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8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) which 
make a much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning is an allocation problem followed by single processor 
scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned
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Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor

State of the art

 Some task sets may be unschedulable even though they have low 
utilization 
 Much less than the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time 
complexity
 The known sufficient tests have polynomial time complexity but obviously 

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet
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Interference

 We know what is the interference ܫ suffered by a 
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from 
݉ 1 onward

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors
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Example (Dhall’s effect) – 1

 Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors

 But this would leave no time for c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2
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Example – 2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that d and e are willing to use cooperative 
scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2


Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task
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Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ  ܫ ൌ ܦ
hence any increase in ܫ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2012/13 UniPD / T. Vardanega Real-Time Systems 347 of  405

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18
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The defeat of greedy schedulers /1

 Greedy algorithms are easy to explain, study, and 
implement 
 They work very well on single processors
 EDF [1], LLF [2], EDZL [3] are optimal for single processors

 They collapse the urgency of a job into a single value 
and use it to greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail 
when used on multiprocessors
 EDF, LLF, EDZL are no longer optimal
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The defeat of greedy schedulers /2

 Does a feasible schedule exist on 2 processors for ܶ
(derivative of Example 2) where
 ܶ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬ଷ ൌ ሺ40,8ሻ , ܷሺܶሻ ൌ 2
 ߬ଵand ߬ଶ have laxity 1 in each period
 Hence they leave each processor idle for 1 unit of time and 

for 2 units in total every 10-unit period
 In the interval ሾ0,40ሻ ߬ଵand ߬ଶ leave the 2 processors idle for 

a total of 2 ൈ 4 ൌ 8 units of time in which fits ߬ଷ exactly

 The answer should thus be yes since also ߬ଷ should be 
able to meet its deadline
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The defeat of greedy schedulers /3

 Let us schedule ܶ with LLF

 ߬ଷ can execute only 1 unit of time in the interval ሾ0,10ሻ
 One of the two processors is idle for 1 unit of time

 ߬ଷ misses its deadline!
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T1

T2

T3
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Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, then no feasible schedule can 
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?
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The defeat of greedy schedulers /4

 One schedule we want for ܶ is

 But at ݐ ൌ 8 ߬ଵand ߬ଶ have earlier deadline, lower laxity, 
greater total and remaining utilization than ߬ଷ

 Greedy schedulers lack knowledge to be wiser!
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T1

T2

T3

The defeat of greedy schedulers /5

 Things work if we modify ܶ to
ܶ′ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬′ଷ ൌ ሺ10,2ሻ

 At ݐ ൌ 8 we get a zero-laxity event for ߬′ଷ
 This is good for ܶ but surely not in general 

 The ultimate problem is to determine when (in time) 
and how (by what means) jobs should be able to hit 
their proportional rate quota

 In seeking proportionate fairness we do not want to incur 
large overhead with scheduling calculations and task 
migrations
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task ߬ is assigned resources in proportion to its weight

ܹ ൌ


்ൗ hence it progresses proportionately
 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬ must have been scheduled either 
ܹ ൈ ݐ or ܹ ൈ ݐ time units

 Without loss of generality preemption is assumed to only 
occur at integral time units

 The workload model is periodic
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P-fair scheduling /2

 ,ሺܵࢍࢇ ߬, ሻݐ is the difference between the total 
resource allocations that task ߬ should have received 
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is ahead iff ,ሺܵࢍࢇ ߬, ሻݐ ൏ 0
 ߬ is behind iff ,ሺܵࢍࢇ ߬, ሻݐ  0
 ߬ is punctual iff ,ሺܵࢍࢇ ߬, ሻݐ ൌ 0
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P-fair scheduling /3

 ,ሺ߬ࢻ ሻݐ is the characteristic substring of task ߬ at time ݐ
 Finite string over {-, 0, +} of ࢻ௧ାଵ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ ݔ

 Where ݐ′ ൌ ݉݅݊ ݅: ݅  :ݐ ሻݔሺࢻ ൌ 0
 ሻݔሺ࢚ࢻ ൌ ሺࢍ࢙ ௫ܹ ൈ ݐ  1 െ ௫ܹ ൈ ݐ െ 1ሻ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is is urgent iff ߬ is behind and ࢚ࢻ ߬ ് െ
 ߬ is is tnegru iff ߬ is ahead and ࢚ࢻ ߬ ് 
 ߬ is is contending otherwise
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Properties of a P-fair schedule ܵ

