
2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 1

3. Scheduling issues

2012/13 UniPD / T. Vardanega Real-Time Systems 109 of 390

Common approaches /1

 Clock-driven (time-driven) scheduling
 Scheduling decisions are made beforehand (off line) and carried out

at predefined time instants
 The time instants normally occur at regular intervals signaled by a

clock interrupt
 The scheduler first dispatches jobs to execution as due in the current

time period and then suspends itself until then next schedule time
 The scheduler uses an off-line schedule to dispatch

 All parameters that matter must be known in advance
 The schedule is static and cannot be changed at run time
 The run-time overhead incurred in executing the schedule is

minimal

2012/13 UniPD / T. Vardanega Real-Time Systems 110 of 390

Common approaches /2

 Weighted round-robin scheduling
 With basic round-robin

 All ready jobs are placed in a FIFO queue
 The job at head of queue is allowed to execute for one time slice

 If not complete by end of time slice it is placed at the tail of the queue
 All jobs in the queue are given one time slice in one round

 Weighted correction (as applied to scheduling of network traffic)
 Jobs are assigned differing amounts of CPU time according a given

‘weight’ (fractionary) attribute
 Job ܬ௜ gets ߱௜ time slices per round – one round is ∑ ߱௜௜ of ready jobs
 Not good for jobs with precedence relations

 Response time gets worse than basic RR which is already bad
 Fit for producer-consumer jobs that operate concurrently in a pipeline

2012/13 UniPD / T. Vardanega Real-Time Systems 111 of 390

Common approaches /3

 Priority-driven (event-driven) scheduling
 This class of algorithms is greedy

 They never leave available processing resources unutilized
 They seek local optimization

 An available resource may stay unused iff there is no job ready to use it
 A clairvoyant alternative may instead defer access to the CPU to incur less

contention and thus reduce job response time
 Anomalies may occur when job parameters change dynamically

 Scheduling decisions are made at run time when changes occur to the
“ready queue” and thus on local knowledge
 The event causing a scheduling decision is called “dispatching point”

 It includes algorithms also used in non real-time systems
 FIFO, LIFO, SETF (shortest e.t. first), LETF (longest e.t. first)

 Normally applied at every round of RR scheduling

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 2

2012/13 UniPD / T. Vardanega Real-Time Systems 112 of 390

Preemption vs. non preemption

 Can we compare preemptive scheduling with
non-preemptive scheduling in terms of performance?
 There is no response that is valid in general

 When all jobs have the same release time and the time overhead
of preemption is negligible then preemptive scheduling is
provably better

 It would be interesting to know whether the improvement of the
last finishing time (a.k.a. minimum makespan) under preemptive
scheduling pays off the time overhead of preemption

 For 2 CPU we do know that the minimum makespan for
non-preemptive scheduling is never worse than 4/3 of that for
preemptive

Further definitions

 Precedence constraints effect release time and deadline
 One job’s release time cannot follow that of a successor job
 One job’s deadline cannot precede that of a predecessor job

 Effective release time
 For a job with predecessors this is the latest value between its own release

time and the maximum effective release time of its predecessors plus the
WCET of the corresponding job

 Effective deadline
 For a job with successors this is the earliest value between its deadline and

the effective deadline of its successors less the WCET of the
corresponding job

 For single processor with preemptive scheduling we may
disregard precedence constraints and just consider ERT and ED

2012/13 UniPD / T. Vardanega Real-Time Systems 113 of 390

2012/13 UniPD / T. Vardanega Real-Time Systems 114 of 390

Optimality /1

 Priorities assigned in accord to (effective) deadlines
 Earliest Deadline First scheduling is optimal for single

processor systems with independent jobs and preemption
 For any given job set, EDF produces a feasible schedule if one exists
 The optimality of EDF falls short under other hypotheses (e.g., no

preemption, multicore)

R1 R2 R3 D3 D1 D2

J1 J1, J2 J3, J1, J2

time

Ready queue:

Optimality /2

 Priorities assigned in accord to slack (i.e., laxity)
 Least Laxity First scheduling is optimal under the same

hypotheses as for EDF optimality
 LLF is far more onerous than EDF to implement as it have to keep tab

of execution time!

