort key and which scheduling events it will observe. For
example, when ZERO LAXITY events are added to EDF,
the result is a hybrid scheduler known as EDZL [10]. While
this provides an improvement over standard EDF for mul-
tiprocessors, EDZL is still not optimal.

5

Figure 4. Greedy Counter-example
Task set which confounds known greedy schedulers using
common events. (a) shows an incorrect greedy scheduling,
while (b) shows a feasible proportional scheduling.

3.1. Why Greedy Schedulers Fail
To improve upon greedy schedulers, it is necessary to

understand why they fail. Consider the feasible task set

{ T1 = (10, 9), T2 = (10, 9), T3 = (40, 8) }

shown in Figure 4(a); LLF cannot successfully schedule
this job set on two processors. T1 and T2 each have laxity
of 1, and so are prioritized and run to completion while T3’s
laxity drops from 32 to 23. When T1 and T2 finish at t = 9,
T3 is the only task with work remaining. One processor is
idle until T1 and T2 are re-released at t = 10.

In fact, it seems implausible that any greedy scheduler
would choose to activate T3 before t = 9. Even at t = 8,
T1 and T2 have earlier deadlines, lower laxity, higher to-
tal and remaining utilizations, etc. It is difficult to envision
an intelligent criterion which would prefer T3. And yet, if
T3 is not activated by t = 8, a deadline will eventually be
missed3. The following theorem generalizes this observa-
tion.

Theorem 1 When the total utilization of a periodic task
set is equal to the number of processors, then no feasible
schedule can allow any processor to remain idle for any
length of time.

Proof. Given tasks T1, . . . , Tn on m processors where the
rates sum tom. In a feasible schedule, task Ti, at the end of

3Between t = 0 and t = 40, (2 × 4 × 9) + 8 = 80 units of work
must be done, though the two processors can only accomplish 79 if one is
idle between t = 9 and 10.

h periods, must have done work equal to hei = h(piδi) =
(hpi)δi = ah+1δi, where ah+1 is the ending time of the
hth period. Let t′ be the first positive time at which all
tasks reach a deadline simultaneously (i.e., the least com-
mon multiple of their periods). Then the total work done by
all tasks by time t′ must be

∑
i t
′δi = t′

∑
i δi = t′m. This

much work can be accomplished by time t′ only if all pro-
cessors are running continuously until this time. Any idle
time implies less than t′m total work is done, and some
deadline will be missed. �

Clearly something critical is happening at time t = 8 in
our example, but no obvious scheduling event occurs here,
and no reasonable greedy sort would respond correctly.
Only by considering T1 and T2 as a set can we see that they
leave two units of idle time to be filled by time t = 10, and
that one job cannot fill this time on two processors simulta-
neously. When greedy algorithms fail, it is usually for lack
of some global knowledge. In our case, such knowledge is
implicitly provided by a single over-constraint.

4. Deadline Partitioning and DP-FAIR

To date, the only known solutions to the “global knowl-
edge” problem are variations on proportional fairness.
By over-constraining our scheduling requirements, propor-
tional fairness forces tasks to march in step with their fluid
rate curves more precisely than is theoretically necessary.
Suppose we modify our previous example to

{ T1 = (10, 9), T2 = (10, 9), T3 = (10, 2) } .

All we have done is to impose the additional requirement
that task T3 complete a proportional share of its work every
time the other tasks hit their deadlines. Suddenly we have a
ZERO LAXITY event at time 8. T3 will then be switched on;
T1 and T2 will each run for one of the remaining two time
units on the other processor, and a feasible schedule results
(see Figure 4b). In this example, where the third period
was a multiple of the first two, it is easy to reformulate the
problem in this way. When we have numerous jobs with
disparate periods, the question of when to force jobs to hit
their proportional rate quotas is not immediately obvious.

The first solution to this problem was the PFAIR schedul-
ing scheme [5]. PFAIR creates a scheduling event and re-
computes the set of running tasks at every multiple of a
discrete time quantum. The notion of proportional fairness
used is very strict, requiring the actual work completed by
a task to be within 1 unit of its fluid rate curve at each time
quantum. The result of this policy is a large number of
scheduling calculations and context switches, with corre-
spondingly high overhead. Intuitively, it seems unneces-
sary to adhere so closely to the fluid schedule: performance
could be improved by a more judicious choice of schedul-
ing events.

6

4.1. DP-FAIR Conditions for Periodic Tasks
To motivate our next step, recall the following result by

Hong and Leung [15].

Theorem 2 No optimal on-line scheduler can exist for a
set of jobs with two or more distinct deadlines on any m-
processor system, where m > 1. ♦

Note that Theorem 2 does not apply when all dead-
lines are equal. In fact, Hong and Leung also present
the RESCHEDULE algorithm, which they prove is optimal
when all jobs have the same deadline, even when some ar-
rival times are unknown. Their RESCHEDULE algorithm is
similar in design to our own DP-WRAP algorithm in Sec-
tion 4.2. Let us first consider the benefit of forcing all jobs
to have the same deadline.