 For task ߬	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ then ߬ is ahead at ݐ  1
 If ࢚ࢻ ߬ ൌ 0 and ߬ not scheduled at ݐ then ߬ is punctual at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ not scheduled at ݐ	then ߬ is behind at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ scheduled at t then ߬ is ahead at ݐ  1

 For task ߬	behind at time ݐ under ܵ
 If ࢚ࢻ ߬ ൌ െ and ߬ scheduled at ݐ	then ߬ is ahead at ݐ  1
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ  1
 If ࢚ࢻ ߬ ൌ 0 and ߬ scheduled at ݐ	then ߬ is punctual at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ scheduled at ݐ	then ߬ is behind at ݐ  1urgent

tnegru
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P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve 

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking 

P-fairness

 Problems with ݊ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at 
time ݐ with ݉ resources and ݊ ൌ ݊  ݊ଵ  ݊ଶ
 If ݊ଶ  ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊  ݊ െ݉ the scheduling algorithm is forced to schedule 

some tnegru tasks
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P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ  ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ 

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

Task C T W

v 1 3 0.333…

w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top 

system utilization up
 In general its period is set to the 

system hyperperiod
 This time we halved it

 With PF we always have 
݊ଶ  ݉ and ݊  ݊ െ݉
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Example (PF scheduling) /2
These tasks are scheduled and they become ahead

w is ahead and its current substring indicates it need not be scheduled
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Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle 

while tasks eligible for execution are not able to execute on other 
processors

DP-Fair motivation

• Focus on periodic, independent task set with implicit 
deadlines (ܦ ൌ (

• Scheduling overhead costs assumed in task requirements
• ∑ ܷ  ݉	and ܷ  1∀݅
• Process migration allowed

• With unlimited context switches and migrations any task 
set meeting the above conditions will be feasible

• This problem is easy

• What’s difficult is to find a valid schedule that minimizes 
context switches and migrations
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 Partition time into slices demarcated by the deadlines of 
all tasks in the system
 All jobs are allocated a workload in each slide and these 

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with 
two or more distinct deadlines on any ݉ multiprocessor 
system, where ݉	  	1

Deadline partitioning
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DP-Correct /1

 The time slice scheduler will execute all jobs’ 
allocated workload within the end of the time slice 
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it 
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’ 
actual deadlines to be met
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DP-Correct /2
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Notation

368 of  405

 ݐ ൌ 0, ݐ ∶ ݅  0 denote distinct deadlines of all tasks in ܶ
 ߪ is the ݆݄ݐ time slice in ሾݐିଵ, ሻݐ
 ܮ ൌ ݐ െ ିଵݐ
 Local execution remaining ݈,௧ is the amount of time that ߬

must execute before the next slice boundary
 Local utilization ,௧ݎ ൌ ݈,௧/ሺݐ െ ሻݐ
 ்ܮ ൌ ∑ ݈ is the ler of the whole task set
 ்ܴ ൌ ∑ ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ, is the arrival time of the ݄݄ݐ job of ߬
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DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by 

assigning each task a workload proportional to its utilization
 At every ߪ assign ݈,௧ೕషభ ൌ ܷ ൈ ܮ to ߬

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs 

within a time slice ߪ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ܮ units of idle time to occur in ߪ

before time ݐ
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DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ  ݉ at all times ݐ ∈ ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is 
scheduled in ߪ using DP-Fair algorithm, then ்ܴ  ݉ will hold 
at all times ݐ ∈ ߪ
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Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets 
with implicit deadlines is optimal 
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A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ for each ߬ and line these 
blocks up along a number line (in any order), starting at 
zero

 Split this stack of blocks into chunks of length 1 at 
1,2,...,m − 1
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A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each 

chunk’s length (1) by the length of the segment (ܮ)
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Time

Time

Time
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DP-Wrap features

 A very simple algorithm that satisfied all DP-Fair 
rules

 Almost all calculations can be done in a 
preprocessing step (with static task sets)

 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per 

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches
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Mirroring