2012/13 UniPD / T. Vardanega Real-Time Systems 115 of 390

R1,e1 R2,e2 D1D2

J1

time

Ready queue:

e11 e12 e13 ଵܮ ݐ ൌ ଵܦ െ ݐ െ ሺ݁ଵ െ ݁ଵଵ ൅ ݁ଵଶ ൅ ݁ଵଷ ሻ

t ଶܮ ݐ ൌ ଶܦ െ ݐ െ ݁ଶ
J2, J1

e2

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 3

2012/13 UniPD / T. Vardanega Real-Time Systems 116 of 390

Optimality /3

 If the goal is that jobs just make their deadlines then having
jobs complete any earlier has not much point
 The Latest Release Time algorithm follows this logic and

schedules jobs backwards from the latest deadline
 LRT first sets the job with the latest deadline and then the job

with the latest release time and so forth
 A later release time earns a greater deadline

 LRT does not belong in the priority-driven class as it may defer
the execution of a ready job

 Greedy scheduling algorithms may cause jobs to incur
larger interference

2012/13 UniPD / T. Vardanega Real-Time Systems 117 of 390

Predictability of execution

 Initial intuition
 The execution of job set J under a given scheduling algorithm

is predictable if the actual start time and the actual response
time of every job in J vary within the bounds of the maximal
and minimal schedule
 Maximal schedule: the schedule created by the scheduling

algorithm under worst-case assumptions
 Minimal schedule: analogously for best-case

 Theorem: the execution of independent jobs with given
release time under preemptive priority-driven scheduling on
a single processor is predictable

2012/13 UniPD / T. Vardanega Real-Time Systems 118 of 390

Ramifications for dynamic scheduling

2012/13 UniPD / T. Vardanega Real-Time Systems 119 of 390

dynamic scheduling

fixed priority per task

fixed priority per job dynamic priority per job

static priority

dynamic priority

EDF LLFFPS

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 4

2012/13 UniPD / T. Vardanega Real-Time Systems 120 of 390

Clock-driven scheduling /1

 Workload model
 N periodic tasks with N constant and statically defined

 In Jim Anderson’s definition of periodic (not Jane Liu’s)
 The ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ parameters of every task ߬௜ are constant

and statically known
 The schedule is static and committed off line before system

start to a table S of decision times ௞ݐ
 ܵ ௞ݐ ൌ ߬௜ if a job of task ߬௜ must be dispatched at time ݐ௞
 ܵ ௞ݐ ൌ ܫ (idle) otherwise
 Schedule computation can be as sophisticated as we like since

we pay for it only once and before execution
 Jobs cannot overrun otherwise the system is in error

2012/13 UniPD / T. Vardanega Real-Time Systems 121 of 390

Clock-driven scheduling /2
Input: stored schedule ܵሺݐ௞ሻ for ݇ ൌ 0, . . , ܰ െ 1 ܪ; (hyper-period)
SCHEDULER:
݅ ൌ 0; ݇ ൌ 0; set timer to expire at ݐ௞ ;
do forever :

sleep until timer interrupt;
if an aperiodic job is executing

preempt;
end if;
current task T ൌ ܵሺݐ௞ሻ	;
݅ ൌ ݅ ൅ 1; ݇ ൌ 	;ܰ	ࢊ࢕࢓	݅
set timer to expire at ݅/ܰ ൈ ܪ ൅ ௞ݐ ; -- at time ݐ௞ in all ܪ forever
if current task ܶ ൌ ܫ
execute job at head of aperiodic queue;

else execute job of task ܶ;
end if;

end do;
end SCHEDULER

2012/13 UniPD / T. Vardanega Real-Time Systems 122 of 390

Clock-driven scheduling /3

t1 , Tm

tj , I

tk , Tl

S[]

0

N-1

1

J

K

Tm

T

Timer

t1

assign

set

dispatch

We need an interval timer

2012/13 UniPD / T. Vardanega Real-Time Systems 123 of 390

Example

 Static schedule table S for J would need 17 entries
 That’s too many and too fragmented!

