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Abstract. Mature research advances in scheduling theory show that carefully-crafted concurrent computational
models permit static analysis of real-time behavior. This evidence enables designers to consider using suitable
forms of explicit concurrency to model the inherent concurrency of real-time systems. The Ravenscar Profile, a
specifically tailored subset of the Ada 95 tasking model, defines a compact and efficient concurrent computational
model, especially suited for the development of high integrity, high efficiency real-time systems.

Ravenscar runtimes can be implemented by small, efficient, reliable and certifiable kernels. At least two such
implementations already exist and are being industrially deployed. The simplicity and intrinsic determinism of
Ravenscar kernels facilitate the definition of metrics that cater for very accurate characterization of the dynamic
behavior of the runtime and of the execution time of its primitives. Accurate runtime metrics enable forms of
response time analysis that minimize the pessimism in the prediction of the runtime influence on the application.
This is especially useful for concurrent systems that exhibit significant dependency on runtime support services.
This paper recalls the motivations of the Ravenscar Profile, outlines the definition of it and formulates a precise
characterisation of the associated runtime metrics.
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1. Introduction

Real-time systems are inherently concurrent in that they model and confront with real-
world entities that possess multiple loci of control. The actual extent of concurrency varies
with the type of application, which determines the range of control and service actions to
execute, and with the environment in which the execution is to occur. The more composite
the environment, the higher the degree of inherent concurrency. The richer the range of
actions, the more valuable concurrency as a modeling aid.

This evidence notwithstanding, the prime character of real-time systems is that their
correctness must be proven in the time domain as well as in the value domain. This notion
raises the question of how best to represent the extent of concurrency of the system while
being able to assure the correctness of its timing behavior. Two opposing views clash in
this regard: the push for an architecture that would not undermine the cohesiveness and
coupling warranted by the nature of the problem; and the pull for a problem representation
chiefly designed to simplify verification, even at the cost of some distortion.
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As the level of criticality of the system rises, as defined by sector-specific standards (e.g.,
RTCA, 1992), the traditional designer dispenses entirely with any representation of concur-
rency that entails multiple threads of control. Traditional approaches model each activity as
a distinct procedure and use an application-level executive to invoke them cyclically. This
strategy trades rigidity for full determinism and ease of analysis. Yet, it is well known that
the traditional approach is unable to attain a faithful representation of the problem at hand
and entails the poor engineering practice of artificially constructing tiny procedures to fit
residual schedule frames. Locke (1992) has also shown how difficult the cyclic scheme be-
comes to design for systems of more than just modest complexity, how inflexible to change,
how inadequate for applications where aperiodic activity may occur and where error recov-
ery is important. For the comparatively small proportion of real-time systems that range
the highest levels of criticality (e.g., aeronautics, nuclear, defense), however, the cost of
formal verification and certification is so high that the designer understandably strives to
simplify the design to the maximum possible extent, thus taking the traditional approach
for the perceived lack of better alternatives.

For an increasing proportion of other real-time systems, the prime concern is the assurance
of predictable execution behavior. Failure to meet this requirement may incur consequences
of varying criticality, which rises as those systems increasingly pervade our daily life.
Lower-criticality systems may attain the required level of assurance much less invasively
than for certification, hence, more permissively on their architecture of choice. Deprived of
the taming effect of certification, however the design of these systems pulls away from the
traditional approach, yet at the risk of flexibility undermining verifiability.

Mature research in scheduling theory has proven that a careful choice of scheduling
(dispatching) method, together with suitable restrictions on the allowed interactions between
processes renders static analysis of real-time behaviour possible (Audsley et al., 1995).

Preemptive fixed priority scheduling (Burns, 1991, 1994) is a well known scheduling
method. Typically it is used with the priority ceiling protocol (Goodenough and Sha, 1988;
Sha et al., 1990) to optimally bound priority inversion and avoid deadlocks. Rate monotonic
analysis (Klein et al., 1993) and response time analysis (Joseph and Pandya, 1986) are
equally known examples of static analysis schemes. The notions underlying these schemes
cater for computational models suitable for the analysis of concurrent real-time systems
and also scalable to programs for distributed systems. Those models support periodic and
aperiodic processes, hard, soft, firm, and non-critical components, and controlled inter-
process communication and synchronization.

These notions hold a significant promise, which is of value for the spectrum range of real-
time systems, across all integrity requirements. Two essential concerns, however, critically
rate their actual effectiveness:

1. whether the allowed computational model is expressive enough to adequately represent
increasingly sophisticated real-time systems and yet simple enough to stay amenable
to static analysis;

2. whether the corresponding static analysis technique can be made accurate enough to
permit high levels of useful processor utilisation, otherwise denied by too rigid or too
permissive architectures.
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Issue 1 has been positively responded by a steady flow of experience reports, (cf. e.g.,
Bailey et al., 1993; Dobbing and Romanski, 1999; Vardanega and Caspersen, 2001), which
mostly refer to one particular instance of computational model, known as the Ravenscar
Profile (Baker and Vardanega, 1997; Burns et al., 1998; Burns, 1999; Wellings, 2001).

Issue 2, instead, is still open and crucial for off-line scheduling analysis to raise its rank
among other static analysis techniques. In this paper we address issue 2 specifically, and
take the Ravenscar Profile as our computational model (Burns et al., 2003) and response
time analysis as the preferred form of analysis. The paper expands on earlier work presented
in Vardanega (1999) and in Zamorano and de la Puente (2002).

2. Computational model

2.1. Scheduling Model

At any moment in time, some processes may be ready to run, as they are able to exe-
cute instructions if processor time is made available. Other processes are suspended, as
they have given up execution until some event occurs. Others still are blocked, as, while
ready, they are unable to proceed (e.g., typically because they await access to a shared
resource currently exclusively owned by another process). Suspended processes may be-
come ready synchronously, as a result of an action taken by a currently running process, or
asynchronously, as a result of an external event, such as an interrupt or timeout, which is
not directly stimulated by the running process.

With priority-based preemptive scheduling on a single processor, a priority is assigned
to each process and the scheduler ensures that the highest priority ready process is always
executing. Contention for mutually-exclusive access to shared resources may incur violation
to this rule.

As a process with a priority higher than the running process becomes ready and its
execution can resume, the scheduler performs an immediate context switch to it. This event
is said to be preemptive as it is not invoked by the running process.

Processes may interact upon contention for shared resources, exchange of data, and the
need for explicit synchronisation. Uncontrolled interaction can lead to a number of well-
known and studied problems (e.g., deadlock, livelock, missed deadline as well as unbounded
priority inversion Cornhill and Sha, 1987).

The use of preemptive priority-based dispatching defines a mechanism for scheduling.
The corresponding policy is set by the mapping of processes to priority values. With the
priority ceiling protocol, processes possess two priorities: the base priority, which is the one
initially assigned to them; and the active priority, which the process acquires as a result of
seizing or relinquishing a shared resource. Priority-based scheduling uses the latter value.

2.2. Outline of Ravenscar Restrictions

The restricted scheduling model that is defined by the Ravenscar Profile is designed to
minimize the upper bound on blocking time, to prevent deadlocks, and, by tool support, to
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verify that there is sufficient processing power available to ensure that all critical processes
meet their deadlines. In this model, processes do not interact directly, but do so via special
resources known as protected objects, which provide mutually-exclusive access to shared
data.

Each protected object typically provides either a resource access control function, in-
cluding a repository for the private data to manage and implement the resource, or a syn-
chronisation function, or a combination of both (as for data-oriented synchronisation).

