2012/13 UniPD / T. Vardanega

4.2 Task interactions and

blocking

| Inhibiting preemption /1

m In many real-life situations some (parts of) jobs
should not be preempted
0 This is the case e.g. with the execution of non-reentrant

code shared by multiple jobs whether directly (by direct
call) or indirectly (e.g., within a system call primitive)

m Considerations of data integrity or efficiency require
that some system level activities should not be
preempted
0 Preemption is inhibited by simply disabling dispatching

2012/13 UniPD / T. Vardanega Real-Time Systems 201 of 396

Inhibiting preemption /2

m A higher-priority job [that at its release time finds
a lower-priority job J; executing with disabled
preemption gets blocked for a time duration that
depends on J;

o Under FPS this is a flagrant case of priority inversion

m The feasibility of J/,, now depends on J; tool
o Under FPS this form of blocking for J; is determined as
B;(np) = maxg=;41, n(0y) where Oy < ey is the
longest non-preemptible execution of job J

0 This cost is paid by of J; only once per activation

2012/13 UniPD / T. Vardanega Real-Time Systems 202 of 396

Real-Time Systems

‘ Self suspension /1

= A job J; that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time
m J; incurs a degenerate form of blocking that can be bounded as

Bj(ss) = max(6;) + Xy=1,,i—1 min(ex, max(6x))

o max(6;) is the longest duration of self suspension by job J;

0 The other term accounts for the cumulative interference from self-
suspending higher-ptiority jobs that may become ready during the busy
petiod of J; which for every Jj, can never be > max(dy) and > ey,

m In general, a job J; that self suspends K times during execution
incurs total blocking B; = B;(ss) + (K + 1)B;(np)

a As Bj(np) is potentially incurred at at every resumption

2012/13 UniPD / T. Vardanega Real-Time Systems 203 of 396

29/01/2013

2012/13 UniPD / T. Vardanega

| Self suspension /2

m Self suspension with independent tasks on
singlecores causes scheduling anomalies

0 Deadlines can be missed when task utilization or
suspension delays are decreased

m Example: a feasible task set with EDF

01 ={010,(222),6) T mmmc—mms
a1, ={510,(1,1,1),4} | Emesed

a T3 = {7;10; (1,1,1), 3} T L<—>|_l

o If Tyexecutes or suspends 1 time unit less then T3 misses
its deadline

2012/13 UniPD / T. Vardanega Real-Time Systems 204 of 396

‘ Blocking effects with RMS

7, ={0,4,2.5,4}, 7, = {3,10,2,10} U = 0.875

S I.

1 2 3 4 5 6 7 8 9 10 1m 12

T self-suspends for 1.5 T, misses its deadline

t A

T,y

| | | | | |

1 2 3 4 5 6 7 8 9 10 1 12

B;(ss) = 0 + min(2.5,1.5) = 1.5 is a pessimistic upperbound!

With @, = 3 the actual blocking for T, in [3,10) reduces to 1
But still By(ss) = 1> 6,,(0) = 0.5
2012/13 UniPD / T. Vardanega Real-Time Systems 205 of 396

| Access contention

m Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

m A resource access control protocol specifies

0 When and under what condition a resoutce access request
may be granted

o The order in which requests must be serviced
m Access contention situations may cause priority
inversion to arise

| Example /1

¢ Max use of shared resource per execution

T = {'y -5 2, 209R(4)}’ 2= {2) - 3,17, R(4)} > T3 = {6! - 3, 14, R(Z)}
under EDF

T1:¢e; R@);e. Ty:ee;RM@);e. T3 1 e; ¢; R(2); e.

2012/13 UniPD / T. Vardanega Real-Time Systems 206 of 396

R in use by 74 Rin use by 73 R in use by 7,
T, gets blocked on access to R T
T,(R| T, R T, |[R| R [T, R
! |
3 4 8 10 12 14 16
Rreleased by f; 73 completes T, completes

Dy =20 [Dyy =17 Dy, =14 and is assigne e

' ' ’ to J3,1 according to EDF T1 completes

R released by 73

2012/13 UniPD / T. Vardanega Real-Time Systems 207 of 396

Real-Time Systems

29/01/2013

2012/13 UniPD / T. Vardanega

| Example /2

T = {')) 2) ZOa R(ﬁ)}) 2= {23) 3a 17’ R(4)} » T3 = {6)) 33 14a R(Z)}
under EDF

Same as before except with shorter use of R by 71

R released by T, R released by T,
R in use by 7; R taken over by 7, R taken over by 73
R released by 73

T|R| T, R R T, R R [T T |T

I
2 4 6 8 10 12 14 16 18

T3 misses its deadline

2012/13 UniPD / T. Vardanega Real-Time Systems 208 of 396

| Assumptions and notations

m It is safer for real-time design to require that
a Alljobs do not self suspend (ditectly or indirectly)
a All jobs can be preempted
m We say that job [, is directly blocked by a lowet-ptiotity
job J; when
a J;is granted exclusive access to a shared resource R
a Jp has requested R and its request has not been granted

m To study the problem we may want to use a wart-for graph

2012/13 UniPD / T. Vardanega Real-Time Systems 209 of 396

| Example

Wait-for graph

Units required Duration of use

..?2; 3)““

Units available

R,5*

12)
4

Obviously!