Deadline partitioning (DP) is the technique of partition-
ing time into slices, demarcated by all the deadlines of all
tasks in the system. Within each slice, all jobs are allo-
cated a workload for the time slice and these workloads
share the same deadline. While a number of recent algo-
rithms [3, 9, 26] have used deadline partitioning, there has
not previously been a unifying theory for why this tech-
nique is so effective. With the DP-FAIR conditions pre-
sented below, we provide such a theory.

There are two aspects to deadline partitioning: allocat-
ing the workloads for all tasks for each time slice, and
scheduling within a time slice. We say that an algorithm
using this approach is DP-CORRECT if (i) the time slice
scheduler will execute all jobs’ allocated workload by the
end of the time slice whenever it is possible to do so, and
(ii) jobs are allocated workloads for each slice so that it is
possible to complete this work within the slice, and com-
pletion of these workloads causes all tasks’ actual deadlines
to be met. In other words, any DP-CORRECT scheduler is
optimal.

Before we proceed, we will require some additional no-
tation. We let t0 = 0 and t1, t2, . . . denote the distinct dead-
lines of all tasks in τ , where tj < tj+1 for all j ≥ 0. Then
the jth time slice, denoted σj , is [tj−1, tj), and has length
Lj = tj − tj−1. Unless otherwise noted, we only consider
one time slice σj at a time. As general conventions, when
time t is a parameter, we will subscript (e.g., Xt) to refer
to “remaining X”, and parenthesize (e.g., X(t)) to refer to
“X so far”. Subscript h will index the hth job in a task, i
will represent task Ti, and j is for time slice σj .

We analyze schedules by considering execution during
σj , drawing heavily on notation from the LLREF schedul-
ing algorithm [9]. The local execution remaining of a task
Ti at time t, denoted `i,t, is the amount of time that Ti must
execute before the next time slice boundary, i.e., between
times t and tj . A task’s local utilization ri,t = `i,t/(tj − t)
is the proportion of time between t and tj that Ti must
spend executing. We let Lt and Rt denote a task set’s

summed local remaining execution and utilization, respec-
tively, at time t.

The scheduling process is most easily understood when
the task set has full utilization, i.e., ∆(τ) = m. Since
we do not generally expect full utilization, one or more
dummy tasks may be introduced to make up the differ-
ence. With this intent, we define the slack of a task set to be
S(τ) = m − ∆(τ). Consider a time slice of length 10 on
2 processors, and a task set with ∆(τ) = 1.5. The system
has the capacity to do 20 units of work, but with only 15
units of work to be done, 5 units of idle time must appear
somewhere within the slice. While common sense might
dictate that an algorithm should always be doing work if
there is work to be done, and that the idle time should there-
fore come at the end of the slice, this is an unnecessary
over-constraint on algorithm design. By viewing slack as
a dummy job and idle time as a necessary activity, we pro-
vide maximum freedom in scheduling the time slice.

Note that our description of idle time as a capacity-
consuming resource, and our attempts to provide maxi-
mum flexibility in scheduling it, are not just for conve-
nience. While our model treats it as dead processor time,
that “dead time” can actually be employed for a num-
ber of purposes, including load balancing [4], improving
performance [3, 19], creating a work-conserving scheduler
[12, 13], or running non-real-time tasks in a hybrid sys-
tem [20].

We now propose a minimally restrictive set of schedul-
ing rules, DP-FAIR, which ensure that an algorithm is DP-
CORRECT and provide substantial latitude for algorithm
design. DP-FAIR Allocation for periodic task sets with im-
plicit deadlines is quite simple: ensure that all tasks hit their
fluid rate curves at the end of each slice by assigning each
task a workload proportional to its utilization; that is, task
Ti is assigned workload `i,tj−1

= δi×Lj for time slice σj .
With these allocations in mind, we are ready to formulate
our DP-FAIR Scheduling conditions. Fj(t) in RULE 3 is a
freed slack term that will be used in Section 5, but for now
is just zero.

Definition 1 (DP-FAIR Scheduling for time slices) A
slice-scheduling algorithm is DP-FAIR if it schedules jobs
within a time slice σj according to the following rules:

RULE 1: Always run a job with zero local laxity;
RULE 2: Never run a job with no remaining local work;
RULE 3: Do not voluntarily allow more than

(S(τ) × Lj) + Fj(t) units of idle time to occur in σj
before time t. ♦

We now prove that any DP-FAIR scheduler is optimal via
a pair of Lemmas.

7

Lemma 3 If tasks τ are scheduled within a time slice ac-
cording to DP-FAIR, and Rt ≤ m at all times t ∈ σj , then
all tasks in τ will meet their local deadlines at the end of
the slice.

Proof. A task can only miss its (local) deadline if it
achieves negative (local) laxity. However, by RULE 1, any
job that hits zero laxity will be run to completion on some
processor. The only way this scheme can fail to finish all
jobs’ local workloads on time is if more thanm jobs simul-
taneously have zero laxity, so that one of them cannot be
run. Since a zero laxity job has ri,t = 1, we would have
Rt ≥ m+ 1, contradicting our assumption. �

Lemma 4 If a set τ of periodic tasks with implicit dead-
lines is scheduled in σj using any DP-FAIR algorithm, then
Rt ≤ m will hold at all times t ∈ σj .

