
2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 1

Real-Time Systems

Anno accademico 2012/13
Laurea magistrale in informatica
Dipartimento di Matematica
Università di Padova
Tullio Vardanega

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. Fixed-priority scheduling

a. Task interactions and
blocking

b. Exercises and extensions

5. System issues
a. Programming real-time

systems

6. Distributed systems
7. Analysis issues

a. WCET analysis
b. Schedulability analysis

8. Multicore systems

Bibliography
• J. Liu, “Real-Time Systems”,

Prentice Hall, 2000
• A. Burns and A. Wellings, “

“Concurrent and Real-Time
Programming in Ada”,
Cambridge University Press

2012/13 UniPD / T. Vardanega Real-Time Systems 2 of 390

1. Introduction

Initial intuition /1

 Real-time system – I
 An aggregate of computers, I/O devices and application-

specific software, all characterized by
 Intensive interaction with external environment
 Time-dependent variations in the state of the external environment
 Need to keep control over all individual parts of the external

environment and to react to changes

 System activities subject to timing constraints
 Reactivity, accuracy, duration, completion, responsiveness: all

dimensions of timeliness

 System activities are inherently concurrent
 The satisfaction of such constraints must be proved

2012/13 UniPD / T. Vardanega Real-Time Systems 4 of 390

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 2

Initial intuition /2

 Real-time system – II
 Operational correctness does not solely depend on the logical

result but also on the time at which the result is produced
 The computed response has an application-specific utility function
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be as bad as

a wrong response

 Embedded system
 The computer and its software are fully immersed in an

engineering system comprised of the external environment
subject to its control

2012/13 UniPD / T. Vardanega Real-Time Systems 5 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 6 of 390

 A control (sub)system consists of possibly
distributed resources governed by a real-time
operating system (RTOS)

 The RTOS design must meet stringent reliability
requirements
 Measured in terms of maximum acceptable probability

of failure
 Typically in the range 10-10 to 10-5 per unit of life/service time

Application requirements /1

2012/13 UniPD / T. Vardanega Real-Time Systems 7 of 390

Application requirements /2

 Safety-critical systems
 E.g., Airbus A-320: 10-10 probability of failure per hour

of flight
 One failure in 1010 hours of flight (about 11.5 million years!)

 Business-critical real-time systems
 E.g., satellite system: between 10-6 and 10-7 probability of

failure per hour of operation
 One failure in 107 hours of operation (about 11,408 years!)

2012/13 UniPD / T. Vardanega Real-Time Systems 8 of 30

Embedded system

Hardware

Operating

System

User Programs

Typical General-Purpose Computing
Configuration

Hardware

including
Operating System

Components

User Program

Typical Embedded Computing
Configuration

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 3

2012/13 UniPD / T. Vardanega Real-Time Systems 9 of 390

Key characteristics /1

 Complexity
 Algorithmic, mostly because of the need to apply discrete control

over analog and continuous physical phenomena
 Development, mostly owing to more demanding verification and

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary (spanning control, software, and system
engineering)

 Extreme variability in size and scope
 From tiny and pervasive (nano-devices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability

2012/13 UniPD / T. Vardanega Real-Time Systems 10 of 390

Key characteristics /2

 Must respond to events triggered by the external
environment as well as by the passing of time
 Double nature: event-driven and clock- (or time-) driven

 Continuity of operation
 The whole point of a real-time embedded system is that it must be

capable of operating without (constant) human supervision

 Software architecture is inherently concurrent
 Must be temporally predictable

 Need for static (off-line) verification of correct temporal behavior
 Not easy at all

False myths /1

 Real-time systems design is empirical and not scientific
 False : we shall see much of that in this class

 The increase in CPU power shall satisfy timing
requirements coming from software of any sort
 False : we continue to observe lateness all around us

 The essence of real-time computing is speed
 False : we are interested in predictability, not speed

 The real-time systems discipline is no other than
performance engineering
 False : we shall here what it is made of