 Why 17?

J = {t1 = (0, 4, 1, 4), t2 = (0, 5, 1.8, 5), t3 = (0, 20, 1, 20), t4 = (0, 20, 2, 20}
U = 0.76
H = 20

0 4 8 12 16

t1 t3 t2 t1 t1 t1t4 t2 t1t2 t2

t1 t1 t1 t1t2 t2 t2 19.8

20

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 5

2012/13 UniPD / T. Vardanega Real-Time Systems 124 of 390

Clock-driven scheduling /4

 Obvious reasons suggest we should minimize the size and
complexity of the cyclic schedule (table S)
 The scheduling point ݐ௞ should occur at regular intervals

 Each such interval is termed minor cycle (frame) and has duration ݂
 We need a periodic timer
 Within minor cycles there is no preemption but a single minor cycle may

contain the execution of multiple jobs
 ߮௜ for every task ߬௜ must be a non-negative integer multiple of ݂

 The first job of every task has release time (forcedly) set at the beginning
of a minor cycle

 We must therefore enforce some artificial constraints

2012/13 UniPD / T. Vardanega Real-Time Systems 125 of 390

Clock-driven scheduling /5

 Constraint 1: Every job ܬ must complete within ݂
 ࢌ ൒ ୀ࢏࢞ࢇ࢓ ૚,..࢔ ሺ࢏ࢋሻ so that overruns can be detected

 Constraint 2: f must be an integer divisor of hyper-
period ܪ ܪ : ൌ ݂ܰ where ܰ is an integer
 Satisfied if ݂ is an integer divisor of at least one task

period ݌௜
 The hyper-period beginning at minor cycle ݂݇ for ݇ ൌ
0, . . ܰ െ 1 is termed major cycle

 Constraint 3: There must be one full frame ݂ between
J’s release time ݐᇱ and deadline ܦ௝ ᇱݐ : ൅ ௝ܦ ൒ ݐ ൅ 2݂
so that ܬ can be scheduled in that frame
 This can be expressed as: 2݂ െ gcd	ሺ݌௜, ݂ሻ ൑ ௜ܦ for every

task ߬௜

2012/13 UniPD / T. Vardanega Real-Time Systems 126 of 390

Understanding constraint 3

࢚ᇱ ൅ ࢐࢚ᇱ࢖ ൅ ࢐࢚ᇱࡰ

ࢌ

࢚ ൅ ૛࢚ࢌ ࢚ ൅ ࢌ

a

b

c

ݐ ൅ 2݂ ൑ ᇱݐ ൅ ௝ܦ

ᇱݐ െ ݐ ൒ gcd	ሺ݌௝, ݂ሻ

2݂ െ gcd	ሺ݌௝, ݂ሻ ൑ ௝ܦ

Constraint 3

࢐࢖

࢚ᇱ ࢚ᇱ ൅ ࢐ࡰ ࢚ᇱ ൅ ࢐࢖

࢚ᇱ ࢚ᇱ ൅ ࢐ࡰ ࢚ᇱ ൅ ࢐࢖

2012/13 UniPD / T. Vardanega Real-Time Systems 127 of 390

Example

 T = {(0, 4, 1, 4), (0, 5, 2, 5), (0, 20, 2, 20)}
 H = 20
 [c1] : ݂ ൒ max ݁௜ : f ≥ 2
 [c2] : ݌௜/݂ െ ݂/௜݌ ൌ 0 : f = {2, 4, 5, 10, 20}
 [c3] : 2݂ െ gcd	ሺ݌௜, ݂ሻ ൑ : f ≤ 2	௜ܦ