Proof. Let us introduce the dummy job Tn+1 representing
idle time, and give it utilization S(τ). Note that Tn+1’s uti-
lization can be larger than 1, since this one “job” is allowed
to run on multiple processors at once. (To stay closer to
our task model, we could introduce S(τ)/ε jobs, each with
utilization ε, and let ε→ 0. For this proof, this is an unnec-
essary complication.) We let `n+1,t be the portion of the
total S(τ)×Lj idle time in σj not yet used up as of time t,
and let

Lt =
n∑

i=1

`i,t and L′t =
n+1∑
i=1

`i,t

be the work remaining at time t in our original and ex-
tended task sets, respectively. Now, the m processors are
consuming the workload from T1, . . . , Tn+1 at a rate of
m per time unit, so of the mLj units of work and idle
time that needed to be consumed at the beginning of σj ,
m(tj − tj−1)−m(t− tj−1) = m(tj − t) remain at time t,
i.e., L′t = m(tj − t). Then

Rt =

n∑
i=1

`i,t
tj − t

≤ 1

tj − t

n+1∑
i=1

`i,t =
L′t

tj − t
= m ,

as desired. �

Theorem 5 Any DP-FAIR scheduling algorithm for peri-
odic task sets with implicit deadlines is optimal.

Proof. Lemmas 3 and 4 show that all tasks will meet all
local deadlines at the end of time slices by following DP-
FAIR’s rules; that is, each job’s work completed will match
its fluid rate curve at every system deadline, including its
own. Since any Ti’s fluid rate curve is zero at its own dead-
lines, it follows that Ti will meet its deadlines. This holds
for all jobs from all tasks, so any DP-FAIR algorithm is
optimal. �

Figure 5. The DP-WRAP Algorithm
(a) Seven tasks with utilizations shown above. These are
lined up in arbitrary order, then split at length 1 intervals.
(b) Each processor runs its task set over a length 10 time
slice. Jobs sliced in (a) are seen migrating in (b).

RULES 1-3 of Definition 1 are about as simple a set of
criteria as one could hope for. In essence,

“If a job needs to be started now in order to finish on
time, then start it. If a job finishes, then stop it. Don’t
allow idle time in excess of the task set’s slack.”

These three rules, although an overconstraint when ap-
plied at every slice boundary, are obviously necessary to
keep tasks hitting their fluid rate curves. Yet, when we re-
quire proportional workloads be completed at all system
deadlines (DP-FAIR Allocation), they are also sufficient.
As these rules are so simple, they leave plenty of room
to design scheduling algorithms that attempt to reduce the
number of context switches and task migrations or address
variants of the basic problem model.

4.2. The DP-WRAP Algorithm for Periodic Tasks

We now present our DP-WRAP algorithm. DP-WRAP
is a simplification of EKG [3], and is perhaps the simplest
possible DP-FAIR scheduler. The algorithm may be visu-
alized as follows. To schedule jobs in σj , make a “block”
of length δi for each Ti, and line these blocks up along
a number line (in any order), starting at zero. Their total
length will be no more than m. Split this stack of blocks
into length 1 chunks at 1, 2, . . . ,m − 1, and assign each
chunk to its own processor. Each length 1 chunk of tasks
represents the scheduling of tasks on the respective pro-
cessor; tasks which are sliced in two migrate between their
two processors (this task-to-processor scheme is essentially
McNaughton’s wrap around algorithm [23]). See Figure 5
for an illustration with 7 tasks and 3 processors. To find the
actual timing points of context switches (at local WORK

8

COMPLETE events) within any σj , multiply each length 1
segment by Lj .

It is immediately clear from this description that all three
DP-FAIR scheduling rules are satisfied. Tasks which mi-
grate are run at the beginning of the slice on one proces-
sor, and at the end on the other. So long as such a task
has utilization no more than 1 (which is required for any
feasible schedule), its running times on the two processors
will not overlap. We now have the straightforward DP-
WRAP scheduling algorithm: compute the context switch
times indicated in the diagram (partial sums of task uti-
lizations), reduce modulo 1 for each processor, and mul-
tiply times by Lj . Except for this last multiplication, all
calculations can be done once as a preprocessing step, so
long as the task set is static. Note that there is no compu-
tational overhead at secondary events: here, a “schedul-
ing event” (which in many algorithms requires iterating
through all jobs, performing various calculations, or even
sorting them) is merely following a predetermined instruc-
tion to replace one task with another on one processor; no
“decisions” are made.

Notice that, in general, there will be m− 1 tasks which
are required to migrate. Further, if we repeat a predeter-
mined ordering for each time slice, each of these m − 1
tasks will migrate twice per window: once in the middle,
and again at the end, when it moves back to its starting pro-
cessor. We can cut this number of migrations in half simply
by reversing (mirroring [3]) the ordering of tasks on each
processor in odd-numbered slices. Looking at the example
in Figure 5, task 3 runs for the first 0.3 of the window on
processor 2, then for the last 0.2 on processor 1. If we re-
verse the ordering within each processor for the next slice,
then task 3 will start on processor 1 (for 0.2) and then finish
on processor 2 (for 0.3).