2012/13 UniPD / T. Vardanega Real-Time Systems 11 of 390

False myths /2

 Real-time programming is low-level
 False : verification is so much easier if programming is

higher-level
 All real-time “problems” have long been solved in

other areas of computer science
 False : operation research solves (possibly similar)

problems with probabilistic and/or one-shot techniques
 False : general-purpose computer science in general

addresses average-case optimizations

2012/13 UniPD / T. Vardanega Real-Time Systems 12 of 390

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 4

2012/13 UniPD / T. Vardanega Real-Time Systems 13 of 390

Meeting real-time requirements

 It is not sufficient to minimize the average response time of
application tasks
 "Real-time computing is not equivalent to fast computing"

[Stankovic, 88]
 Given a set of demanding real-time requirements and an

implementation based on fast HW and SW, how can one show
that those requirements are met?
 Surely not only via testing and simulation
 Maiden flight of space shuttle, 12 April 1981: 1/67 probability that

a transient overload occurs during initialization; and it actually did!
 System-level predictability is what we need

2012/13 UniPD / T. Vardanega Real-Time Systems 14 of 390

Example /1

 A digital system of sensors and actuators

A/D

A/D

Control law
computation D/A

Sensor Actuator
Physical
system
(plant)

s(t)

r(t) rk

sk

ak

a(t)

ak = ak-2 + α(rk – sk) + β(rk-1 - sk-1) + γ(rk-2 - sk-2)

Feedback control loop

Reference
values

2012/13 UniPD / T. Vardanega Real-Time Systems 15 of 390

Example /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic (for convenience)
 Actuator commanding is produced at the time of the next sampling

 As part of feedback control mathematics
 System stability degrades with the width of the sampling period

 Plant capacity
 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is

capable of it within rise time R requires higher frequency of actuation
and thus faster sampling hence shorter period T

 A “good” R/T ratio ranges [10 .. 20]

2012/13 UniPD / T. Vardanega Real-Time Systems 16 of 390

Example /3

 Complex systems must support
multiple distinct periods Ti
 It is convenient to set a harmonic relation

between all Ti
 This removes the need for concurrency of

execution in the relevant computations
 But it causes coupling between possibly

unrelated control actions which is a poor
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control activities
each performed at a specific rate

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 5

Example /4

 180 Hz cycle (harmonic multi-rate functions)
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle (at every 2nd activation)
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle (at every 6th activation)
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle (at every 6th activation)
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data

2012/13 UniPD / T. Vardanega Real-Time Systems 17 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 18 of 390

Example /5

 Command and control systems are often organized
in a hierarchical fashion
 At the lowest level we place the digital control systems

that operate on the physical environment
 At the highest level we place the interface with the

human operator
 The output of high-level controller becomes a reference value

r(t) for some low-level controller
 The more composite the hierarchy the more complex the

interdependence in the logic and timing of operation

2012/13 UniPD / T. Vardanega Real-Time Systems 19 of 390

Example /6

Flight control
system

State
estimator

Air
data

Physical plant L0

Virtual
plant L1

State
estimator

Flight mgmt
system

Navigation

Virtual
plant L2

Air traffic
control

State
estimator

Sensors

Operator
interface

Commands
Responses

2012/13 UniPD / T. Vardanega Real-Time Systems 20 of 390

An overall vision

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 6

2012/13 UniPD / T. Vardanega Real-Time Systems 21 of 390

A conceptual model

Controlled subsystemControlled subsystem

Control subsystem

Operation subsystem

application, or environment,
which dictates the RT requirements

controls resources for use
by the controlled subsystem

Initiates and monitors system activity

Application interface

Man-machine interface

2012/13 UniPD / T. Vardanega Real-Time Systems 22 of 390

A typical embedded system
Algorithms for
Digital Control

Data Logging

Data Retrieval
and Display

Operator
Interface

Interface Engineering
System

Remote
Monitoring System

Real-Time
Clock

Database

Operator’s
Console

Display
Devices

Real-Time Computer

2012/13 UniPD / T. Vardanega Real-Time Systems 23 of 390

An initial taxonomy /1

 The prevailing classification stems from the traditional
standpoint of control algorithms
 Strictly periodic systems

 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!