A protected object that is used for synchronisation provides a facility that processes can
use to signal and/or wait on events. In the Ravenscar Profile, the use of protected objects
for synchronisation by the critical tasks is constrained so that at most one task can wait on
each protected object, i.e., on the corresponding signal event.

The Profile definition assures absence of deadlocks by requiring use of the priority
ceiling protocol (Goodenough and Sha, 1988; Sha et al., 1990), which an Ada program
complies with by selecting the default locking policy named Ceiling Locking. This
policy requires a priority to be statically assigned to each protected object that is at least
as great as the highest priority of all its calling processes, and results in the raising of the
priority of the process that is using the protected object to this ceiling priority value. The
process then reverts to its previous priority as soon as it leaves the object.

The use of the Ceiling Locking protocol provides an optimal bound for the worst-
case duration of priority inversion (Sha et al., 1990). The prescription that, during the period
that a process has possession of the object, it must not perform any operation that could
result in it becoming suspended, provides a further containing effect.

For any process in the system, the worst-case time bound on this form of priority inversion
is calculated as the maximum time that a protected object with higher-priority ceiling may
be in use by lower-priority processes. A further form of priority inversion occurs as the
runtime disables interrupts to protect the execution of its own critical sections, with the
effect of possibly deferring the preemptive arrival of process(es) released by interrupt.
Off-line scheduling analysis needs to account for the longest duration of priority-inversion
intervals of either kind.

Ravenscar tasks only experience one of these two forms of blocking per single activation,
and only prior to dispatching. Figure 1 shows the scheduling states that can be assumed by
Ravenscar processes and the transitions that can occur between them.

2.3. The Ravenscar Profile

2.3.1. Justification

Not all computational models are equally amenable to static analysis. In order to allow
off-line scheduling analysis, the computational model must exhibit certain characteristics
and prohibit others. This is especially the case for concurrent computational models, whose
range of concurrency features may decisively facilitate or else obstruct analysis.

A good deal of the progress achieved by scheduling theory over the last decade has been
especially directed at shedding restrictions that most reduced the expressive power of the
allowable computational model. Think for example of the clash between the requirement
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Figure 1. Scheduling states and state transitions of Ravenscar tasks. The Profile reduces the overall number
of states, lessens the number of events that can trigger transitions to and from the Suspended state, and bounds
the duration of the process stay in the Blocked state. Ravenscar tasks enter the Blocked state at most once per
activation, and only prior to dispatching.

for process independence assumed by the initial version of rate monotonic analysis (Liu
and Layland, 1973) and the producer-consumer (or signaler-waiter) relationship exhibited
by most real-time systems.

The static analysis of an Ada application (and of any other systems programming language
alike) which makes unrestricted use of the language standard runtime features is currently
not feasible. Moreover, the potentially unbounded behavior of several tasking and other
runtime calls (e.g., the dynamic binding of object-oriented programming) may make it
impossible to provide acceptable bounds on execution time. Coding style rules and subset
restrictions must thus be followed to ensure that all code within critical tasks be statically
time-bounded, and that the execution of the tasks can be defined in terms of arrival times,
deadlines, blocking times and response times.

In the following three subsections we briefly discuss some of the key restrictions that
make up the Ravenscar Profile. We refer the reader to Burns et al. (2003) for the thorough
presentation of the Profile.

2.3.2. Decomposition into Single-Threaded Processes

The application must be decomposed into a number of separate processes, each with a single
thread of control, with clear identification of all interactions between them. Each process is
implemented as a distinct Ada task with a single invocation event, followed by the operation
of the process in response to that event.

The task set must be static in composition, with all tasks in the program created at the
library level and typically non-terminating, thereby excluding dynamic task creation and
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the formation of task hierarchies. This requirement matches current practice, as most real-
time systems with integrity requirements are in effect comprised of a flat collection of
non-terminating, cooperating, processes (Liu, 2000).

Ravenscar tasks are categorized as time-triggered, when they execute in response to
a time event, or event-triggered, when they execute in response to other types of event,
whether synchronous (i.e., generated by a running task) or asynchronous (i.e., caused by
an external stimulus). If a time-triggered task receives a regular invocation event with a
statically determinable rate, the task is termed periodic or cyclic. Event-triggered tasks
whose activation event follows a defined arrival law are termed sporadic.

Task suspension may be either relative or absolute. Relative suspension is exposed to non-
deterministic delay expiration because the delaying task may be preempted after calculating
the required relative delay but before actual suspension occurs. Relative suspension is thus
unable to ensure deterministic time of activation for time-triggered tasks. The Ravenscar
Profile wants time-triggered tasks to use absolute suspension only, and with high-accuracy
time values.

2.3.3. Restrictions on Protected Objects

The Ravenscar Profile requires that no more than one task at any one time be suspended
on a closed entry barrier for each protected object used as a task synchronisation primitive.
(protected object entries implement monitor procedures guarded by condition variables, with
callers queuing up on them until the condition holds, akin to Dijkstra’s guarded commands
Dijkstra, 1975). The restriction prevents the formation of queues of tasks on an entry, with
the consequent nondeterminacy of the waiting time in the queue.

The Profile allows at most one entry per protected object, to prevent multiple barriers
from becoming open simultaneously as the result of a protected action and to avoid the
consequent nondeterminacy of selecting which entry to service first.

In order to attain deterministic execution of task synchronisation, the evaluation of entry
barriers must be free of side effects. To this end, the profile requires the barrier value to
either be static or be read directly, without computation, from one of the protected object
components. Applications that require composite barrier expressions can simply declare an
additional Boolean value within the protected data and assign to it the result of the composite
expression whenever the evaluation result may change. (This restriction forces deliberate
side effects to be programmed explicitly.)

The profile, finally, disallows the current caller of a closed protected entry to be dynami-
cally transferred to another entry queue, by which Ada’s most powerful requeue statement
supports condition synchronization.

These prohibitions collectively warrant deterministic task release from protected entry
queues.

2.3.4. Restrictions on Dispatching

The Profile assumes use of the standard Ada FIFO Within Priorities task dispatch-
ing policy. With this policy in effect on the general language model, modifications to the
ready queues occur as follows:
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• When a suspended task becomes ready, it is added at the tail of the ready queue for its
active priority.

• When the active priority of a ready task that is not running changes or the setting of its
base priority takes effect, the task is removed from the ready queue for its old active
priority and is added at the tail of the ready queue for its new active priority, except
when the active priority is lowered due to the loss of inherited priority, whereby the task
is added at the head of the ready queue for its new active priority.1 Under the profile
restrictions, the active priority of a task changes only upon inheriting or relinquishing a
ceiling priority, as the profile excludes the use of dynamic task priorities and allows it
to change in no other circumstance.

• When the setting of the base priority of a running task takes effect, the task is added at
the tail of the ready queue for its active priority. Under the profile restrictions, this event
only occurs at task creation.

• When a task executes a delay statement that does not result in suspension, the task is
added at the tail of the ready queue for its active priority.
Under the Profile restrictions, this event would only occur upon a delay until
statement issued with an absolute time parameter in the past, as the result of either a
system or a programming error.

Each of these events is a task dispatching point, i.e., a point in time at which the runtime
selects among tasks ready for execution. When a running task is preempted, the task is
added at the head of the ready queue for its active priority.

2.4. Ravenscar Runtime Implementation

Figure 2 sketches the interaction between primitives and data structures in a Ravenscar
runtime. The accurate characterization of the execution time of these notional primitives
that we seek is greatly facilitated by the simplicity of their semantics and is crucial to precise
response time analysis.