Theorem 6 The DP-WRAP scheduling algorithm with
mirroring in odd slices will produce at most n − 1 context
switches and m− 1 migrations per slice.

Proof. With mirroring, context switches and migrations
only occur in the middle of a slice, never at the end. In
the worst case, every job except the first causes a context
switch when it is started, resulting is n−1 context switches
per slice. There are m − 1 tasks which migrate once each
per slice. �

Various heuristics could be added to improve DP-
WRAP’s performance in terms of context switches and mi-
grations (e.g., EKG). Instead, we present DP-WRAP in its
simplest form to demonstrate how the DP-FAIR schedul-
ing rules can lead to a minimal optimal algorithm, which
is both easy to describe and implement, and which requires
little computational overhead.

5. DP-FAIR Conditions for Sporadic Tasks
and (Un)constrained Deadlines

Due to their simplicity, the DP-FAIR scheduling rules
may be extended to various generalizations of the schedul-
ing problem without excess complications. In this section,
we will see how to expand DP-FAIR to handle tasks with
sporadic job arrivals. We will also consider constrained
deadlines, where Di ≤ pi and, consequently, δi = ei/Di;
the case of arbitrary deadlines (additionally allowingDi >
pi) is addressed in Section 5.2. We will give more detailed
rules for how to allocate workloads within a time slice in
these cases; the rules for scheduling in a time slice remain
the same, except that we now use the Fj(t) term in RULE 3.

We maintain the (sufficient but no longer necessary) re-
quirements that ∆(τ) ≤ m and δi ≤ 1 ∀i. Because
there exist feasible task sets with sporadic arrivals where
these conditions are violated4, and our extended DP-FAIR
rules do not handle these cases, DP-FAIR algorithms are
no longer optimal. In fact, it has recently been shown
that there can be no optimal algorithm for sporadic task
sets [11]. Thus we will limit ourselves to showing that DP-
FAIR algorithms are optimal on task sets with ∆(τ) ≤ m
and δi ≤ 1 ∀i.

In the domain of sporadic tasks and constrained dead-
lines, a task may not use all the capacity reserved for it.
Since δi = ei/Di when Di < pi, the time between dead-
line and next period represents unused capacity. The same
is true for the late time between earliest possible and ac-
tual arrivals for a sporadic task. During this time (i.e., be-
tween ai,h−1 + Di and ai,h), we say that a task is freeing
slack (or inactive); a task is active between times ai,h and
ai,h + Di (even if it has no work remaining). Thus, for
each task, time is partitioned into slack freeing and active
periods. Because ∆(τ) ≤ m, Ti “owns” a portion δi of the
system’s total capacity m, even during times when the task
is inactive. For this reason, we still attach a task’s freed
slack to it for accounting purposes, even though this slack
goes into the system’s general pool of idle processor time.

Similarly to how `i,t represents local execution time re-
maining, we will let ci,t represent local capacity remaining
for task Ti at time t. Local execution is only consumed
(at a rate of 1) when the task is executing; local capacity
is consumed either by the task executing (at a rate of 1) or
freeing slack (at a rate of δi). We define αi,j(t) and fi,j(t)
to be the amounts of time that Ti has been active or freeing
slack, respectively, during slice σj as of time t. We use fi,j
and αi,j as shorthands for fi,j(tj) and αi,j(tj).

In time slice σj , Ti will be allotted a total of δi × αi,j

local execution time (although this must be allocated dy-

4For example, T1 = (2, 1, 1) and T2 = (2, 1, 2) onm = 1 processor
is feasible, but has ∆(τ) = 1.5.

9

namically as new jobs arrive), and fixed local capacity

ci,tj−1 = δi × Lj = δi(αi,j + fi,j)

Finally, we define the freed slack in σj as of time t to be

Fj(t) =
n∑

i=1

(δi × fi,j(t)) .

We now present two rules for work allocation in our new
problem domain.

Definition 2 (DP-FAIR Allocation for sporadic tasks and
constrained deadlines) An algorithm has DP-FAIR Alloca-
tion if, for every time slice σj , local execution is allocated
according to the following rules:

RULE 4: Initialize `i,tj−1
to 0. At the beginning time

t′ of any active time segment for Ti in σj (either
t′ = tj−1 or ai,h) that ends at time t′′ = min{ai,h +
Di, tj}, increment `i,t by δi(t′′ − t′).

RULE 5: If a task Ti arrives and has a deadline within
the same time slice σj , split the remainder of σj into
two secondary slices σ1

j and σ2
j so that Ti’s deadline

coincides with the end of σ1
j . Divide remaining local

execution (and capacity) of all jobs (as well as slack
allotment for RULE 3) in proportion to the lengths of
σ1
j and σ2

j . This rule may be invoked repeatedly / re-
cursively by multiple Ti within σj . ♦

Since we require Di ≤ pi, an active period for Ti can
only end at a task deadline, not the end of a period. Since
RULE 5 creates a new slice whenever a deadline appears
within an existing slice, all deadlines form the end of some
slice. Thus, once a job is active within some slice, it cannot
become inactive before the end of that slice. Now, δi ×
αi,j work is required of Ti in σj , so `i,t is incremented by
δi × αi,j whenever Ti becomes active in σj (which will be
at tj−1 if the task starts σj with work remaining). Since
ci,tj−1

= δi(αi,j + fi,j), we will have ci,t > `i,t so long as
Ti is freeing slack, and ci,t = `i,t once Ti becomes active.