݂ ൌ 2 ∶ 4 െ gcd 4,2 ൑ 4	OK
4 െ gcdሺ5,2ሻ ൑ 5 OK

															4 െ gcd	ሺ20,2ሻ ൑ 20 OK
݂ ൌ 4 ∶ 8 െ gcd 4,4 ൑ 4	OK

8 െ gcdሺ5,4ሻ ൑ 5 KO

݂ ൌ 5 ∶ 10 െ gcd 4,2 ൑ 4	KO
݂ ൌ 10 ∶ 20 െ gcd 4,2 ൑ 4	KO

݂ ൌ 20 ∶ 40 െ gcd 4,2 ൑ 4	KO

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 6

2012/13 UniPD / T. Vardanega Real-Time Systems 128 of 390

Clock-driven scheduling /5

 It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given f simultaneously

 In that case we must decompose T’s jobs by slicing
their larger ݁௠௔௫ into fragments small enough to
artificially yield a “good” f

2012/13 UniPD / T. Vardanega Real-Time Systems 129 of 390

Clock-driven scheduling /6

 To construct a cyclic schedule we must therefore
make three design decisions
 Fix an f
 Slice (the large) jobs
 Assign (jobs and) slices to minor cycles

 There is a very unfortunate inter-play among these
decisions
 Cyclic scheduling thus is very fragile to any change in

system parameters

2012/13 UniPD / T. Vardanega Real-Time Systems 130 of 390

Clock-driven scheduling /7
Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:

t := 0; k = 0;
do forever:

sleep until clock interrupt @ time t  f;
currentBlock = S(k);
t := t+1; k := t mod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute aperiodic job at top of queue;

end do;
end do;

end SCHEDULER

2012/13 UniPD / T. Vardanega Real-Time Systems 131 of 390

Example (slicing) – 1/2

J = {t1 = (0, 4, 1, 4), t2 = (0, 5, 2, 7), t3 = (0, 20, 5, 20)}, H = 20
t3 causes disruption since we need e3 ≤ f ≤ 4 to satisfy c3
We must therefore slice e3 : how many slices do we need?

0 4 8 12 16

We first look at the schedule with f=4 and without t3 to see
what least-disruptive opportunities we have …

t1 t2

f = 4

t1 t1 t2 t1 t2 t1 t2

S(1)

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 7

2012/13 UniPD / T. Vardanega Real-Time Systems 132 of 390

Example (slicing) – 2/2

… then we observe that {1,3,1} is a good choice

0 4 8 12 16

t3 = {t3’ = (0, 20, 1, X), t3” = (0, 20, 3, Y), t3’’’ = (0, 20, 1, 20)}
F = (H / f) = 5
where X < Y ≤ 20 represent the precedence constraints that
must hold between the slices

t1 t2 t3’ t1 t3” t1 t2 t1 t2 t1 t2 t3’’’

Design issues /1

 Completing a job much ahead of its deadline is of no use
 If we have spare time we might give aperiodic jobs more

opportunity to execute hence make the system more responsive
 The principle of slack stealing allows aperiodic jobs to execute

in preference to periodic jobs when possible
 Every minor cycle include some amount of slack time not used for

scheduling periodic jobs
 The slack is a static attribute of each minor cycle

 A scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
 This provision requires a fine-grained interval timer (again!) to signal the

end of the slack time for each minor cycle

2012/13 UniPD / T. Vardanega Real-Time Systems 133 of 390

2012/13 UniPD / T. Vardanega Real-Time Systems 134 of 390

Design issues /2

 What can we do to handle overruns ?
 Halt the job found running at the start of the new minor cycle

 But that job may not be the one that overrun!
 Even if it was, stopping it would only serve a useful purpose if

producing a late result had no residual utility
 Defer halting until the job has completed all its “critical actions”

 To avoid the risk that a premature halt may leave the system in an
inconsistent state

 Allow the job some extra time by delaying the start of the next
minor cycle
 Plausible if producing a late result still had utility

2012/13 UniPD / T. Vardanega Real-Time Systems 135 of 390

Design issues /3

 What can we do to handle mode changes?
 A mode change is when the system incurs some

reconfiguration of its function and workload parameters
 Two main axes of design decisions

