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1. Introduction

Initial intuition /1

 Real-time system – I
 An aggregate of computers, I/O devices and application-

specific software, all characterized by
 Intensive interaction with external environment
 Time-dependent variations in the state of the external environment
 Need to keep control over all individual parts of the external 

environment and to react to changes

 System activities subject to timing constraints
 Reactivity, accuracy, duration, completion, responsiveness: all 

dimensions of timeliness

 System activities are inherently concurrent
 The satisfaction of such constraints must be proved

2012/13 UniPD / T. Vardanega Real-Time Systems 4 of  390



2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 2

Initial intuition /2

 Real-time system – II
 Operational correctness does not solely depend on the logical 

result but also on the time at which the result is produced
 The computed response has an application-specific utility function
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be as bad as 

a wrong response

 Embedded system
 The computer and its software are fully immersed in an 

engineering system comprised of the external environment 
subject to its control
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 A control (sub)system consists of  possibly 
distributed resources governed by a real-time 
operating system (RTOS)

 The RTOS design must meet stringent reliability
requirements
 Measured in terms of  maximum acceptable probability 

of  failure
 Typically in the range 10-10 to 10-5 per unit of  life/service time

Application requirements /1
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Application requirements /2

 Safety-critical systems
 E.g., Airbus A-320: 10-10 probability of failure per hour 

of flight
 One failure in 1010 hours of flight (about 11.5 million years!)

 Business-critical real-time systems
 E.g., satellite system: between 10-6 and 10-7 probability of 

failure per hour of operation
 One failure in 107 hours of operation (about 11,408 years!)
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Key characteristics /1

 Complexity
 Algorithmic, mostly because of the need to apply discrete control 

over analog and  continuous physical phenomena
 Development, mostly owing to more demanding verification and 

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary (spanning control, software, and system 
engineering)

 Extreme variability in size and scope
 From tiny and pervasive (nano-devices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability
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Key characteristics /2

 Must respond to events triggered by the external 
environment as well as by the passing of time
 Double nature: event-driven and clock- (or time-) driven

 Continuity of operation
 The whole point of a real-time embedded system is that it must be 

capable of operating without (constant) human supervision

 Software architecture is inherently concurrent
 Must be temporally predictable

 Need for static (off-line) verification of correct temporal behavior
 Not easy at all

False myths /1

 Real-time systems design is empirical and not scientific
 False : we shall see much of that in this class

 The increase in CPU power shall satisfy timing 
requirements coming from software of any sort
 False : we continue to observe lateness all around us

 The essence of real-time computing is speed
 False : we are interested in predictability, not speed

 The real-time systems discipline is no other than 
performance engineering
 False : we shall here what it is made of
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False myths /2

 Real-time programming is low-level
 False : verification is so much easier if programming is 

higher-level
 All real-time “problems” have long been solved in 

other areas of computer science
 False : operation research solves (possibly similar) 

problems with probabilistic and/or one-shot techniques
 False : general-purpose computer science in general 

addresses average-case optimizations
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Meeting real-time requirements

 It is not sufficient to minimize the average response time of 
application tasks
 "Real-time computing is not equivalent to fast computing" 

[Stankovic, 88]
 Given a set of demanding real-time requirements and an 

implementation based on fast HW and SW, how can one show 
that those requirements are met?
 Surely not only via testing and simulation
 Maiden flight of space shuttle, 12 April 1981: 1/67 probability that 

a transient overload occurs during initialization; and it actually did!
 System-level predictability is what we need
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Example /1

 A digital system of sensors and actuators

A/D

A/D

Control law
computation D/A

Sensor Actuator
Physical
system
(plant)

s(t)

r(t) rk

sk

ak

a(t)

ak = ak-2 + α(rk – sk) + β(rk-1 - sk-1) + γ(rk-2 - sk-2)

Feedback control loop

Reference
values
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Example /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic (for convenience)
 Actuator commanding is produced at the time of the next sampling

 As part of feedback control mathematics
 System stability degrades with the width of the sampling period