Lemma 3 from the previous section makes no assump-
tion about deadlines or periodicity, and so is still valid in
this extended problem domain. Thus, to prove the correct-
ness of these new DP-FAIR conditions, it only remains to
show that Rt ≤ m for all t ∈ σj , and that RULE 5 suffices
to meet deadlines introduced in the middle of σj .

Lemma 7 A DP-FAIR algorithm cannot cause more than
(S(τ) × Lj) + Fj(t) units of idle time in slice σj prior to
time t.

Proof. Since RULE 3 prohibits voluntary idle time in ex-
cess of this amount and Fj(t) is a non-decreasing func-
tion, we only need to prove that mandatory idle time (when

we have fewer jobs with work remaining than processors)
cannot force this limit to be broken. Let Ij(t) be the
amount of idle time as of time t during slice σj . For the
sake of contradiction, let t′ be the first failure point in σj .
Since Ij and Fj are continuous functions of t, this means
that Ij(t′) = (S(τ) × Lj) + Fj(t

′) and Ij(t
′ + ε) >

(S(τ)× Lj) + Fj(t
′ + ε) for all sufficiently small ε > 0.

Since tasks can’t switch from active to inactive in the
middle of a slice, if a task has no work to do at time t′, it
is either because it has not yet become active, or because
it has finished its entire workload for the current slice. We
can therefore partition τ into three sets at time t′: let A
be the set of active tasks with work remaining, B be the
set of unarrived (slack freeing) tasks, and C be the set of
tasks that have arrived and completed their allotted work
for σj . For convenience, we will let ∆X =

∑
i∈X δi for

X ∈ {A,B,C}.
Based on our definition of local capacity, any task Ti

should account for δiLj processor time during σj with a
combination of work done and idle time from slack freed.
At time t′, all freed slack has been consumed as idle time,
so tasks inB have used exactly their allotment of processor
time so far. C tasks, on the other hand, have already used
all of their allotted time, having freed their slack (if any)
and finished their workloads. That is, they have consumed
∆CLj processor time, and are ∆C(tj − t′) ahead of their
fair share at time t′. Similarly, the static slack pool S(τ)Lj

is already consumed, and so is S(τ)(tj − t′) ahead of its
proportional allotment at time t′. This means that tasks in
A must be collectively (∆C + S(τ))(tj − t′) units behind
on their use of processor time. If they were keeping up,
they would have ∆A(tj − t′) work remaining, so as it is
they must have exactly

∆A(tj− t′)+(∆C +S(τ))(tj− t′) = (m−∆B)(tj− t′)

work remaining, since ∆A + ∆B + ∆C + S(τ) = m.
Given our definition of t′, RULE 3 tells us that we can-

not choose to idle processors at time t′. If |A| ≥ m, then
we can run m tasks at time t′. Ij(t) will not immediately
increase, contradicting our definition of t′. Thus, we must
have |A| < m. By RULE 1, we know that each job in A, if
left to run on its own processor, will finish its work on time.
Thus A can’t have more than |A|(tj − t′) work remaining.
From above,

(m−∆B)(tj − t′) ≤ |A|(tj − t′) ⇒ ∆B ≥ m− |A| .

Tasks in B are freeing slack at a rate of ∆B at time t′;
the system is only adding idle time at a rate of m − |A|.
Then Fj(t) is growing faster than Ij(t) at time t′, and Ij(t)
cannot immediately exceed S(τ)Lj + Fj(t), again contra-
dicting our definition of t′. Since there can be no first point
t′ of failure, Lemma 7 holds for the duration of σj . �

10

Lemma 8 If a set τ of sporadic tasks with constrained
deadlines is scheduled in σj using any DP-FAIR algorithm,
then Rt ≤ m will hold at all times t ∈ σj .

Proof. As of time t ∈ σj , the system has consumed m(t−
tj−1) capacity, either by executing jobs, or by idling. If it
has idled for Ij(t) time units by time t then Lemma 7 gives
Ij(t) ≤ S(τ)Lj + Fj(t). If we let wi,j(t) be the work
executed on task Ti during σj as of time t, then we have

m(t− tj−1) = Ij(t) +
n∑

i=1

wi,j(t) , (1)

and

ci,t = ci,tj−1
− wi,j(t)− δifi,j(t)

= δiLj − wi,j(t)− δifi,j(t) . (2)

Recalling that ri,t(tj − t) = `i,t ≤ ci,t ,

Rt(tj − t) =
n∑

i=1

`i,t ≤
n∑

i=1

ci,t

=
n∑

i=1

(δiLj − wi,j(t)− δifi,j(t)) by (2)

= ∆(τ)Lj −
n∑

i=1

wi,j(t)− Fj(t)

≤ (m− S(τ))Lj −
n∑

i=1

wi,j(t) + (S(τ)Lj − Ij(t))

= mLj − (m(t− tj−1)) by (1)
= m(tj − t)

and we see that Rt ≤ m, as desired. �

Theorem 9 Any DP-FAIR scheduling algorithm is optimal
for sporadic task sets with constrained deadlines where
∆(τ) ≤ m and δi ≤ 1 ∀i.