2.4.1. Time-Triggered Tasks

Time-triggered tasks call the language-level statement delay until to command the
time of their next activation. The wake-up system may use an Interval Timer in place
of the usual periodic clock. With the interval timer model, a down-counting timer is primed
with the exact number of ticks until the expiry of the suspension interval commanded by
the task at the head of the time-ordered Delay queue. When the interval timer ticks down to
zero, an interrupt is generated, which results in direct or indirect transfer of control to the
Delay queue processing code.

Primitive Delay until (Enter) denotes the suspension service. If the required
suspension interval is shorter than the time value at the head of the Delay queue, the
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Figure 2. Interaction between Ravenscar runtime primitives and data structures. The execution of primitives with
bold-faced names gives rise to task dispatching points.

primitive involves setting the down counter; otherwise, it involves traversing the time-
ordered queue until the right position, for which the worst-case execution time is a function
of the total number of time-triggered tasks in the system. The dual action of returning from
the suspensive call is executed by the task at the time of the next activation.

The task suspension is a task dispatching point, which entails execution of primitive
Select to dispatch (i.e., to determine the best runnable task out). If preemptive switch to
a new running task is required, this is performed by primitive Switch.

Interrupts off the clock are serviced by primitive Clock it, which determines the
tasks that are due for release off the Delay queue and passes this information on to prim-
itive Ready, which changes the status of the corresponding tasks to ready and places
them in the appropriate queues. (This action subsumes the invocation of primitive De-
lay until(Exit) for the readied tasks.) This event is a task dispatching point, which
is treated in the same way as upon task suspension. We will refine this notion of clock
handling in Section 3.3.

2.4.2. Event-Triggered Tasks

Event-triggered tasks make a suspending call to a protected entry with a (closed) barrier to
await their next activation event. In the general case, this call results in the invocation of
primitive Wait. In keeping with the Profile restriction, one protected object with its one
protected entry is generally dedicated to each event-triggered task.

Under normal conditions, the barrier is closed at the time of invocation and the caller is
enqueued on the Entry queue. If that was not the case, the event would indicate a timing or
execution error in the system.
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The releasing call that opens the barrier may originate, asynchronously, from an external
interrupt or, synchronously, from the running task. Either event results in the caller’s invo-
cation of primitive Signal. Upon an asynchronous releasing event, the invocation occurs
within the handler of the interrupt attached to the corresponding entry, which is located by
primitive Ext it. For Ravenscar applications, the immediate interrupt handler sequence,
which delivers the release event, limits itself to opening the barrier, so as to bound the inter-
ference effect incurred from executing at hardware priority. The application-level treatment
of the interrupt is then deferred to the execution of the event-triggered task, which normally
runs at software priority. Primitive Ext it includes all the housekeeping actions that the
runtime requires to precede and follow execution at interrupt level.

The protected object model of Ada features two hierarchical levels of protection, in what
is known as the Eggshell model (Barnes, 1998). In this model, tasks can be in one of three
states in relation to a protected object: (i) outside, waiting to gain access to the object;
(ii) enqueued, inside the shell, on an entry queue; and, (iii) at most one, inside the object,
executing the code of an entry or of a subprogram. An outward order of service is placed on
task calls to the protected object: existing calls waiting on an entry queue take precedence
over new calls; any new call cannot even evaluate the entry barrier until any call currently
executing within the protected object completes, along with any other enqueued calls that
can subsequently be processed.

The strength of the Eggshell model is that it guarantees that no change may occur to the
barrier condition after a task has gained access to the protected object. The model is crucial
for determinism when the full language is in use, but it makes static analysis of the entry
queues processing prohibitive.

In the Eggshell model, the entry queue of a protected object is notionally represented
as two priority-ordered queues: the Wait queue and the Signaled queue. When a caller to
a protected object entry is suspended on a closed barrier, primitive Wait is called, which
enqueues the caller on the Wait queue. Subsequently, the runtime transfers ownership of
the protected object lock to the task at the head of the Signaled queue (if any). Transfer is
achieved by raising this task priority to the protected ceiling value and performing a direct
context switch to it. When this task gets control, it re-evaluates the barrier (which may have
changed in the meanwhile) and, if open, it continues to execute the corresponding entry.
Else, as the barrier expression evaluates to closed, the task enqueues itself again on the
Wait queue. In the case the Signaled queue was empty, the caller simply releases the lock
performing the same unlock epilogue code as for a protected object with no barrier (cf.
Section 2.4.3).

In the general language model, the state of all barriers in a protected object with entries
needs to be re-evaluated, and the entry queues serviced, after every execution of a protected
subprogram or entry. The runtime achieves this by invoking primitive Signal at the end of
each entry service and protected procedure. Primitive Signal transfers the current queue
of waiters from the Wait queue, excluding the head element, to the Signaled queue and
performs a direct context switch to the task at the head of the Wait queue. This task then
behaves exactly as the head task released off the Signaled queue.

The Ravenscar restrictions cater for drastic simplification of the entry queue implemen-
tation model. The Profile requires that no more than one event-triggered task can be on
any protected object entry queue. The time bound to the entry queue service will then be
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Figure 3. Breakdown of the Eggshell model implementation of entry queue servicing in contrast with the
Ravenscar simplified implementation. For Eggshell model: (1) task A invokes an entry call with a closed barrier
and queues on the Wait queue; (2) control transfers to the task at the head of the Signaled queue; (3) The head
task evaluates the barrier; (a) Task B executes an entry with an open barrier; (b) The Wait queue, minus the head,
is moved to the Signaled queue; (c) The head task evaluates the barrier. for Ravenscar Profile: (1) Task A invokes
an entry call with a closed barrier and queues on the Entry queue (task dispatching point); (2) Task B executes the
releasing procedure with the Proxy Model, while task A is moved to the Ready queue (task dispatching point)

only that of inserting the task at the head of the Wait queue, denoted by Wait(Enter).
Furthermore, as the Signaled queue will always be empty, Wait(Enter) gives rise to a
task dispatching point, always incurring the selection of a new task from the Ready queues
(Select), and the context switch to it (Switch). The single-waiter restriction also facil-
itates the adoption of the Proxy Model, by which the Signal caller evaluates the barrier
and (if open) executes the protected entry on behalf of the waiting task, while the runtime
calls primitive Ready to place the waiting task on the Ready queue.

This strategy spares the waiting task the execution of Wait(Exit). It also saves one
context switch from the signaling task (were it to relinquish the ceiling lock upon opening
the barrier and leaving the protected object) to the waiting task (were it to acquire ceiling
priority upon leaving the Wait queue and being transferred ownership of the protected lock).

There occurs a task dispatching point as both the signaling and the waiting tasks leave
the protected object.

Figure 3 contrasts the general Eggshell implementation of entry queue servicing with the
simplified version permitted by the Ravenscar Profile.

2.4.3. Other Runtime Primitives

Primitives Po(Enter) and Po(Exit) control respectively the entrance into and the
departure of any tasks from protected operations that do not involve entry queuing, and
include the raising, respectively the lowering, of the calling task active priority. The latter
event is a task dispatching point.

The Ravenscar profile adopts the priority ceiling protocol (Goodenough and Sha, 1988;
Sha et al., 1990). Each protected object is thus statically assigned a ceiling priority at least as
great as the highest priority of all its calling tasks. Calling tasks acquire the ceiling priority
for the duration of their execution within the object.
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Table 1. Required bounds for Ravenscar runtime primitives.