 Plant capacity
 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is 

capable of it within rise time R requires higher frequency of actuation 
and thus faster sampling hence shorter period T

 A “good” R/T ratio ranges [10 .. 20]
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Example /3

 Complex systems must support 
multiple distinct periods Ti 
 It is convenient to set a harmonic relation 

between all Ti
 This removes the need for concurrency of 

execution in the relevant computations
 But it causes coupling between possibly 

unrelated control actions which is a poor 
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control activities 
each performed at a specific rate
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Example /4

 180 Hz cycle (harmonic multi-rate functions)
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle (at every 2nd activation)
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle (at every 6th activation)
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle (at every 6th activation)
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data
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Example /5

 Command and control systems are often organized 
in a hierarchical fashion
 At the lowest level we place the digital control systems 

that operate on the physical environment
 At the highest level we place the interface with the 

human operator
 The output of high-level controller becomes a reference value 

r(t) for some low-level controller
 The more composite the hierarchy the more complex the 

interdependence in the logic and timing of operation
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Example /6
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An overall vision
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A conceptual model

Controlled subsystemControlled subsystem

Control subsystem

Operation subsystem

application, or environment, 
which dictates the RT requirements

controls resources for use 
by the controlled subsystem

Initiates and monitors system activity

Application interface

Man-machine interface

2012/13 UniPD / T. Vardanega Real-Time Systems 22 of  390

A typical embedded  system
Algorithms for
Digital Control

Data Logging
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Operator
Interface

Interface Engineering
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Real-Time
Clock
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Console

Display 
Devices

Real-Time Computer
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An initial taxonomy /1

 The prevailing classification stems from the traditional 
standpoint of control algorithms
 Strictly periodic systems

 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events 

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!
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Some terminology

 Time-aware
 A system that makes explicit reference to time

 E.g., open vault door at 9.00 AM

 Reactive
 A system that must produce outputs within deadlines 

relative to inputs
 Control systems are reactive by nature
 Hence required to constrain the time variability (jitter) of 

their input and output
 Input jitter and output jitter control
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Definitions /1

 Job
 Unit of work selected for execution by the scheduler
 Needs physical and logical resources to execute
 Each job has an entry point where it awaits activation

 Task
 Unit of functional and architectural composition
 Issues jobs (one at a time) to perform actual work
 One such task is said to be recurrent
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An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular interval of time
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular 
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded 

minimum distance from one another

2012/13 UniPD / T. Vardanega Real-Time Systems 27 of  390

Definitions /2

 Release time
 When a job should become eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of 

the release event and when the scheduler actually 
recognizes the job as ready

 May be set at some offset from the system start time
 The offset of the first job of task τ is named phase and it 

is an attribute of τ
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Definitions /3

 Deadline
 The time by which a job must complete its execution

 For example, by the next release time
 May be < (constrained), = (implicit), > (arbitrary) than the job’s next 

release time
 Response time

 The span of time between the job’s release time and its actual 
completion

 The longest admissible response time for a job is termed the job’s 
relative deadline

 The algebraic summation of release time and relative 
deadline is termed absolute deadline
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Definitions /4

 Hard deadline
 If the consequences of a job completing past the deadline are 

serious and possibly intolerable
 Satisfaction must be demonstrated off line

 Soft deadline
 If the consequences of a job completing past the assigned 

deadline are tolerable as long as the violation event is 
occasional
 The quantitative interpretation of “occasional” may be established in 

either probabilistic terms (x% of times) or as a utility function
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Definitions /5

 Tardiness
 The temporal distance between a job’s response time and its 

deadline
 Evaluates to 0 for all completions within deadline

 Usefulness
 Value of utility of the job’s computation product as a function 

of its tardiness
 Normally associated to the notion of laxity

 The slack ݏሺݐሻ at time ݐ of a job ܬ with deadline ݀ and remaining time 
of execution ݎ is ݏ ݐ ൌ ݀ െ ݐ െ ݎ
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Utility function