 For tasks that split across two slices
 If ߬ and ߬ are split and ߬ executes at the beginning and ߬ executes at the 

end of the slice ߪ then revert the schedule in slice ߪାଵ so that ߬ executes at 
the beginning and ߬ at the end
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߬

߬

Time

Time

Not-mirrored schedule

Mirrored schedule

Sporadic tasks and ܦ  
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 DP-Fair algorithms are still optimal when ∆ሺܶሻ  ݉
and ߜ  1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ,ିଵ  ,,ሻܦ
 Active: ሺܽ,, ܽ,  ሻܦ
 ሻݐሻ, ݂,ሺݐ,ሺߙ : amounts of time that task ߬ has been active 

or freeing slack during slice ߪ as of time ݐ
 Local capacity: ܿ,௧ೕషభ ൌ ߜ ൈ ܮ ൌ ,ߙሺߜ  ݂,ሻ
 Freed slack in ߪ as of time ܨ :ݐሺݐሻ ൌ ∑ ሺߜ ൈ ݂,ሺݐሻሻ

ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ

2012/13 UniPD / T. Vardanega Real-Time Systems

DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules 
jobs within a time slice ߪ according to the following 
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ܮ  ሻݐሺܨ units of idle time 

to occur in ߪ before time ݐ
4. Initialize ݈,௧ೕషభ to 0. At the start time ݐ′ of any active time 

segment for ߬ in ߪ (either ݐ′ ൌ ିଵݐ or ܽ,) that ends at 
time ݐ" ൌ ݉݅݊ ܽ,  ,௧ೕܦ , increment ݈,௧ by ߜሺݐ" െ ሻ′ݐ
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DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬ arrives in a slice ߪ at time ݐ and its 

deadline falls within ߪ
 Split the remainder of ߪ after ݐ into two secondary slices ߪଵ, ଶߪ

so that the deadline of ߬ coincides with the end of ߪଶ

 Divide the remaining local execution (and capacity) of all jobs in 
ଵߪ (as well as the slack allotment from RULE 3) proportionally 
to the lengths of ߪଵ, ଶߪ

 This step may be invoked recursively for any ߬ within ߪ
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DP-Fair scheduling for time slices /3
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Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ܮ  ሻݐሺܨ units of idle time in slice ߪ
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ using a DP-Fair algorithm, 
then ܴ௧  ݉	will hold at all times ݐ ∈ ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic 
task sets with constrained deadlines where ∆ሺܶሻ  ݉ and 
ߜ  1	∀݅

Correctness

379 of  4052012/13 UniPD / T. Vardanega Real-Time Systems

DP-Wrap modified

 If task ߬ issues a job at time ݐ in slice ߪ and 
ݐ  ܦ  ݐ then allocate execution time 
݈,௧ ൌ ݐሺߜ െ ሻݐ following RULE 4

 If instead ݐ  ܦ ൏ ݐ then split the remainder of ߪ
following RULE 5
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Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ

 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6
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Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬ has ܦ   we simply impose an artificial 

deadline ܦ′ ൌ 
 Density is not increased hence if ܦ′ is met, ܦ will 

also be
 But this increases the number of context switches 

and migrations!
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Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate 

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation 
error for any task ߬ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated 

time units of processor to the same task into consecutive units
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Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct
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Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ܶ is represented by a token within a triangle and its position 
stands for the local remaining work of ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t 

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary 

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed
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Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work
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Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares 

them with other light tasks

 Some light tasks are split in two processors and they are executed 
either before ݐ or after ݐ

 Light tasks that are not split are executed between ݐ or and 
and they are scheduled by EDF	ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are 

satisfied
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Comparisons with DP-Wrap /1

 DP-Wrap causes about 1/3 as many context switches 
and migrations as LLREF

 LLREF has some inefficiencies ([7],[8])
 Inefficiencies stem from the non working-conservative 

propriety
 BF and EKG should show improvements comparable to DP-

Wrap

 EKG with appropriately tuned k parameter should 
outperform DP-Wrap and BF on task set with 
ܷሺܶሻ ൏ ݉
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Comparisons with DP-Wrap /2