Primitive Invoked by With effect on

Delay until(Enter) Time-triggered tasks Self
Clock it Runtime Time-triggered tasks
Ready                 Runntime                                                           Any tasks
Select Runtime Any tasks
Switch Runtime Any tasks
Po(Enter) Any task Self
Po(Exit) Any task Self
Wait(Enter) Event-triggered tasks Self
Signal Any task and protected interrupt handler Event-triggered tasks
Ext it Runtime Event-triggered tasks
Defer Preemption Runtime Any tasks

The implementation of this protocol is straightforward. All it takes is to raise the active
priority of the task enabled to execute a protected operation to the ceiling priority of the
object, and to restore the old priority value on exit from the object. Accordingly, primitive
Po(Enter)moves the task from the Ready queue for its current active priority to the head
of the Ready queue for its new active priority, which equals the ceiling priority of the target
protected object. Primitive Po(Exit) does the converse.

2.4.4. Summary

Table 1 lists all primitives that a Ravenscar runtime must implement and whose precise
worst-case execution time bounds are required for off-line scheduling analysis. For every
primitive, the table indicates the nature of the caller (task, runtime) and the task on which
the primitive takes effect.

The notional primitive Defer Preemption listed at the bottom of the table character-
izes the time interval during which the runtime may disable interrupts, thereby potentially
deferring preemption.

In the following section we discuss the factors that need to be accounted for, and be
suitably documented, in the determination of the execution-time bounds for these primitives.

3. Precise Response Time Analysis

3.1. Foundations

Response time analysis stipulates that the worst-case response time of a process be defined
as the longest elapsed time it takes for that process to complete its most demanding set
of activities in response to a single activation event occurring under maximum contention
from the rest of the system. The worst-case response time of any task τi does, thus, result
from the summation of three additive components:
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1. The worst-case execution time of task τi , Ci , which is defined as the total time cost of
all τi ’s sequential blocks of execution that lay in the statically-determined worst-case
path enclosed within the task’s execution profile, including the time cost of the runtime
services required for the support of that execution (Puschner and Burns, 2000).

2. The interference incurred by τi , Ii , caused by the occurrence of preemptive execution
of higher-priority tasks and higher-priority runtime services (such as the serving of
higher-priority interrupts) incurred during τi ’s ready period.

3. The blocking experienced by τi , Bi , which occurs as a due release of τi is delayed by
priority inversion effects, whether upon temporary inhibition of interrupts or by effect
of Ceiling Locking. The worst-case blocking is determined as the largest possible
deferral effect incurred from any of the two sources. (We shall discuss this further in
section 3.5.)

Component Ci and Bi are analysed reflecting on the call sequence made by tasks in the
application. Component Ii , instead, is analysed assuming the execution of τi to occur under
the notional concept of critical instant (Liu and Layland, 1973), which requires that:

• all time-triggered tasks be disjointly released at time t0 = 0,

• all external interrupts be disjointly raised at time t0 = 0 and arrive at their maximum
frequency,

• all event-triggered tasks be disjointly released off their entry queue at time t0 = 0.

Care must be taken to avoid incurring excessive pessimism in the determination of these
terms, as this may obliterate the usefulness of the analysis. The objective of this paper
serves this goal well because the higher the accuracy of the accounted runtime overhead
components, the lower the pessimism and the greater the margin for useful application-level
processing.

The response time equation is based on recurrence relations in which task τi ’s response
time, Ri , is expressed as a monotonically increasing summation term. The recurrence con-
verges as long as the overall processor utilisation is not greater than 1. The schedule of
the task set is feasible as long as Ri falls within the deadline for every task τi in the
system.

Ri = Rn
i = Bi + Ci + I

Rn−1
i

i (n > 1) (1)

R1
i = Bi + Ci

The Ri value so obtained represents the worst-case time of completion of an activation of
τi . The following section discusses which runtime overhead components contribute to the
individual terms of the equation.



ON THE DYNAMIC SEMANTICS AND TIMING BEHAVIOR OF RAVENSCAR KERNELS 71

3.2. Runtime Metrics

A very attractive feature of the Ravenscar Profile is that its runtime can be implemented by a
small, efficient, reliable and certifiable kernel, by which term we mean the target-dependent
part of a Ravenscar runtime.

Table 1 shows that, overall, the runtime implementation needs about 10 (notional) prim-
itives. To date, at least two such kernels have been developed and industrially deployed:
the Aonix ObjectAda/Raven technology (Dobbing and Romanski, 1999); and the Technical
University of Madrid Open Ravenscar Kernel (ORK) (de la Puente et al., 2000a).

Accurate analysis of the timing behaviour of Ravenscar applications requires a set of
metrics that precisely characterize the runtime overhead that may be incurred on execution.
This characterization is greatly facilitated by the simplicity and intrinsic determinism of
Ravenscar kernels.

Annex D of the Ada language specification (Ada, 95, 2000) lists a number of metrics
optionally required of implementations. Such metrics are a useful initial basis. Yet, system-
atic approaches to scheduling analysis for time-critical systems, for example, Vardanega
(1999), have shown that modern analysis methods require finer-grained information about
the runtime behavior (Burns and Wellings, 2001). In this section we explore the issue fur-
ther and lay down requirements and put forward definitions for a set of metrics that enable
precise response time analysis. The specification of the resulting definitions is the central
contribution of this paper. We shall return to this point in Section 4.

The metrics we discuss concern the execution of time-triggered and event-triggered tasks,
protected procedures used in the way of interrupt handlers and timers for both periodic
clocks and absolute delays. The corresponding set of primitives covers all of the concur-
rency constructs allowed by the Ravenscar Profile, which, as we asserted in Section 1, user
experience has shown to be a sufficiently powerful computational model for most real-time
applications.

3.2.1. Modeling Time-Triggered Tasks

In order for time-triggered tasks to be statically analysable, they have to belong in the
category of periodic, i.e., they must receive a regular activation event with a statically
assigned rate. A number of significant events contribute runtime overhead to the execution
of these tasks. Figure 4 illustrates such events, which collectively constitute the set of factors
to include in the resolution of response time equation (1). The time interval denoted R − I

Figure 4. Events occurring in one time-triggered task execution.
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in Figure 4 represents the task response time minus the interference effect incurred from
events independent from the sequence of interest. We shall progressively characterize the
missing interference component in the remainder of the discussion.

3.2.1.1. Wake-up jitter. Time-Triggered Ravenscar tasks use absolute time values in the
delay until statement to program their next wake-up time. The actual alarm setting
may attain differing degrees of timing accuracy. A coarse clock tick is the prime source of
inaccuracy, which may result from coarse software representation of the hardware clock, but
also from relative programming of fine-grained hardware timers (Zamorano et al., 2001). In
the latter case, the absolute time parameter of the delay until statement translates into
a relative delay (e.g., in the number of clock ticks that best approximates the required length
of suspension), which may cause jitter on the actual time of activation. The worst-case delay
jitter then equals the difference between the upper bound and lower bound of the suspension
interval calculation error.

In some hardware architectures, the wake-up time calculation may involve variable-
duration operations, such as divide and multiply, whose execution time may be difficult to
bound (INTEL, 1989; TEMIC, 1996). Processors with hardware timers implemented on
wide registers (64-bit or wider) can always use absolute time and therefore avoid incurring
clock inaccuracies (Zamorano et al., 2001).

Required metric: Where the runtime does not directly support absolute wait time, a bound
must be provided on the wake-up time calculation error.

Figure 4 denotes this overhead component as J W , which may well depend on the value
of the demanded suspension interval.