Usefulness

Tardiness

Interesting notion but difficult to apply and verify

A soft deadline for which the value of  the response
drops to 0 at the expiry of  the relative deadline is 
said to be firm
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An initial taxonomy /3

 According to timing requirements
 Hard real-time (HRT) tasks

 Whose jobs have hard deadlines
 Soft real-time (SRT) tasks 

 Whose jobs have soft deadlines
 Firm real-time (FRT) tasks

 Whose jobs have soft deadlines but usefulness ≤ 0 past the deadline
 Not real-time tasks 

 Do not exhibit timing requirements

 This taxonomy extends to real-time systems
 Which however are mixed in nature 

Abstract models /1

 Resources
 Active (processor, server)

 They “do” what they have to
 Jobs must acquire them to make progress toward completion

 Passive (memory, shared data, semaphores, …)
 May be reused if use does not exhaust them
 If always available in sufficient quantity to satisfy all requests 

they are said to be plentiful and are excluded from the space of 
the problem

 Jobs may need some of them along with active resources
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Abstract models /2

 Temporal parameters
 Jitter

 Variability in the release time or in the time of input (data 
freshness) or output (stability of control)

 Inter-arrival time
 Separation between the release time of successive jobs which are 

not strictly periodic
 Job is sporadic if a guaranteed minimum value exists
 Job is aperiodic otherwise

 Execution time
 May vary between a best-case (BCET) and a worst-case (WCET)
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Periodic task and sporadic task
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Abstract models /3

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and 

variability of execution time
 Hyperperiod ௌܪ of task set ܵ ൌ ߬ , ݅ ൌ 1,… ,ܰ

 LCM (least common multiple) of periods ܶ

 Utilization
 For every task ߬ : ratio between execution time and period : ܷ ൌ


்

 For the system (total utilization) : ܷ ൌ ∑ ܷ

2012/13 UniPD / T. Vardanega Real-Time Systems 37 of  390

Abstract models /4

 Fixing execution parameters
 The time that elapses between when a periodic job 

becomes ready and the next period ܶ is certainly ൏ ܶ
 Setting phase ߮  0 and deadline ܦ ൏ ܶ for a job may 

help limit jitter in its response time (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Else they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles 

 E.g., producer – consumer
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Extended precedence graphs (task graphs)

Job of  type OR (branch)
typically followed by
a join job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent jobs

Dependent jobs

Job of  type AND (join)

Period = 2Phase

Relative deadline
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Abstract models /5

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment 
(e.g., non-reentrancy) but also on the programming style 

 Preemption incurs time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general indicates which activities must be guaranteed possibly even at 

the cost of others
 Permissibility of resource preemption 

 Some resources are intrinsically preemptable (which ones?)
 Others do not permit it 

 Which becomes one of the four preconditions to deadlock
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Abstract models /6

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource

 Notice we are talking single core here
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of processor time 

assigned to a job is no less than its BCET and no more than its WCET
 All precedence constraints in place among tasks as well as among 

resources are satisfied

Abstract models /7

 A valid schedule is said to be feasible if the temporal constraints 
of every job are all satisfied

 A job set is said to be schedulable by a scheduling algorithm if 
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible 
schedule when one exists

 Actual systems may include multiple schedulers that operate in 
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other 

schedulers govern access to physical resources
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Abstract models /8

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm that we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling 

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full 
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact

 Necessary and sufficient
 Schedulability tests, which are only sufficient
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Further characterization /1
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Further characterization /2

 The design and development of a RTS are concerned with the 
worst case as opposed to the average case
 Improving the average case is of no use and it may even be 

counterproductive
 The cache addresses the average case and therefore operates according to a 

counterproductive principle for real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation
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Summary /1

 From initial intuition to more solid definition of real-
time embedded system

 Survey of application requirements and key 
characteristics

 Taxonomy of tasks
 Dispelling false myths
 Introduced abstract models to reason in general 

about real-time systems
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Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft 

Firm 

Role of
time

Time-aware

Reactive

Characteristics
(see next page)
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Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency/
Predictability

Reliability/
Safety

Large/
Complex