2012/13 UniPD / T. Vardanega Real-Time Systems 210 of 396

Real-Time Systems

Resource access control [a]

n Inhibiting preemption in critical sections
o A job that requires access to a resource is always granted it
a A job that has been assigned a resource runs at a priority
higher than any other job

m These two clauses imply each other

m They jointly prevent deadlock situations from occurring
m They cause bounded priority inversion
0 At most once per job
m We already understood why
o For a maximum duration B;(rc) = maxy=i4+1, nCk

m For job indices in monotonically non-increasing order and Cj, worst-case
duration of critical-section activity by job Ji

2012/13 UniPD / T. Vardanega Real-Time Systems 211 of 396

29/01/2013

2012/13 UniPD / T. Vardanega

| Critique [a]

m This strategy causes distributed overhead

o Alljobs — including those that do not compete for resource access —
incur some time penalty

0 Very unfair hence not desirable

m Better if time overhead is solely incurred by the jobs that
actually compete for resource access

0 The priotity of the job that is granted the resource must only be
higher than that of its competitor jobs

m This is the principle of the cedling priority: we shall return to it

0 The resource requirements must be statically known

2012/13 UniPD / T. Vardanega Real-Time Systems 212 of 396

Resource access control [b]

m Basic priority inheritance protocol (BPIP)
0 The priority of a job varies over time from that initially assigned
0 The variation follows inheritance principles
= Protocol rules
0 Scheduling: jobs are dispatched by preemptive ptiotity-driven scheduling;
at release time they take on their assigned priority
0 Allocation: when job] requires access to resource R at time ¢
m If R is free, R is assigned to J until release
m If R is busy, the request is denied and | becomes blocked
o Priority inhetitance: when job J becomes blocked, job J; that blocks it

takes on J’s current priority as its inberited priority and retains it until R is
released; at that point J; reverts to its previous priority

2012/13 UniPD / T. Vardanega Real-Time Systems 213 of 396

Critique [b]

m BPIP suffers two forms of blocking
0 Direct blocking owing to resource contention
0 Inheritance blocking owing to priority raising
m Priority inheritance is transitive
o Direct blocking is transitive as jobs may need to acquire multiple resources
m BPIP does not prevent deadlock as cyclic blocking is a devious
form of transitive direct blocking
m BPIP incurs reducible distributed overhead

o Under BPIP a job may become blocked multiple times when competing
for more than one shared resource

m BPIP needs no prior knowledge on which resources are shared

o Itis inherently dynamic

2012/13 UniPD / T. Vardanega Real-Time Systems 214 of 396

Resource access control [c]

m Basic priority ceiling protocol (BPCP)
a As BPIP but with the additional constraint that all
resource requirements must be statically known
o Every resource R is assigned a priority ceiling attribute set
to the highest priority of the jobs that require R

m At time t the system has a ceiling g(t) attribute set to the
highest priority ceiling of all resources currently in use

= Otherwise it defaults to Q < the lowest priority of all jobs

Real-Time Systems

2012/13 UniPD / T. Vardanega Real-Time Systems 215 of 396

29/01/2013

2012/13 UniPD / T. Vardanega

| BPCP protocol rules

m Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

m Allocation: when job J requests access to resoutce R at time t
o If R is assigned to another job, request is denied and J becomes blocked
o IfRis free and J’s priority 7, (t) > ms(t), the request is granted
o If] owns the resource with priority ceiling 5 (t), the request is granted
o Otherwise the request is denied and | becomes blocked

m Priority inheritance: when job J becomes blocked by job J; — for
direct or avoidance blocking — J; takes J’s cutrent priority 7 (t)
until J; releases all resources with priority ceiling > 1;(t); at that
point J’s priority reverts to the level that preceded access to
those resources

2012/13 UniPD / T. Vardanega Real-Time Systems 216 of 396

| Critique [c] /1

m BPCP is not greedy (whereas BPIP is)
a Under BPCP a request for a free resource may be denied

m Hence under BPCP each job J incurs three distinct forms
of blocking caused by lowet-priority job J;

reqires ouns @ T >
-®-@ @—-®—-@

1. Direct blocking 2. Priority-inheritance blocking

o - @® ©O—@

3. Avoidance blocking

- Ts(t) = mx > 1) (1)

