
2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 1

8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of
the the IEEE Real-Time Systems Symposium, WiP Session,
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) which
make a much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning is an allocation problem followed by single processor
scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2012/13 UniPD / T. Vardanega Real-Time Systems 338 of 405

2012/13 UniPD / T. Vardanega Real-Time Systems 339 of 405

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status
 There usually is a dispatcher / scheduler per processor

State of the art

 Some task sets may be unschedulable even though they have low
utilization
 Much less than the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time
complexity
 The known sufficient tests have polynomial time complexity but obviously

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time

complexity has been found yet

2012/13 UniPD / T. Vardanega Real-Time Systems 340 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 2

2012/13 UniPD / T. Vardanega Real-Time Systems 341 of 405

Interference

 We know what is the interference ܫ suffered by a
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from
݉ 1 onward

 Multiprocessor interference can be computed as the
sum of all intervals when ݉ higher-priority tasks
execute in parallel on all ݉ processors

2012/13 UniPD / T. Vardanega Real-Time Systems 342 of 405

Example (Dhall’s effect) – 1

 Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors

 But this would leave no time for c to complete
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2

2012/13 UniPD / T. Vardanega Real-Time Systems 343 of 405

Example – 2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that d and e are willing to use cooperative
scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2

Global scheduling anomalies

 In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can

increase the interference on lower-priority tasks because of the
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in

the interference suffered by that task

2012/13 UniPD / T. Vardanega Real-Time Systems 344 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 3

2012/13 UniPD / T. Vardanega Real-Time Systems 345 of 405

Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ ܫ ൌ ܦ
hence any increase in ܫ would make it
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2012/13 UniPD / T. Vardanega Real-Time Systems 346 of 405

Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2012/13 UniPD / T. Vardanega Real-Time Systems 347 of 405

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2012/13 UniPD / T. Vardanega Real-Time Systems 348 of 405

Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes

visible in the second job of ߬

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 4

The defeat of greedy schedulers /1

 Greedy algorithms are easy to explain, study, and
implement
 They work very well on single processors
 EDF [1], LLF [2], EDZL [3] are optimal for single processors

 They collapse the urgency of a job into a single value
and use it to greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors
 EDF, LLF, EDZL are no longer optimal

2012/13 UniPD / T. Vardanega Real-Time Systems 349 of 405

The defeat of greedy schedulers /2

 Does a feasible schedule exist on 2 processors for ܶ
(derivative of Example 2) where
 ܶ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬ଷ ൌ ሺ40,8ሻ , ܷሺܶሻ ൌ 2
 ߬ଵand ߬ଶ have laxity 1 in each period
 Hence they leave each processor idle for 1 unit of time and

for 2 units in total every 10-unit period
 In the interval ሾ0,40ሻ ߬ଵand ߬ଶ leave the 2 processors idle for

a total of 2 ൈ 4 ൌ 8 units of time in which fits ߬ଷ exactly

 The answer should thus be yes since also ߬ଷ should be
able to meet its deadline

2012/13 UniPD / T. Vardanega Real-Time Systems 350 of 405

The defeat of greedy schedulers /3

 Let us schedule ܶ with LLF

 ߬ଷ can execute only 1 unit of time in the interval ሾ0,10ሻ
 One of the two processors is idle for 1 unit of time

 ߬ଷ misses its deadline!

351 of 405

T1

T2

T3

2012/13 UniPD / T. Vardanega Real-Time Systems

Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to
the number of processors, then no feasible schedule can
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?

352 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 5

The defeat of greedy schedulers /4

 One schedule we want for ܶ is

 But at ݐ ൌ 8 ߬ଵand ߬ଶ have earlier deadline, lower laxity,
greater total and remaining utilization than ߬ଷ

 Greedy schedulers lack knowledge to be wiser!

2012/13 UniPD / T. Vardanega Real-Time Systems 353 of 405

T1

T2

T3

The defeat of greedy schedulers /5

 Things work if we modify ܶ to
ܶ′ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬′ଷ ൌ ሺ10,2ሻ

 At ݐ ൌ 8 we get a zero-laxity event for ߬′ଷ
 This is good for ܶ but surely not in general

 The ultimate problem is to determine when (in time)
and how (by what means) jobs should be able to hit
their proportional rate quota

 In seeking proportionate fairness we do not want to incur
large overhead with scheduling calculations and task
migrations

2012/13 UniPD / T. Vardanega Real-Time Systems 354 of 405

2012/13 UniPD / T. Vardanega Real-Time Systems 355 of 405

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness
also known as P-fairness
 Each task ߬ is assigned resources in proportion to its weight

ܹ ൌ

்ൗ hence it progresses proportionately
 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬ must have been scheduled either
ܹ ൈ ݐ or ܹ ൈ ݐ time units

 Without loss of generality preemption is assumed to only
occur at integral time units

 The workload model is periodic

2012/13 UniPD / T. Vardanega Real-Time Systems 356 of 405

P-fair scheduling /2

 ,ሺܵࢍࢇ ߬, ሻݐ is the difference between the total
resource allocations that task ߬ should have received
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is ahead iff ,ሺܵࢍࢇ ߬, ሻݐ ൏ 0
 ߬ is behind iff ,ሺܵࢍࢇ ߬, ሻݐ 0
 ߬ is punctual iff ,ሺܵࢍࢇ ߬, ሻݐ ൌ 0