3.2.1.2. Interrupt disabled. The kernel may protect its own execution of critical sections
by temporarily disabling the acknowledgment of interrupts from the clock and all other
external sources. The elapsed time that the kernel may execute with the acknowledgment
of interrupts disabled is one of the two contributing factors to the blocking experienced
by Ravenscar tasks, the other arising from the use of the priority ceiling protocol (cf.
Section 3.5).

Required metric: The runtime implementor shall document the maximum duration of the
elapsed time of kernel execution with interrupts disabled.

Figure 4 denotes this overhead component as B I .

3.2.1.3. Clock handler. The clock handler, which we have associated to primitive
Clock it (cf. table 1), executes when the clock interrupt is acknowledged by the pro-
cessor. Modeling the clock handler overhead depends on the approach adopted for the
implementation of suspension intervals as well as for the support of the fine-grained time
reference that the Ada specification of function Ada.Real Time.Clock requires.

Required metric (preliminary): The runtime implementor shall document the maximum
execution time of the primitive associated with the handling of the clock, which Table 1
and Figure 2 denote as Clock it.
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With reference to Figure 4 we may, for the moment, stipulate:

C H = Clock it (2)

We shall refine the definition of this metric in Section 3.3.
Since the runtime may need to handle more than one type of clock interrupt, we cannot tell

a priori whether the handling also included the readying of a time-triggered task from the
Delay queue. The corresponding overhead term (i.e., Ready) will therefore be accounted
for in the component denoted CS1 in Figure 4.

3.2.1.4. Context switch(In). The clock handler moves the time-triggered task off the
Delay queue to the Ready queue, thus giving rise to a task dispatching point. From the
standpoint of Figure 4, we assume that this results in the switch to the time-triggered task,
because equation (1) accounts as interference all other events in which the task does not
have the highest priority among those runnable.

Required metric: The runtime implementor shall document the maximum execution time of
the three primitives associated with the handling of a task dispatching point, which Table 1
and Figure 2 denote as Ready, Select (which may be linear in the number of Ready
queues and positions within them) and Switch.

With reference to Figure 4 we may therefore stipulate:

C S1 = Ready+ Select+ Switch (3)

3.2.1.5. Task execution. The response time equations require the task execution compo-
nent proper to be determined as the time cost of all the sequential blocks of execution that
lay in the worst-case execution profile of the task, in addition to the time cost of the runtime
services required for the support of that particular execution (which effectively amounts to
the cost of invoking protected subprograms that do not involve queuing). This term does
not include the interference incurred from preemption. The worst-case execution time of
the task is just one of the three additive components that determine its response time.

Tools and methods exist that assist the developer in determining the worst-case execution
time of Ravenscar tasks. (Cf. e.g., Puschner and Burns, 2000).

3.2.1.6. Task suspension. Upon completion of the current activation, the task suspends
itself until the time of the next activation. At some point during its execution, the task
computes the value of the next activation time. As we have seen earlier in Section 2.4,
the execution of program statement delay until results in the invocation of primitive
Delay until(Enter). That primitive moves the task off the running state and places
it in the Delay queue (cf. Figure 2). The time required by the execution of this primitive
depends on the position where the task must be inserted in the (time-ordered) Delay queue.
The worst case insertion time depends on the maximum queue length, which is equal to the
number of time-triggered tasks in the application.
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Required metric: The runtime implementor shall document the time bound for the execution
of primitive Delay until(Enter), possibly making it parametric to the length of the
queue.

With reference to Figure 4 we may therefore stipulate:

TSperiodic = Delay until(Enter) (4)

Figure 4 shows that we account this term as interference from the outgoing task on the
response time of the next task to run.

3.2.1.7. Context switch(Out). Upon termination of the current activation of the task and
its placement in the Delay queue, a task dispatching point occurs, whereby the runtime must
select a new runnable task (which may also be an idle task if no application-level task were
ready to execute) and perform a switch to it.

This sequence of action, which contributes to the interference term in the response time
equation of the subsequent task to run, encompasses execution of primitives Select and
Switch. The corresponding metric is subsumed by the one required for the dual event:
Context swith(In).

With reference to Figure 4 we may therefore stipulate:

C S2 = Select+ Switch (5)

3.2.1.8. Response time for time-triggered tasks. Assuming that all terms from Figure 4
are significant, the response time equation for a time-triggered task is as follows, where
notation j ∈ hp(i) denotes that task τ j ’s priority is greater than τi ’s:

Rn
i = Bi + C S1 + Ci

+
∑

j∈hp(i)

⌈
Rn−1

i + J A
j

Tj

⌉
(C S1 + C j + T S + C S2) + I

Rn−1
i

clock + I
Rn−1

i
extint

R1
i = Bi + C S1 + Ci

Ri = Rn
i + J W

i (i ∈ periodic) (6)

Note the refinements we have introduced with respect to equation 1:

• term C S1 has been added to the execution time component of every task in the system
(i.e., Ci and C j∀ j ∈ hp(i)).

• term I
Rn

i
i has been substituted by the more elaborate equation:

I Ri
i =

∑
j∈hp(i)

⌈
Ri + J A

j

Tj

⌉
(C S1 + C j + T S + C S2) + I Ri

clock + I Ri
extint
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where Tj is the period or the minimum inter-arrival time of task τ j , as applicable, and
J A

j denotes the variability in the arrival of the activation event (called activation jitter)
that might occur if τ j was sporadic and the activation event was synchronous; J A is an
application-dependent value, on which the runtime has no direct impact

• components TS and CS2, which for now we have only characterized for time-triggered
tasks but has an equivalent characterization for event-triggered tasks, accounts the in-
terference overhead incurred on the suspension of higher-priority tasks.

• term I Ri
clock, which we shall discuss in Section 3.3, represents the general clock handling

overhead as it builds up from the elementary CH component.

• term I Ri
extint, which we shall discuss in Section 3.4, denotes the interference effect incurred

from the handling of external interrupts other than the clock.

• term J W
i , finally, was defined in Section 3.2.1.1 as wake-up jitter.

Overhead component BI, which denotes the maximum duration of the elapsed time of
kernel execution with interrupts disabled, is accounted for the determination of term Bi ,
which we shall discuss in Section 3.5. As the Ravenscar Profile prescribes the use the
Ceiling Locking protocol, the blocking effect arising from B I and that from priority
inversion are not cumulative.

3.2.2. Modeling Event-Triggered Tasks

In order for event-triggered tasks to be statically analysable they must belong in the category
of sporadic. Their activation event must thus follow a defined arrival law. These tasks await
their next activation event by making a call to the closed barrier of a protected object
entry. The activation event takes the form of a call to a protected procedure that opens the
barrier. The call can be made synchronously by a running task or asynchronously by the
runtime-level handler of the interrupt attached by the application to the protected procedure.

The Proxy Model discussed in Section 2.4 allows the task that opens the barrier to execute
the protected entry on behalf of the waiting event-triggered task. The Ravenscar runtime
implementation in the GNAT compiler (Ada Core Technologies, 2000), which is integrated
with ORK (de la Puente et al., 2000b), uses the Proxy Model. With this approach, once
the releasing protected procedure is executed, the value of the barrier is set to open and the
barrier is re-evaluated accordingly, the event-triggered task is moved off the entry queue
onto the Ready queue and the code of the protected entry is executed in the context of the
interrupt handler or task delivering the releasing event.

Figure 5 assumes the scenario in which the releasing call is made asynchronously and
depicts the corresponding sequence of events. The time interval denoted R − I in the
figure represents the task response time minus the interference effect incurred from events
independent from the sequence of interest.

The events that concur to the execution of an event-triggered task have the same in-
terpretation for response time analysis as the ones we encountered in the execution of as
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Figure 5. Events occurring in one event-triggered task execution with asynchronous release.

time-triggered task, with minor adaptations that reflect the different nature of the
task.