2012/13 UniPD / T. Vardanega Real-Time Systems 24 of 390

Some terminology

 Time-aware
 A system that makes explicit reference to time

 E.g., open vault door at 9.00 AM

 Reactive
 A system that must produce outputs within deadlines

relative to inputs
 Control systems are reactive by nature
 Hence required to constrain the time variability (jitter) of

their input and output
 Input jitter and output jitter control

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 7

2012/13 UniPD / T. Vardanega Real-Time Systems 25 of 390

Definitions /1

 Job
 Unit of work selected for execution by the scheduler
 Needs physical and logical resources to execute
 Each job has an entry point where it awaits activation

 Task
 Unit of functional and architectural composition
 Issues jobs (one at a time) to perform actual work
 One such task is said to be recurrent

2012/13 UniPD / T. Vardanega Real-Time Systems 26 of 390

An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular interval of time
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded

minimum distance from one another

2012/13 UniPD / T. Vardanega Real-Time Systems 27 of 390

Definitions /2

 Release time
 When a job should become eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of

the release event and when the scheduler actually
recognizes the job as ready

 May be set at some offset from the system start time
 The offset of the first job of task τ is named phase and it

is an attribute of τ

2012/13 UniPD / T. Vardanega Real-Time Systems 28 of 390

Definitions /3

 Deadline
 The time by which a job must complete its execution

 For example, by the next release time
 May be < (constrained), = (implicit), > (arbitrary) than the job’s next

release time
 Response time

 The span of time between the job’s release time and its actual
completion

 The longest admissible response time for a job is termed the job’s
relative deadline

 The algebraic summation of release time and relative
deadline is termed absolute deadline

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 8

2012/13 UniPD / T. Vardanega Real-Time Systems 29 of 390

Definitions /4

 Hard deadline
 If the consequences of a job completing past the deadline are

serious and possibly intolerable
 Satisfaction must be demonstrated off line

 Soft deadline
 If the consequences of a job completing past the assigned

deadline are tolerable as long as the violation event is
occasional
 The quantitative interpretation of “occasional” may be established in

either probabilistic terms (x% of times) or as a utility function

2012/13 UniPD / T. Vardanega Real-Time Systems 30 of 390

Definitions /5

 Tardiness
 The temporal distance between a job’s response time and its

deadline
 Evaluates to 0 for all completions within deadline

 Usefulness
 Value of utility of the job’s computation product as a function

of its tardiness
 Normally associated to the notion of laxity

 The slack ݏሺݐሻ at time ݐ of a job ܬ with deadline ݀ and remaining time
of execution ݎ is ݏ ݐ ൌ ݀ െ ݐ െ ݎ

2012/13 UniPD / T. Vardanega Real-Time Systems 31 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 32 of 390

Utility function

Usefulness

Tardiness

Interesting notion but difficult to apply and verify

A soft deadline for which the value of the response
drops to 0 at the expiry of the relative deadline is
said to be firm

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 9

2012/13 UniPD / T. Vardanega Real-Time Systems 33 of 390

An initial taxonomy /3

 According to timing requirements
 Hard real-time (HRT) tasks

 Whose jobs have hard deadlines
 Soft real-time (SRT) tasks

 Whose jobs have soft deadlines
 Firm real-time (FRT) tasks

 Whose jobs have soft deadlines but usefulness ≤ 0 past the deadline
 Not real-time tasks

 Do not exhibit timing requirements

 This taxonomy extends to real-time systems
 Which however are mixed in nature

Abstract models /1

 Resources
 Active (processor, server)

 They “do” what they have to
 Jobs must acquire them to make progress toward completion

 Passive (memory, shared data, semaphores, …)
 May be reused if use does not exhaust them
 If always available in sufficient quantity to satisfy all requests

they are said to be plentiful and are excluded from the space of
the problem

 Jobs may need some of them along with active resources

2012/13 UniPD / T. Vardanega Real-Time Systems 34 of 390

Abstract models /2

 Temporal parameters
 Jitter

 Variability in the release time or in the time of input (data
freshness) or output (stability of control)