2012/13 UniPD / T. Vardanega Real-Time Systems 217 of 396

| Critique [c] /2

m Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
o Ifjob J at time t has 7;(t) > 74(t) then it must be so that
m] will never use any of the resources in use at time ¢
m So won’t all jobs with higher priority than J
o The system ceiling 5 (t) determines which jobs can be
assigned a resource free at time t without risking deadlock
m All jobs with priority highet than the system ceiling 75 (t)
m Caveat

o To stop job J from blocking itself in the attempt of nesting
resources, BPCP must grant its request if 77, (t) < mg(t) but]
holds the resources {X} with ceiling = g (%)

2012/13 UniPD / T. Vardanega Real-Time Systems 218 of 396

Real-Time Systems

Critique [c] /3

m BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

m Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
0 Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job

0 The job that causes others to block cannot itself be blocked
m Hence BPCP does not permit transitive blocking

o Demonstration: by exercise

® The maximum possible value of that duration for job J; is
termed the blocking time B;(rc) due to resource contention
o B;(rc) must be accounted for in the schedulability test for J;

2012/13 UniPD / T. Vardanega Real-Time Systems 219 of 396

29/01/2013

2012/13 UniPD / T. Vardanega 29/01/2013

| Computing the BPCP blocking time /1 Computing the BPCP blocking time /2

Directly blocked by
J3 | Ja | Js

J2 J6
g I - 2 w Table “directly blocked by” is straightforward
J 7 T
L w ‘Table “priority-inberitance blocked by’
35

Priority-inheritance blocked by 0 The value in cell [i, k] is the maximum value found in
—_— (rows 1, ..., i-1; column k) in Table “directly blocked by’
2 5 z
% 5 - m Table “avoidance blocked by’
L 4 a If (desirably) jobs are assigned distinct priorities, the cells here ate as

Avoidance blocked b

B[] U8 76 in Table “priority-inberitance blocked by’ except for the jobs that do not
J N .
J 5 2 request resources (whose cell value is set to zero)
J 5 2
3 a
J

| B;(rc) = max value in row 7 across all tables

221 of 396

2012/13 UniPD / T. Vardanega Real-Time Systems 220 of 396 2012/13 UniPD / T. Vardanega Real-Time Systems
Resource access control [d] | SB-CPP protocol rules [Baker, 1991]
» Stack-based ceiling priority protocol » Computation of and updates to ceiling s (t):

o When all resources ate free, mg(t) = Q
o m,(t) is updated any time ¢t a resource is assigned or released

m Scheduling: on its release time job J stays blocked until

o SB-CPP beats BPCP in terms of

m Saving memory resources especially precious to embedded
systems by sharing stack space across jobs

a .It prevents a job’s stack space from fragmenting because its assigned priority it (t) > g (t)
it ensures that none of the job’s request for resources . .
. . ! 0 Jobs that are not blocked are dispatched to execution by
may be denied during execution . S . .
. preemptive priority-driven scheduling
» What BPCP instead allows . . .
= Allocation: whenever a job issues a request for a

= Stack fragmentation from blocking and not from preemption (!)
0 We must also require that jobs do not self suspend

m Having lower algorithmic complexity in time and space
from needing less checks against 15 (t)

resource, the request is granted

2012/13 UniPD / T. Vardanega Real-Time Systems 223 of 396

2012/13 UniPD / T. Vardanega Real-Time Systems 222 of 396

Real-Time Systems

2012/13 UniPD / T. Vardanega

| Critique [d]

m Under SB-CPP a job J can only begin execution when
the resources it needs are free

o Otherwise 7;(t) > ms(t) cannot hold

m Under SB-CPP a job J that may get preempted does
not become blocked

0 The preempting job surely does not share any resources with |
m SB-CPP prevents deadlock from occurring

m Under SB-CPP B;(rc) for any job J; is computed in
the same way as with BPCP

2012/13 UniPD / T. Vardanega Real-Time Systems 224 of 396

Resource access control [e]

m Ceiling priority protocol (base version)
o CPP does not use the system ceiling g (t) although the
resources continue to have a ceiling priority attribute

» Scheduling:
a A job that does not hold any resource executes at the level of
its assigned priority
o Jobs are scheduled under FPS with FIFO_within_priorities
o A job that holds any resources has its current priority set to
the highest value among the ceiling priority of those resources

= Allocation: When a job issues a request for a resource,
the request is granted

2012/13 UniPD / T. Vardanega Real-Time Systems 225 of 396

| Summary

m Issues arising from task interactions under
g

preemptive priority-based scheduling
m Survey of resource access control protocols

m Critique of the surveyed protocols

2012/13 UniPD / T. Vardanega Real-Time Systems 226 of 396

Real-Time Systems

29/01/2013