3.2.2.1. Interrupt handler (asynchronous release). The interrupt handler, the initiation
of which we have associated to primitive Ext it (cf. Table 1), executes when an un-
masked external interrupt is acknowledged by the processor. The Ext it primitive locates
the protected procedure that the application has attached to the interrupt, and passes this
information on to the subsequent invocation of primitive Signal.

With the Ravenscar restrictions in effect, the cost of Signal includes: the execution of
the preamble that seizes the lock of the protected object by using primitive Po(Enter);
the code of the protected procedure itself, which usually just opens the barrier of the relevant
entry; and the epilogue that releases the lock by using primitive Po(Exit).

Required metric: The runtime implementor shall document the maximum execution time of
the two primitives associated with the invocation of protected subprograms, which table 1
designates as Po(Enter) and Po(Exit), possibly making it parametric to the range of
supported priorities.

With this provision, we may therefore stipulate:

Signal = Po(Enter) + wcet(procedure) + Po(Exit) (7)

The Proxy Model actually causes additional operations to be performed in the context
of the releasing call: evaluating the barrier, executing the code of the protected entry and
moving the event-triggered task from the entry queue to the Ready queue. This chain of
events gives rise to a task dispatching point, with the selection of a task from those ready.
For the purpose of this discussion, we assume that the event-triggered task in question is
actually selected, while we account as interference the execution of all higher-priority ready
tasks that may occur before it.

Required metric: The runtime implementor shall document the time bound for the execution
of all actions involved in the execution of an external interrupt handler under the Proxy
Model.
With reference to Figure 5 we may therefore stipulate:

AR = Ext It+ Signal+ wcet(entry) (8)
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where component wcet(entry) bounds the barrier evaluation and the execution of the entry
service under the Proxy Model. As term CS1 already includes the overhead incurred from
readying the task, we do not include component Ready in the resolution of term AR.

We shall discuss the attribution of this runtime overhead component in Section 3.4.

3.2.2.2. Synchronous release. The sole aspect that differentiates the synchronous release
of an event-triggered task from the asynchronous release we have just analysed resides in
the nature of the releasing call. The corresponding overhead factor, which we denote S R,
can be easily obtained from equation 8 by dropping componentExt It from the right-hand
side of the equation:

SR = Signal+ wcet(entry) (9)

Component SR may either account as interference from higher-priority tasks, where it would
be collated in term C j of response time equations (6) and (11), or else as blocking from
priority inversion, which we discuss in Section 3.5. In both cases, the overall term shall also
include the cost of executing the application-level code of the protected entry on which the
event-triggered task was enqueued.

3.2.2.3. Task suspension. Similarly to time-triggered tasks, event-triggered tasks sus-
pend themselves voluntarily until the next activation. Upon the call to the closed barrier
of the protected entry, the runtime moves the event-triggered task off the running state to
the entry queue attached to the protected object. In Section 2.4, we have used primitive
Wait(Enter) to capture this event. The restrictions enforced by the Ravenscar Profile
prevent entry calls made by distinct tasks from queuing up in the same queue. This re-
duces the runtime overhead of the suspension operation, while adding to the determinism
of insertion and release.

Required metric: The runtime implementor shall document the time bound for the execu-
tion of primitive Wait(Enter).

With reference to Figure 5 we may therefore stipulate:

TSsporadic = Wait(Enter) (10)

3.2.2.4. Response time for event-triggered tasks. Assuming that all terms from Figure 5
are significant, the response time equation for event-triggered tasks is as follows:

Rn
i = Bi + CS1 + Ci

+
∑

j∈hp(i)

⌈
Rn−1

i + J A
j

Tj

⌉
(CS1 + C j + TS + CS2) + I

Rn−1
i

clock + I
Rn−1

i
extint

R1
i = Bi + CS1 + Ci (11)
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Component B I from figure 5 is taken into account in the determination of term Bi of the
equation. Term TS resolves into either TSperiodic or TSsporadic according to the nature of task
τ j .

As the event-triggered task τi experiences no wake-up jitter, no term J W
i has to add to Rn

i ,
whereas activation jitter still affects the calculation of the interference effect from higher-
priority event-triggered tasks with synchronous activation. If component J W in Figure 4
is negligible (as the runtime offers an accurate wake-up service) then response time equa-
tion (6) for time-triggered tasks and equation (11) for event-triggered tasks are identical.

3.3. Modeling Clock Interrupts

Ravenscar kernels must support two sources of clock interrupts: those associated to the re-
lease of time-triggered tasks and those needed to maintain the language-level time reference
returned by function Ada.Real Time.Clock.

The determination of the Ravenscar runtime overhead must therefore account for: de-
manded interrupts, which arise from the programming of the interval timer; and periodic
interrupts, which incur from maintaining the software representation of the clock register.

Notation Tperiodic denotes the fixed rate of the clock. The width of the down counting
register of the hardware timer and the corresponding frequency of update, which is part of
the hardware setting, provide an upper bound for Tperiodic.

Equation (12) provides the worst-case bound on the number of periodic interrupts that
may cause interference on any task’s response time:

I Ri
periodic =

⌈
Ri

Tperiodic

⌉
C Hperiodic (12)

where C Hperiodic is the cost of handling a single interrupt off the periodic clock.
The worst-case bound on the number of demanded interrupts that may cause interference

on the same task ready period results from the summation of two terms: the disjoint activation
of all lower-priority time-triggered tasks that occurs at the critical instant; and the raising
of as many interrupts off the interval timer as activations of higher-priority time-triggered
tasks throughout the task ready period. Equation (13) provides this bound:

I Ri
demanded =

∑
j∈hpperiodic(i)

⌈
Ri

Tj

⌉
× CHdemanded

+
∑

t∈lpperiodic(i)

CHdemanded (13)

where C Hdemanded is the cost of handling a single interrupt off the interval timer and notation
j ∈ lp(i) denotes that task τ j ’s priority is lower than τi ’s.

Equation (13) captures precisely the level of pessimism embodied in the notion of critical
instant defined in Section 3.1. Gentler definitions exist, which would require adaptations
to the equation: for example, one in which all time-triggered tasks were simultaneously, as
opposed to disjointly, released from the Delay queue at the critical instant.
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On reflection of this discussion, we may now refine equation (2), which stipulates the
required runtime metric for clock handling overhead, to:

Required metric: The runtime implementor shall document the maximum execution time of
the primitive(s) associated with the handling of the internal clock(s), which raise interrupts
that we have categorised as demanded and periodic:

CHdemanded = Clock itdemanded

CHperiodic = Clock itperiodic

In force of equations (12) and (13), we may thus stipulate:

I Ri
clock = I Ri

periodic + I Ri
demanded (14)

Possible optimisations to the implementation entailed by this double-clock model exist.
For example, if there are enough demanded interrupts, the kernel may do away with the
periodic ones and yet be able to maintain an accurate clock value. In this case, the analysis
model should try to bound the actual number of periodic interrupts required within the
interval of observation.

ORK for ERC32 targets (de la Puente et al., 2000a; ATMEL, 2003), deliberately uses two
distinct hardware timers for the two sources of interrupt, because of the difficulty of keeping
the drift-less monotonic clock required by the Ravenscar Profile with just one interval timer
(Zamorano et al., 2001).