Proof. As in Theorem 5, all tasks finishing their local
workloads at the end of time slices ensures that they hit
their fluid rate curves at their deadlines, i.e., they don’t miss
their deadlines. The only remaining questions are whether
a task which arrives and has its deadline within a slice will
meet this deadline, and whether RULE 5 will interfere with
other tasks completing their workloads.

If task Ti has an arrival at time t′ = ai,h in σj , then
m(t′ − tj−1) work and idle time have been consumed thus
far in the slice, and the remaining capacity of m(tj − t′) is
exactly enough to complete each task’s allotment of δiLj

plus consume the S(τ)Lj static slack. If we create sub-
slices σ1

j = [t′, t′′) and σ2
j = [t′′, tj), where t′′ = ai,h+Di,

and divide remaining work for each task and idle time be-
tween these subslices proportionally to their lengths, then

each subslice will have been given a work/slack load ex-
actly equal to its capacity. Lemmas 3 and 8 prove that,
by following a DP-FAIR slice scheduling policy, these
workloads will be successfully completed. Any other task
Ti′ 6= Ti has its remaining work divided between σ1

j and
σ2
j , and so it is finished by the end of σj , as it requires.

As for Ti, since it has been freeing slack prior to t′, it has
exactly δi(tj−t′) capacity reserved for the remainder of σj .
Ti claims the proper proportion δi(t′′ − t′) = δiDi = ei of
this capacity for execution in σ1

j , and gets exactly enough
work done to meet its deadline. �

5.1. Modifying DP-WRAP

Modifying DP-WRAP to handle arrivals within a time
slice is fairly straightforward. If a task Ti generates a job at
time t′ within time slice σj and t′ +Di ≥ tj , then we allo-
cate execution time `i,t′ = δi(tj − t′), as per RULE 4. This
execution is wrapped onto the end of the existing schedule
without otherwise impacting the schedule for σj .

If t′ + Di < tj , then we need to split the remainder of
σj into two subslices σ1

j and σ2
j according to RULE 5. Ti’s

workload is given entirely to σ1
j . The remaining workloads

of all other tasks are divided proportionally between σ1
j and

σ2
j . Each subslice is scheduled as described in Section 4.2.

5.2. Arbitrary Deadlines
Let us now consider the problem where deadlines can

be larger than periods via the following example.

Example Consider the periodic task set τ on m = 2
processors where T1 = (6, 4) and T2 = T3 = T4 =
T5 = (3, 1, 6). Since ∆(τ) = 4/6 + 4(1/3) = 2, and
4 + 4 × 2 × 1 = 12 units of work must be done by time
6 in order to meet our time slice deadlines, the system can
allow no idle time. However, if we run T2 then T3 to com-
pletion on the first processor and T4 then T5 on the second,
then at time 2, tasks T2, . . . , T5 are out of work. Only at
this point is T1 forced to run by zero laxity. Until more
work arrives for T2, . . . , T5 at time 3, the other processor
sits idle, implying eventual failure by Theorem 1. ♦

Allowing deadlines longer than periods breaks the
“global knowledge” granted by giving all tasks the same
deadlines. Fortunately, the problem is easily solved. If we
are given a task where Di > pi, we simply impose an arti-
ficial deadline of D′i = pi. This doesn’t increase the task’s
density δi, and if the artificial deadline is met, the real one
will certainly be also. However, these artificial deadlines
might force unnecessary slice boundaries. In the absence of
artificial deadlines, if a task were to finish its workload in
some slice prior to its deadline, then that period of the task
wouldn’t create any slice boundary. Increasing the number
of time slices, in turn, incurs additional overhead from the
added context switches and migrations.

11

5.3. Some Simplifications
RULE 5’s time slice splitting could be very complicated,

particularly if it is done recursively for several tasks within
a single time slice. We can avoid ever having to split
time slices in this manner by ensuring time slices are never
longer than the minimum deadline. Like our solution for
arbitrary deadlines, this simplifies scheduling but increases
context switches and migrations.

We could also simplify RULE 3 by replacing it with suf-
ficiently strong heuristics. A simple one is “Never allow
a processor to idle if there are tasks waiting to execute.”
A somewhat less restrictive rule is “At all times t, at least
dRte tasks are executing jobs.” These rules would be easier
to implement in practice, and also satisfy RULE 3.

6. Related Work

We now examine some recent algorithms in the con-
text of DP-FAIR. Unless otherwise noted, the following
algorithms only address periodic task sets with implicit
deadlines. PFAIR [5] was the first optimal multiprocessor
scheduler. It uses a very strict notion of proportional fair-
ness to target fluid rate curves at every multiple of a dis-
crete time quantum, and incurs a large overhead in context
switches and migrations. The 2003 BF Algorithm [26] ap-
pears to be the first use of deadline partitioning for real-
time scheduling. BF modifies PFAIR, and is still quantum-
based. Because of the resultant integer rounding, work-
load assignments aren’t quite DP-FAIR, but the scheme is
DP-CORRECT and closely resembles DP-WRAP. It also
matches our early insight [6] that fluid rate targets are only
important at deadlines, not at every time quantum.