 With or without deadline during the transition
 With or without overlap between outgoing and incoming

operation modes

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 8

2012/13 UniPD / T. Vardanega Real-Time Systems 136 of 390

Overall evaluation

 Pro
 Comparatively simple design
 Simple and robust implementation
 Complete and cost-effective verification

 Con
 Very fragile design

 Construction of the schedule table is a NP-hard problem
 High extent of undesirable architectural coupling

 All parameters must be fixed a priori at the start of design
 Choices may be made arbitrarily to satisfy the constraints on f
 Totally inapt for sporadic jobs

2012/13 UniPD / T. Vardanega Real-Time Systems 137 of 390

Priority-driven scheduling

 Base principle
 Every job is assigned a priority
 The job with the highest priority is selected for execution

 Dynamic-priority scheduling
 Distinct jobs of the same task may have distinct priorities

 Static-priority scheduling
 All jobs of the same task have one and same priority

2012/13 UniPD / T. Vardanega Real-Time Systems 138 of 390

Dynamic-priority scheduling

 Two main algorithms
 Earliest Deadline First (EDF)
 Least Laxity First (LLF)

 Theorem [Liu, Layland: 1973] EDF is optimal for
independent jobs with preemption
 Also true with sporadic tasks
 The relative deadline for periodic tasks may be arbitrary with the

respect to period (<, =, >)

 Result trivially applicable to LLF
 EDF is not optimal for jobs that do not allow preemption

2012/13 UniPD / T. Vardanega Real-Time Systems 139 of 390

Static (fixed)-priority scheduling (FPS)

 Two main variants with respect to the strategy for
priority assignment
 Rate monotonic

 A task with lower period (faster rate) gets higher priority

 Deadline monotonic
 A task with higher urgency (shorter deadline) gets higher priority

 What about “execution-monotonic”?

 Before looking at those strategies in more detail we
need to fix some basic notions

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 9

Dynamic scheduling: comparison criteria /1

 Priority-driven scheduling algorithms that disregard
job urgency (deadline) perform poorly
 The WCET is not a factor of interest for priority!

 How to compare the performance of scheduling
algorithms?

 Schedulable utilization is a useful criterion
 An algorithm can produce a feasible schedule for a task

set ܶ on a single processor if ܷሺܶሻ does not exceed its
schedulable utilization

2012/13 UniPD / T. Vardanega Real-Time Systems 140 of 390

Dynamic scheduling: comparison criteria /2

 Theorem [Liu, Layland: 1973] for single processors
the schedulable utilization of EDF is 1

 For arbitrary deadlines, the density
௞ߜ ൌ

௘ೖ
୫୧୬	ሺ௣ೖ,஽ೖሻ

is an important feasibility factor

 ∆ൌ ∑ ௞ߜ ൐ ܷ௞ if ܦ௜ ൏ ௜݌ for some ߬௜
 Hence ∆൑ 1 is a sufficient schedulability test for EDF

2012/13 UniPD / T. Vardanega Real-Time Systems 141 of 390

Dynamic scheduling: comparison criteria /3

 The schedulable utilization criterion alone is not
sufficient: we must also consider predictability

 On transient overload the behavior of static-priority
scheduling can be determined a-priori and is reasonable
 The overrun of any job of a given task ߬ does not hinder the

tasks with higher priority than ߬
 Under transient overload EDF becomes instable

 A job that missed its deadline is more urgent than a job with a
deadline in the future!

2012/13 UniPD / T. Vardanega Real-Time Systems 142 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 143 of 390

Dynamic scheduling: comparison criteria /3

 Other figures of merit for comparison exist
 Normalized Mean Response Time (NMRT)

 Ratio between the job response time and the CPU time actually
consumed for its execution

 The larger the NMRT value, the larger the task idle time
 Guaranteed Ratio (GR)

 Number of tasks (jobs) whose execution can be guaranteed
versus the total number of tasks that request execution