3.4. Modeling Other Interrupts

Program-level interrupt handlers execute at a priority level not inferior to the hardware
interrupt priority. Task τi may therefore incur interference as event-triggered tasks are
released upon the arrival of external interrupts.
System.Interrupt Priority specifies the range of hardware priority level. Ordi-

nary tasks execute at software priority levels, within the System.Priority range. The
two ranges are contiguous, with the former at the high end.

The release of a low-priority event-triggered task off its entry queue may cause an in-
terference effect on higher-priority tasks. With the Proxy Model in effect, the task being
released neither inherits the ceiling priority of the protected object nor executes the entry on
which it was enqueued. Hence, this situation configures as classical interference instead of
as priority inversion. Equation (15) models this effect as interference from higher-priority
interrupt handlers:

I Ri
extint =

∑
k∈hpinterrupt(i)

⌈
Ri

Tk

⌉
× AR (15)

where AR is the term we have bounded with Equation (8) and Tk is the minimum inter-arrival
time of the event-triggered task released by the corresponding interrupt.
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As the base priority of task τi may itself be in the Interrupt Priority range, some
hardware interrupts could effectively have a lower priority than it. In such a case, the lower-
priority hardware interrupts would be masked and will be not acknowledged during the
execution of the task.

3.5. Evaluating Blocking

Raising the active priority of tasks with low base priority may make them execute in
preference to higher-priority tasks. This event is known as priority inversion (Cornhill and
Sha, 1987; Locke et al., 1988). The priority ceiling protocol optimally bounds the duration
of these situations, which response time analysis models as blocking with the B component
of equation (1) and its derivatives (6) and (11).

Blocking may also occur as the runtime temporarily disables interrupts to protect the
execution of its own critical sections. In Ravenscar applications, the triggering of an interrupt
represents an activation event for an event-triggered or a time-triggered task: the time
interval during which interrupts are disabled defers the task dispatching point that follows
the readying of the task. If that task has higher priority than that of the currently running
task, the deferral is a case of priority inversion.

These two forms of priority inversion are not cumulative: they both defer the very first
preemption from the higher-priority task; as soon as that preemption has taken place, no
other circumstance will ever lead the higher-priority task to give way to a lower-priority
task.

The longest time that task τi may experience blocking from priority inversion is thus the
maximum between the longest elapsed time of kernel execution with disabled interrupts
(cf. term B I and its required metric in Section 3.2.1.1) and the longest protected operation
invoked by a lower-priority task on a protected object with higher ceiling priority, which,
for task τi , we denote Bpci . Hence, we have:

Bi = maxi {B I, Bpci } (16)

In order to determine the value to assign to term Bpci we must characterize the runtime
overhead incurred on execution of protected operations. The application-level cost of the
protected operation, which adds to that overhead, will be determined by normal timing
analysis techniques (Puschner and Burns, 2000).

Two kinds of protected objects exist in the Ravenscar Profile: entry-less protected objects
and single-entry protected objects.

3.5.1. Entry-Less Protected Object

Protected objects of this kind implement mutually-exclusive access to shared data. The
worst-case execution time of their protected subprograms results from the summation of
the the worst-case execution time of the protected operation and the overhead from primitives
Po(Enter) and Po(Exit) listed in Table 1.
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The blocking potential of entry-less protected object subprograms may thus be expressed
as:

Belps = Po(Enter) + wcet(subprogram) + Po(Exit) (17)

where the wcet(subprogram) component bounds the worst-case execution time of the
application-level code of the subprogram.

3.5.2. Single-Entry Protected Object

Protected objects of this kind support data-oriented synchronisation between tasks. As
the name tells, these objects provide a single entry in addition to protected subprograms.
Event-triggered tasks invoke this entry to program their next activation event.

3.5.2.1. Protected entry. Under the Proxy Model, the execution of the entry cannot give
rise to blocking, other than if the barrier were open, which would only occur upon a timing
or execution error of the application. In the nominal situation, event-triggered tasks suspend
themselves on a closed barrier by entering the queue associated to the entry. With the Proxy
Model in effect, the code of the entry will then be executed by the task that opens the barrier.
Irrespective of whether the opening of the barrier occurs synchronously or asynchronously,
the code of the entry is thus executed without the priority of the calling task being raised to
the ceiling of the object.

3.5.2.2. Protected procedures. The execution of protected procedures incurs blocking
on tasks with priority higher than the calling task but lower than the ceiling priority of the
protected object.

In Ravenscar applications, the protected procedure(s) of this object typically open(s) the
barrier associated with the entry. The Proxy Model causes the calling task to execute the
code of the entry on behalf of the event-triggered task waiting on the entry queue. The
blocking potential of a releasing protected procedure is thus bounded by the S R component
described in equation (9), plus the cost of readying the task:

Brp = S R + Ready (18)

This kind of protected object can also provide mutually-exclusive access to shared data. It
may thus provide protected subprograms that do not explicitly open the barrier. In this case,
the wcet(entry) term of the S R defining equation must not include the execution of the entry
service, but only the evaluation of the barrier, which follows every execution of protected
procedures of protected objects with entry. The blocking potential of these procedures may
thus be expressed as:

Bnrp = Belps + wcet(barrier evaluation) (19)
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The case may also occur whereby tasks, which may invoke operations of protected
objects with procedures designated as interrupt handlers, have base priority in the Inter-
rupt Priority range. The ceiling priority of the protected object may in this case turn
out to be higher than the hardware priority of the corresponding interrupt. As a consequence,
the execution of the protected interrupt handler would cause blocking on tasks with priority
higher than the hardware interrupt but lower than the ceiling of the object. The blocking
potential of the protected interrupt handler is bounded by the AR component resolved in
equation (8) plus the cost of readying the event-triggered task:

Bpih = AR + Ready (20)

3.5.2.3. Protected functions. Protected functions cannot change the state of protected
objects, which includes the value of the barrier. Hence, the barrier need not be evaluated
after the execution of protected functions. It follows that the runtime operations involved
in the execution of protected functions belonging to protected objects with one entry are
exactly the same as those of subprograms of entry-less protected objects, which we bounded
with equation (17).

3.5.3. Bounding Priority Ceiling Blocking

Equations (17)–(20) supply all the information we need to resolve the Bpci component
of Equation (16). The worst-case priority-ceiling blocking potential incurred by task τi is
bounded by the maximum of all protected subprograms of protected objects with ceiling
k ∈ hp(i) invoked by tasks with base priority j ∈ lp(i):

Bpci = max
{ j∈lp(i)∧k∈hp(i)}

{
Belpsk j

, Br pk j
, Bnr pk j

, Bpihk j

}
(21)

Table 2 provides a synoptic view of all the execution components that contribute priority-
ceiling blocking potential to the response time of Ravenscar tasks. These components

Table 2. Protected operations that contribute blocking potential to Ravenscar tasks.

Execution component Defined by

Symbol Meaning Metric Equation Used in equation

Belps Any subprogram 3.5.1 (17) (21)
Brp Releasing procedure 3.5.2 (18) (21)
Bnrp Non-releasing procedure 3.5.2 (19) (21)
Bpih Interrupt handler 3.5.2 (20) (21)
AR Asynchronous release 3.2.2.1 (8) (20)
SR Synchronous release 3.2.2.2 (9) (18)
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Table 3. Synopsis of all runtime overhead components that contribute to the response time of
Ravenscar tasks.