 Algorithmic complexity
 DP-Wrap is the best. O(n) work at the beginning and 

then each event just requires a constant time lookup
 LLREF is O(n2)
 EKG is O(n log n) but is more efficient in practice
 BF is O(n) per slice
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Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and 
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in 

the scheduling and allocation policies
 The new value of the relaxed parameter becomes 

known a priori/at job arrival and it is used in the 
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ ൈ ܮ
workload per each task in each slice

 If ܿ′  ܿ then task ߬ uses part of assigned workload and surely 
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ  ݉ and ߜ  1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′ ൏ ܿ ⇒ ′ߜ ൏ ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ
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Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer , same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer , lesser density)
 If ′  ′ߜ	݀݊ܽ	 ൏ ሺܶᇱሻ∆	݄݊݁ݐ	ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible
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Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀ ൏ ݀′
 Task ߬′ completes its workload at time t ൌ min	ሺ݀, ሻ

 Case 2 (longer ݀, lesser density)
 If ݀′  ݀	ܽ݊݀	ߜ′ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair 
scheduling is sustainable
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Other results /1

 For the simplest workload model made of 
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Especially because tasks incur very many preemptions 

and are frequently required to migrate across processors

 Partitioned FPS first-fit (on decreasing task utilization) 
can sustain ܷ  ݉ሺ 2 െ 1ሻ
 But this is a sufficient test only [Oh & Baker, 1998]
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Other results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௫ this bound gets rapidly lower than 
0.6 ൈ ݉, but can get close to ݉ for some examples
 Again this is a sufficient test only [Lopez et al., 2004]

Per task
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Other results /3

 Global EDF can sustain

 For high ܷ௫ this bound can be as low as 
0.2 ൈ ݉ but also close to ݉ for other 
examples
 Again, only sufficient [Goossens et al., 2003]
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Other results /4

 Combinations
 FPS (higher band) to those tasks with ܷ  0.5
 EDF for the rest

 Again, only sufficient [Baruah, 2004]

Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors 
[Sha, Rajkumar, Lehoczky, 1988] 
 The processor that hosts a resource is called the 

synchronization processor for that resource
 It knows all the use requirements of all its resources

 The critical sections of a resource execute on the 
processor that hosts that resource
 Jobs that use remote resources should be treated as “transactions”

 The processor to which a task is assigned is the local 
processor for all of the jobs of that task
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Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Global resources are used by tasks residing on different 

processors

 Resource access control needs actual locks for 
protection from true parallelism 
 Lock-free algorithms then become attractive

 Synchronization processors use M-PCP to control 
access to their global resources
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Multiprocessor PCP /3

 The task that holds a global lock should not be 
preempted locally
 All global critical sections are executed at higher ceiling 

priorities than local tasks on the synchronization 
processor and any other tasks in the system

 A task ߬ that is denied access to a global shared 
resource ߩ suspends and waits in a priority-based 
queue for that resource
 Tasks with lower-priority than ߬	on its local processor 

may thus acquire global resources with higher ceiling
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Multiprocessor PCP /4

 If the global resource being acquired by task ߬ with 
priority lower than ߬ resides on the same 
synchronization processor as ߩ	then ߬ suffers an 
anomalous form of priority inversion
 This obviously exposes resource nesting to the risk of 

deadlock → M-PCP disallows resource nesting
 This is the reason why other protocols want ߬ to spin-

lock!
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Blocking under M-PCP

 With M-PCP task ߬ is blocked by lower-priority tasks in 5 ways
 Local blocking (once per execution): when finding a local resource held by a 

local lower-priority task that got running as a consequence of ߬
suspension on access to a remote resource

 Remote blocking (once per access): when finding a remote resource held by 
remote lower-priority tasks

 Local preemption: when global critical sections are executed on ߬’s 
processor by remote tasks of any priority (multiple times) and by local 
tasks of lower priority (once)

 Remote preemption (once per access): when higher-ceiling global critical 
section execute on the remote processors where ߬ needs a global resource

 Deferred interference as local higher-priority tasks suspend on access to 
remote resources because of blocking effects
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Multiprocessor SRP

 Partitioned EDF with resources bound to 
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is busy are 
placed in a FIFO queue on the synchronization 
processor and spin-lock on their local processor
 On release from the task that held it the global resource is 

assigned to the task (request) at the head of the queue
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Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions [2010]: DP-Fair
 Incorporating global resource sharing