 Bounded Tardiness (BT)
 Number of tasks (jobs) whose tardiness can be guaranteed to

stay within given bounds

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 10

2012/13 UniPD / T. Vardanega Real-Time Systems 144 of 390

Example (EDF) /1

T = {t1= (0, 2, 0.6, 1), t2= (0, 5, 2.3, 5)}
Density Δ(T) = e1/D1 + e2/D2 = 1.06 > 1
U(T) = e1/p1 + e2/p2 = 0.76 < 1
What happens to T under EDF?

t2t2 t2t1

0 1 2 3 4 5

t1 t1 t2

6

t1

7
OK

8
OK

H = 10

t1

2012/13 UniPD / T. Vardanega Real-Time Systems 145 of 390

Example (EDF) /2

T = {t1= (0, 2, 1, 2), t2= (0, 5, 3, 5)}  ࢁ ࢚ ൌ ૚ࢋ
૚࢖
൅ ૛ࢋ

૛࢖
ൌ ૚. ૚

T has no feasible schedule: what job suffers most under EDF?

T = {t1= (0, 2, 0.8, 2), t2= (0, 5, 3.5, 5)}  ࢁ ࢚ ൌ ૚ࢋ
૚࢖
൅ ૛ࢋ

૛࢖
ൌ ૚. ૚

T has no feasible schedule: what job suffers most under EDF?

What about

T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with ࢁ ࢚ ൌ ૚ࢋ
૚࢖
൅ ૛ࢋ

૛࢖
ൌ ૚. ૛	?

t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8 10

t2 t1

5
Which job is dispatched here?

Critical instant /1

 Feasibility and schedulability tests must consider the
worst case for all tasks
 The worst case for task ߬௜ occurs when the worst possible

relation holds between its release time and that of all higher-
priority tasks

 The actual case may differ depending on the admissible
relation between ܦ௜ and ݌௜

 The notion of critical instant -- if one exists –
captures the worst case
 The response time ܴ௜ for a job of task ߬௜ with release time

on the critical instant is the longest possible value for ߬௜
2012/13 UniPD / T. Vardanega Real-Time Systems 146 of 390 2012/13 UniPD / T. Vardanega Real-Time Systems 147 of 390

Critical instant /2

 Theorem: under FPS with ܦ௜ ൑ ∀݅, the critical instant	௜݌
for task ߬௜ occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the task
set

 Given task ߬௜ we must find max	ሺ߱௜,௝ሻ among all its jobs ݆
߱௜,௝ ൌ 	 ݁௜ ൅	෍ ሺ߱௜,௝ ൅ ߮௜ െ ߮௞ሻ/݌௞ ݁௞ 	െ	߮௜

ሺ௞ୀଵ,..,௜ିଵሻ
For task indices assigned in decreasing order of priority

 The summation term in the equation captures the interference that
any job ݆ of task ߬௜ incurs from jobs of all higher-priority tasks ߬௞
between the release time of the first job of task ߬௞ (with phase ߮௞)
to the response time of job ݆ of task ߬௜ , which occurs at ߮௜ ൅ ߱௜,௝

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 11

2012/13 UniPD / T. Vardanega Real-Time Systems 148 of 390

Time-demand analysis /1

 When ߮ is 0 for all jobs considered then this equation
captures the absolute worst case for task ߬௜

 This equation stands at the basis of Time Demand
Analysis which investigates how ߱ varies as a function of
time
 So long as ߱ሺݐሻ ൑ ݐ for some t within the time interval of interest the

supply satisfies the demand, hence the job can complete in time
 Theorem [Lehoczky, Sha, Ding: 1989] condition ߱ሺݐሻ ൑ ݐ

is an exact feasibility test (necessary and sufficient)
 The obvious question is for which ‘ݐ’ to check
 The method proposes to check at all periods of all higher-priority

tasks until the deadline of the task under study

Time demand analysis /2

2012/13 UniPD / T. Vardanega Real-Time Systems 149 of 390

T
im

e
de

m
an

d

Time supply2

4

6 8 10

2

4

6

8

e1

p1

T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

The supply exceeds the demand

Time demand analysis /3

2012/13 UniPD / T. Vardanega Real-Time Systems 150 of 390

T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply
2

4

6 8 10

2

4

6

8

e1

e2

p2

The supply exceeds the demandThe supply exceeds the demand

Time demand analysis /4

2012/13 UniPD / T. Vardanega Real-Time Systems 151 of 390

T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply
2

4

6 8 10

2

4

6

8

e1

e2

p3

e3

5 73

The supply exceeds the demand
while it does not at all other t

of interest to t3 (!)