Runtime overhead component Defined by

Symbol Meaning Metric Equation Used in equation

B Blocking 3.5 (16) (6), (11)
BI Disabled interrupts 3.2.1.2 (16)
J W Wake-up jitter 3.2.1.1 (6)
C S1 Context switch(in) 3.2.1.4 (3) (6), (11)
C S2 Context switch(out) 3.2.1.7 (5) (6), (11)
TS Time-triggered task suspension 3.2.1.6 (4) (6), (11)

Event-triggered task suspension 3.2.2.3 (10)
Iclock Clock handling 3.3 (14) (6), (11)
Iextint Other interrupt handling 3.4 (15) (6), (11)

originate synchronously within the execution of the running task; therefore, they also con-
tribute to the worst-case execution time bound (term C) of the calling task.

3.6. Putting it all Together

Table 3 summarises the whole set of runtime factors that contribute timing overhead to the
execution of Ravenscar tasks, and which we have used in constructing the corresponding
response time equations (6) and (11).

4. Evaluation

The Ravenscar Profile restrictions dramatically simplify the implementation of the support-
ing kernel. An immediate benefit of this simplification should be a tangible improvement
in execution performance, chiefly in terms of ample reduction in runtime overheads.

In order to prove this point, we related the runtime overheads incurred on two comparable
kernels: a Ravenscar-specific one, i.e., ORK for ERC32 targets (de la Puente et al., 2000a;
ATMEL, 2003), and a general-purpose real-time alternative, that is, the RTEMS release
for the same target (On-Line Applications Research, 2003). Both kernels are open-source
products that can be used with the GNAT Ada compiler (Ada Core Technologies, 2000),
the same version of which (v3.13p) was used for our measurements.

As the RTEMS-based platform was not Ravenscar compliant, we could not directly apply
our fine-grained metrics to it. As that platform supported the full Ada model, however, we
were able to depart from the coarse-grained metrics defined by the annexes C and D of the
current Ada language specification (Ada, 95, 2000). Of them, we only chose those that had
a parallel under the Ravenscar Profile, so that we could express them in terms of the metrics
described in this paper (cf. Table 3).

We also added two further common metrics that account for context switch time and
interrupt lateness, the latter of which reduces to protected interrupt handler lateness under
the Ravenscar Profile.
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Where applicable, the code attached to each base comparison metric denotes annex,
chapter and clause of the corresponding definition in the Ada language specification. For
each base metric we have provided the corresponding breakdown factors expressed in terms
of our proposed metric set.

C.3.1(15) Protected interrupt handler overhead. The execution time that cannot be di-
rectly attributed to the protected handler procedure.

This metric fully corresponds to our Ext it term in Table 1, which denotes the run-
time primitive that locates the protected handler attached to the asserted interrupt and the
housekeeping actions that precede and follow execution occurring at interrupt level, which
are known as “prologue” and “epilogue”, respectively. Prologue and epilogue actions may
involve installing and removing the interrupt stack, if any.

Protected interrupt handler lateness (PIHL). The execution time incurred from the time
that the interrupt was asserted until the first user statement of the attached protected interrupt
handler.

This metric corresponds to the sum of our Ext it and Po(Enter) notional primitives,
the latter term denoting the runtime overhead of seizing the lock to the protected object
hosting the designated handler, detracted by the cost of the epilogue actions, which only
occur upon leaving the object. (The latter set of actions may be particularly burdensome for
register-window based architecture like the one we used for our measurements.)

This term is an indicator of runtime performance, but it is too coarse grained to be di-
rectly used for off-line scheduling analysis, which arguably requires finer-grained metrics
like ours.

D.12(11) Mutual exclusive access. The time overhead incurred to seize mutually exclusive
access to an entry-less protected object.

This metric encompasses the sum of our Po(Enter) and Po(Exit) notional primi-
tives.

D.9(13) Delay until lateness. The difference between the requested time of delay ex-
piration and the resumption time actually attained by a task following an absolute time
suspension.

This metric encompasses the whole set of overhead factors that precede the execution of
a time-triggered task, which Figure 4 denotes as J W + BI + CH + CS1.

As the cost of the Ready and Select component of term CS1 is often linear in the
number of tasks becoming ready (cf. Equation 3), we took two measurements, for the case
of 1 and (1 + N ) tasks becoming ready.

This term is a general indicator of runtime performance, but it is too coarse to be directly
used for off-line scheduling analysis and also hard to empirically measure in the worst case.
Once again, break-down factors like ours are better suited for this purpose.

Context switch: The elapsed time between the last statement executed at a task dispatching
point until the first statement in the selected running task.

Our metric set captures this duration as the sum of the two overhead factors CS1 (cf.
Section 3.2.1.4) and CS2 (cf. Section 3.2.1.7). The coarse metric is a general indicator
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Table 4. Comparative values, expressed in processor clock cycles, for standard metrics obtained on kernel
configurations using GNAT run-time libraries.

Coarse metric Our metric ORK RTEMS

C.3.1(15) Ext it 1028 6829
PIHL Ext it + Po(Enter) −epilogue 893 5002
D.12(11) Po(Enter) + Po(Exit) 534 2467
D.9(13), 1 task J W + BI + CH + CS1(1) 2835 7840
D.9(13), 1 + N tasks CS1(+N ) N × 140 N × 2240
Context switch C S1 + C S2 431 928

of runtime performance, but accurate off-line scheduling analysis definitely needs better
breakdown factors like ours.

Table 4 lists the measurement values obtained for the metrics of interest. The values
are given in processor clock cycles. The measurements were taken from executions on
TSIM (Gaisler Research, 2003), a clock cycle true simulator of ERC32 targets, with both
kernels configured to run at 14 MHz.

Most of the values could be obtained exactly by direct use of performance measurement
features of the simulator. A few others required use of the kernel clock, which exposed
them to the potential inaccuracy of the specific clock handling mechanisms. Unlike ORK,
which uses the interval time model, RTEMS uses the traditional periodic clock model in
a manner whereby the clock resolution equals the periodic interrupt period. We set the
RTEMS timer interrupt period to 1 ms so as to attain sufficient accuracy while incurring an
acceptable overhead. Slightly better performance figures could be obtained should a coarser
clock resolution be used, but that would not compare fairly with the high clock accuracy
sought by the Ravenscar Profile.

As Table 4 shows, the Ravenscar-specific kernel performs significantly better than its
general-purpose counterpart, while our metrics are considerably finer-grained than standard
metrics used for the full runtime (and, by extension, for general-purpose real-time kernels).
This proves the point we made throughout this paper.

5. Conclusions

Real-time systems are inherently concurrent. Yet, when static analysis is important, design-
ers refrain from making this character explicit because of the perceived conflict between
ease of verification and direct expression of concurrency. In contrast with this perception,
the Ravenscar Profile is a concurrent computational model, which facilitates direct expres-
sion of predictable concurrency in a form easily amenable to static analysis. Response time
analysis is a handy and informative form of static analysis. It determines the longest elapsed
time it takes for a process to complete its most demanding instance of activation under max-
imum contention from the rest of the system. The values that feed this analysis describe
the time cost of the application code as well as that of the runtime services involved with
that execution. The determination of these values is exposed to the detrimental effect of
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excessive pessimism that may arise from inaccurate or coarse characterisation of the exe-
cution behaviour of the system. The simplicity and intrinsic determinism of the Ravenscar
Profile help contain this effect, for they permit a very accurate characterisation of all the
primitive services supported by the runtime. In this paper we have provided an accurate
account of the dynamic semantics of those runtime primitives and formulated metrics for
an equally accurate characterisation of their timing behaviour. To further prove the attrac-
tiveness of the Ravenscar Profile we have also shown how its implementation allows the
compliant runtime to greatly reduce its overhead in comparison with more general-purpose
real-time kernels.
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Note

1. The latter clause is the only exception to FIFO treatment of tasks within priority queues, in the interest of
sparing context switches.
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