The 2006 LLREF [9] and EKG [3] algorithms were the
first optimal schedulers that were not quantum-based, and
most subsequent work has been an extension of one of these
two models. LLREF is a strictly DP-FAIR algorithm, but
does unnecessary work: at each local ZERO LAXITY or
WORK COMPLETE event, it resorts all jobs, and executes
those m with least laxity. However, it does introduce the
“T-L Plane” visualization, which can be very instructive in
thinking about slice scheduling.

EKG is very similar to our DP-WRAP for periodic
tasks, but with two improvements. First, the non-migrating
tasks assigned to a given processor are scheduled with
uniprocessor EDF instead of McNaughton’s wrap around
algorithm [23]. This reduces context switching since some
of a processor’s tasks may not run during a slice, but adds
some computational complexity. While this means that
work allocation in time slices is not DP-FAIR, it is easy to
verify that EDF will correctly schedule these non-migrating
tasks. EKG’s other improvement only applies to task sets
with ∆(τ) < m. If τ has enough slack, it allows the “end”
segments of some processors to be left idle, instead of par-

tially assigning a task which will wrap and migrate. This
allows subsets of processors to be scheduled independently,
meaning that any task’s deadline will only impose slice
overhead on the tasks in its processor subgroup. This may
be controlled with a tunable parameter k, which gives parti-
tioned EDF in one extreme (k = 1), and an optimal sched-
uler almost identical to DP-WRAP in the other (k = m).

Following these two works, numerous other algorithms
have appeared that expand upon them, either to provide
improvements or to address variants of the basic periodic
scheduling problem. Andersson et al. [1, 2] provide a pair
of EKG variant algorithms for handling sporadic tasks and
arbitrary deadlines, but use fixed width (instead of deadline
bounded) time slices. The Ehd2-SIP [16] and EDDP [17]
algorithms are also similar to EKG, but sacrifice optimal-
ity in favor of improved general performance. While they
fail to schedule some feasible task sets, they have a high
success rate until ∆(τ) reaches the 80-90% range.

Subsequent improvements to LLREF have all done
away with some of that algorithm’s unnecessary schedul-
ing overhead. Funaoka et al. present the E-TNPA [13] and
TRPA [12] algorithms which, for task sets with ∆(τ) < m,
fill the idle time in a slice with work from future slices;
that is, they are work conserving (they never allow an idle
processor when there’s a job available to run on it). Thus,
only their slice scheduling (not their allocations) are DP-
FAIR. Like LLREF, neither gives a prescription for as-
signing tasks to processors, so it is difficult to gauge their
real overheads. Chen et al. [8] extend the T-L Plane model
to handle the extended problem of uniform multiprocessors
(where processors run at different speeds, but treat all tasks
uniformly). Based on this, they develop PCG, the first opti-
mal scheduler for uniform multiprocessors. Funk et al. [14]
extend LLREF with LRE-TL to handle sporadic as well as
periodic tasks, and remove the sorting overhead from each
scheduler invocation. They also extend their work to uni-
form multiprocessors.

6.1. Comparisons With DP-WRAP

Because DP-WRAP is designed to be simple and in-
structive, not optimized for performance, we have not un-
dertaken extensive side-by-side comparisons with exist-
ing algorithms. Early simulations show that DP-WRAP
causes about 1/3 as many context switches and migrations
as LLREF. However, other papers have noted LLREF’s
inefficiencies [13, 14], and we would expect BF and EKG
to show improvements comparable to DP-WRAP. We ex-
pect EKG (with appropriately tuned k parameter) to out-
perform DP-WRAP and BF on task sets with ∆(τ) < m.
Additional simulation comparisons may be performed as
necessary to test future refinements to DP-WRAP.

In terms of algorithmic complexity, DP-WRAP has the
clear advantage. It doesO(n) work at the beginning of each

12

slice to determine switching and migration times, and then
each event just requires a constant time lookup. For peri-
odic task sets with implicit deadlines, every slice is equiva-
lent. Thus, the only work needed at the beginning of a slice
is multiplying the reusable schedule by the length of the
slice, giving minimal overhead. Scheduling complexity per
slice for LLREF and LRE-TL are O(n2) and O(n log n),
respectively. EKG also has a worst-case O(n log n) per
slice complexity due to its EDF subroutine, but is more ef-
ficient in practice. BF is O(n) per slice, (like DP-WRAP,
BF does its slice scheduling up front), but each slice is
scheduled differently, and the complexity due to time quan-
tum rounding is high.