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 12

 It is straightforward to extend TDA to determine
the response time of tasks

 The smallest value t that satisfies the fixed-point
equation ݐ ൌ ݁௜ ൅ ∑ ௧

௣ೖሺ௞ୀଵ,..௜ିଵሻ ݁௞ is the worst-
case response time of task ߬௜

 Solutions methods to calculate this value were
independently proposed by
 [Joseph, Pandia: 1986]
 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2012/13 UniPD / T. Vardanega Real-Time Systems 152 of 390

Time demand analysis /5 Time demand analysis /6

 What changes in the definition of critical instant when ݌<ܦ ?
 Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991] The first

job of task ߬௜ may not be the one that incurs the worst-case
response time

 Hence we must consider all jobs of task ߬௜ within the so-called
level-i busy period
 The ݐ଴, ݐ time interval within which the processor is busy executing jobs

with priority ൒ ݅, release time in ݐ଴, ݐ and response time falling within ݐ
 The release time in ݐ଴, ݐ captures the full backlog of interfering jobs
 The response time of all those jobs falling within ݐ ensures that the busy

period includes their completion

2012/13 UniPD / T. Vardanega Real-Time Systems 153 of 390

2012/13 UniPD / T. Vardanega Real-Time Systems 154 of 390

Example

Time window 1 [0,70)
Time left for J2,1 : 70-26 = 44
Still to execute: 62-44 = 18

Time window 2 [70,100)
Time left for J2,1 : 30-26 = 4
Still to execute: 18-4 = 14
Release time of job J2,2

Time window 3 [100,140)
Time left for J2,1 = 40
J2,1 completes at: 114 (R = 114)
Time available for J2,2 : 40-14 = 26
Still to execute: 62-26 = 36

Time window 4 [140,200)
Time available for J2,2 : 60-26 = 34
Still to execute: 36-34 = 2

Time window 5 [200,210)
Release time of job J2,3

J2,2 completes at: 202 (R = 102)
Time available for J2,3 : 10-2 = 8
Still to execute: 62-8 = 54

Time window 6 [210,280)
Time available for J2,3 : 70-26 = 44
Still to execute: 54-44 = 10

Time window 7 [280,300)
Time available for J2,3 : 20-20 = 0
Release time of job J2,4

Time window 8 [300,350)
Time available for J2,3 : 50-6 = 44
J2,3 completes at: 300+6+10 = 316 (R = 116)

T1 = {-, 70, 26, 70}, T2 = {-, 100, 62, 120}
Let’s look at the level-2 busy period

The T2 busy period
extends beyond
this point (!) J2,1 ’s response time is not worst-case!

Ready queue: J1,1, J2,1 Ready queue: J1,2, J2,1 Ready queue: J2,1, J2,2

Ready queue: J1,2, J2,2

Ready queue: J2,2, J2,3

Ready queue: J1,3, J2,3
Ready queue: J1,4, J2,3

Ready queue: J1,4, J2,3, J2,4
Still in ready queue: J2,4

2012/13 UniPD / T. Vardanega Real-Time Systems 155 of 390

Level-i busy period

T1 = {-, 100, 20, 100}, T2 = {-, 150, 40, 150}, T3 = {-, 350, 100, 350}  U = 0.75
The same definition of level-i busy period holds also for D ≤ p

but its width is obviously shorter!

2012/13 UniPD / T. Vardanega 23/01/2013

Real-Time Systems 13

2012/13 UniPD / T. Vardanega Real-Time Systems 156 of 390

Summary

 Initial survey of scheduling approaches
 Important definitions and criteria
 Detail discussion and evaluation of main scheduling

algorithms
 Initial considerations on analysis techniques