 Inter-arrival time
 Separation between the release time of successive jobs which are

not strictly periodic
 Job is sporadic if a guaranteed minimum value exists
 Job is aperiodic otherwise

 Execution time
 May vary between a best-case (BCET) and a worst-case (WCET)

2012/13 UniPD / T. Vardanega Real-Time Systems 35 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 36 of 390

Periodic task and sporadic task

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 10

Abstract models /3

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and

variability of execution time
 Hyperperiod ௌܪ of task set ܵ ൌ ߬ , ݅ ൌ 1,… ,ܰ

 LCM (least common multiple) of periods ܶ

 Utilization
 For every task ߬ : ratio between execution time and period : ܷ ൌ

்

 For the system (total utilization) : ܷ ൌ ∑ ܷ

2012/13 UniPD / T. Vardanega Real-Time Systems 37 of 390

Abstract models /4

 Fixing execution parameters
 The time that elapses between when a periodic job

becomes ready and the next period ܶ is certainly ൏ ܶ
 Setting phase ߮ 0 and deadline ܦ ൏ ܶ for a job may

help limit jitter in its response time (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Else they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles

 E.g., producer – consumer

2012/13 UniPD / T. Vardanega Real-Time Systems 38 of 390

2012/13 UniPD / T. Vardanega Real-Time Systems 39 of 390

Extended precedence graphs (task graphs)

Job of type OR (branch)
typically followed by
a join job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent jobs

Dependent jobs

Job of type AND (join)

Period = 2Phase

Relative deadline

2012/13 UniPD / T. Vardanega Real-Time Systems 40 of 390

Abstract models /5

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment
(e.g., non-reentrancy) but also on the programming style

 Preemption incurs time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general indicates which activities must be guaranteed possibly even at

the cost of others
 Permissibility of resource preemption

 Some resources are intrinsically preemptable (which ones?)
 Others do not permit it

 Which becomes one of the four preconditions to deadlock

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 11

2012/13 UniPD / T. Vardanega Real-Time Systems 41 of 390

Abstract models /6

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource

 Notice we are talking single core here
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of processor time

assigned to a job is no less than its BCET and no more than its WCET
 All precedence constraints in place among tasks as well as among

resources are satisfied

Abstract models /7

 A valid schedule is said to be feasible if the temporal constraints
of every job are all satisfied

 A job set is said to be schedulable by a scheduling algorithm if
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists

 Actual systems may include multiple schedulers that operate in
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other

schedulers govern access to physical resources

2012/13 UniPD / T. Vardanega Real-Time Systems 42 of 390

2012/13 UniPD / T. Vardanega Real-Time Systems 43 of 390

Abstract models /8

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm that we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact

 Necessary and sufficient
 Schedulability tests, which are only sufficient

2012/13 UniPD / T. Vardanega Real-Time Systems 44 of 390

Further characterization /1

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 12

2012/13 UniPD / T. Vardanega Real-Time Systems 45 of 390

Further characterization /2

 The design and development of a RTS are concerned with the
worst case as opposed to the average case
 Improving the average case is of no use and it may even be

counterproductive
 The cache addresses the average case and therefore operates according to a

counterproductive principle for real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation

2012/13 UniPD / T. Vardanega Real-Time Systems 46 of 390

Summary /1

 From initial intuition to more solid definition of real-
time embedded system

 Survey of application requirements and key
characteristics

 Taxonomy of tasks
 Dispelling false myths
 Introduced abstract models to reason in general

about real-time systems

2012/13 UniPD / T. Vardanega Real-Time Systems 47 of 390

Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft

Firm

Role of
time

Time-aware

Reactive

Characteristics
(see next page)

2012/13 UniPD / T. Vardanega Real-Time Systems 48 of 390

Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency/
Predictability

Reliability/
Safety

Large/
Complex