7. Conclusion
There have been a number of recent advances in

scheduling algorithms for periodic task sets in hard real-
time, multiprocessor environments. A recognition of their
shared traits and insights, and an underlying theory to ex-
plain their success, were previously missing from the lit-
erature. This paper provides such a theory. We started
by examining the inherent problems of older, greedy ap-
proaches and used this to motivate the simple DP-FAIR
conditions for optimal scheduling of periodic tasks. We
demonstrated the power and flexibility of DP-FAIR by de-
scribing the simplest optimal scheduler to date, DP-WRAP,
and by extending the DP-FAIR rules to sporadic tasks with
arbitrary deadlines. We hope that our model aids in un-
derstanding past work, and contributes to the direction of
future research.

References
[1] B. Andersson and K. Bletsas. Sporadic Multiprocessor

Scheduling with Few Preemptions. Euromicro Conference
on Real-Time Systems (ECRTS), 2008.

[2] B. Andersson, K. Bletsas, and S. K. Baruah. Scheduling
Arbitrary Deadline Sporadic Task Systems on Multiproces-
sors. IEEE Real-Time Systems Symposium (RTSS), 2008.

[3] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. IEEE Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), 2006.

[4] S. K. Baruah and J. Carpenter. Multiprocessor Fixed-
Priority Scheduling with Restricted Interprocessor Migra-
tions. Journal of Embedded Computing, 1(2):169–178,
2004.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. Varvel.
Proportionate Progress: A Notion of Fairness in Resource
Allocation. Algorithmica, 15(6):600–625, 1996.

[6] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic Integrated Scheduling of Hard Real-Time, Soft Real-
Time, and Non-Real-Time Processes. IEEE Real-Time Sys-
tems Symposium (RTSS), 2003.

[7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. An-
derson, and S. K. Baruah. A categorization of real-time
multiprocessor scheduling problems and algorithms. In

Handbook on Scheduling Algorithms, Methods, and Mod-
els, pages 30.1–30.19. Chapman Hall/CRC, 2004.

[8] S.-Y. Chen and C.-W. Hsueh. Optimal Dynamic-priority
Real-Time Scheduling Algorithms for Uniform Multipro-
cessors. IEEE Real-Time Systems Symposium (RTSS), 2008.

[9] H. Cho, B. Ravindran, and E. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. IEEE
Real-Time Systems Symposium (RTSS), 2006.

[10] S.-K. Cho, S. Lee, A. Han, and K.-J. Lin. Efficient Real-
Time Scheduling Algorithms for Multiprocessor Systems.
IEICE Transactions on Communications, E85-B(12):2859–
2867, 2002.

[11] N. Fisher, J. Goossens, and S. Baruah. Optimal Online Mul-
tiprocessor Scheduling of Sporadic Real-Time Tasks is Im-
possible. Real-Time Systems, to appear, 2010.

[12] K. Funaoka, S. Kato, and N. Yamasaki. New Abstraction for
Optimal Real-Time Scheduling on Multiprocessors. IEEE
Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2008.

[13] K. Funaoka, S. Kato, and N. Yamasaki. Work-Conserving
Optimal Real-Time Scheduling on Multiprocessors. Eu-
romicro Conference on Real-Time Systems (ECRTS), 2008.

[14] S. Funk and V. Nadadur. LRE-TL: An Optimal Multipro-
cessor Algorithm for Sporadic Task Sets. Conference on
Real-Time and Network Systems (RTNS), 2009.

[15] K. S. Hong and J. Y.-T. Leung. On-Line Scheduling of Real-
Time Tasks. IEEE Transactions on Computers, 41:1326–
1331, 1992.

[16] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Splitting on Multiprocessors. IEEE Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2007.

[17] S. Kato and N. Yamasaki. Portioned EDF-based Schedul-
ing on Multiprocessors. ACM International Conference on
Embedded Software (EMSOFT), 2008.

[18] J. Leung. A new algorithm for scheduling periodic, real-
time tasks. Algorithmica, 4(1):209–219, 1989.

[19] C. Lin and S. A. Brandt. Improving Soft Real-Time Perfor-
mance Through Better Slack Management. IEEE Real-Time
Systems Symposium (RTSS), 2005.

[20] C. Lin, T. Kaldewey, A. Povzner, and S. A. Brandt. Diverse
Soft Real-Time Processing in an Integrated System. IEEE
Real-Time Systems Symposium (RTSS), 2006.

[21] C. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal
of the ACM (JACM), 20(1):46–61, 1973.

[22] J. M. López, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-
case Utilization Bound for EDF Scheduling on Real-Time
Multiprocessor Systems. Euromicro Conference on Real-
Time Systems (ECRTS), 2000.

[23] R. McNaughton. Scheduling with Deadlines and Loss Func-
tions. Machine Science, 6(1):1–12, October 1959.

[24] A. K. Mok. Fundamental design problems of distributed
systems for the hard-real-time environment. Technical re-
port, Massachusetts Institute of Technology, 1983.

[25] A. Srinivasan, P. Holman, J. H. Anderson, and S. K. Baruah.
The Case for Fair Multiprocessor Scheduling. Interna-
tional Symposium on Parallel and Distributed Processing
(IPDPS), 2003.

[26] D. Zhu, D. Mossé, and R. Melhem. Multiple-Resource Peri-
odic Scheduling Problem: how much fairness in necessary?
IEEE Real-Time Systems Symposium (RTSS), 2003.

13