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 6

2012/13 UniPD / T. Vardanega Real-Time Systems 357 of 405

P-fair scheduling /3

 ,ሺ߬ࢻ ሻݐ is the characteristic substring of task ߬ at time ݐ
 Finite string over {-, 0, +} of ࢻ௧ାଵ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ ݔ

 Where ݐ′ ൌ ݉݅݊ ݅: ݅ :ݐ ሻݔሺࢻ ൌ 0
 ሻݔሺ࢚ࢻ ൌ ሺࢍ࢙ ௫ܹ ൈ ݐ 1 െ ௫ܹ ൈ ݐ െ 1ሻ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is is urgent iff ߬ is behind and ࢚ࢻ ߬ ് െ
 ߬ is is tnegru iff ߬ is ahead and ࢚ࢻ ߬ ്
 ߬ is is contending otherwise

2012/13 UniPD / T. Vardanega Real-Time Systems 358 of 405

Properties of a P-fair schedule ܵ

 For task ߬	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ then ߬ is ahead at ݐ 1
 If ࢚ࢻ ߬ ൌ 0 and ߬ not scheduled at ݐ then ߬ is punctual at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ scheduled at t then ߬ is ahead at ݐ 1

 For task ߬	behind at time ݐ under ܵ
 If ࢚ࢻ ߬ ൌ െ and ߬ scheduled at ݐ	then ߬ is ahead at ݐ 1
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ 1
 If ࢚ࢻ ߬ ൌ 0 and ߬ scheduled at ݐ	then ߬ is punctual at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ scheduled at ݐ	then ߬ is behind at ݐ 1urgent

tnegru

2012/13 UniPD / T. Vardanega Real-Time Systems 359 of 405

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking

P-fairness

 Problems with ݊ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at
time ݐ with ݉ resources and ݊ ൌ ݊ ݊ଵ ݊ଶ
 If ݊ଶ ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊ ݊ െ݉ the scheduling algorithm is forced to schedule

some tnegru tasks
2012/13 UniPD / T. Vardanega Real-Time Systems 360 of 405

P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved

lexicographically with െ൏ 0 ൏

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top

utilization up
 No problem situation can occur with the PF algorithm

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 7

2012/13 UniPD / T. Vardanega Real-Time Systems 361 of 405

Example (PF scheduling) /1

Task C T W

v 1 3 0.333…

w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top

system utilization up
 In general its period is set to the

system hyperperiod
 This time we halved it

 With PF we always have
݊ଶ ݉ and ݊ ݊ െ݉

2012/13 UniPD / T. Vardanega Real-Time Systems 362 of 405

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

w is ahead and its current substring indicates it need not be scheduled

2012/13 UniPD / T. Vardanega Real-Time Systems 363 of 405

Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving1), preemptive, global (with
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle

while tasks eligible for execution are not able to execute on other
processors

DP-Fair motivation

• Focus on periodic, independent task set with implicit
deadlines (ܦ ൌ (

• Scheduling overhead costs assumed in task requirements
• ∑ ܷ ݉	and ܷ 1∀݅
• Process migration allowed

• With unlimited context switches and migrations any task
set meeting the above conditions will be feasible

• This problem is easy

• What’s difficult is to find a valid schedule that minimizes
context switches and migrations

2012/13 UniPD / T. Vardanega Real-Time Systems 364 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 8

 Partition time into slices demarcated by the deadlines of
all tasks in the system
 All jobs are allocated a workload in each slide and these

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on any ݉ multiprocessor
system, where ݉	 	1

Deadline partitioning

365 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

DP-Correct /1

 The time slice scheduler will execute all jobs’
allocated workload within the end of the time slice
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’
actual deadlines to be met

2012/13 UniPD / T. Vardanega Real-Time Systems 366 of 405

DP-Correct /2

2012/13 UniPD / T. Vardanega Real-Time Systems 367 of 405

Notation

368 of 405

 ݐ ൌ 0, ݐ ∶ ݅ 0 denote distinct deadlines of all tasks in ܶ
 ߪ is the ݆݄ݐ time slice in ሾݐିଵ, ሻݐ
 ܮ ൌ ݐ െ ିଵݐ
 Local execution remaining ݈,௧ is the amount of time that ߬

must execute before the next slice boundary
 Local utilization ,௧ݎ ൌ ݈,௧/ሺݐ െ ሻݐ
 ்ܮ ൌ ∑ ݈ is the ler of the whole task set
 ்ܴ ൌ ∑ ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ, is the arrival time of the ݄݄ݐ job of ߬

2012/13 UniPD / T. Vardanega Real-Time Systems

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 9

DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by

assigning each task a workload proportional to its utilization
 At every ߪ assign ݈,௧ೕషభ ൌ ܷ ൈ ܮ to ߬

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs

within a time slice ߪ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ܮ units of idle time to occur in ߪ

before time ݐ

369 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ ݉ at all times ݐ ∈ ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is
scheduled in ߪ using DP-Fair algorithm, then ்ܴ ݉ will hold
at all times ݐ ∈ ߪ

370 of 405

Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets
with implicit deadlines is optimal

2012/13 UniPD / T. Vardanega Real-Time Systems

A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ for each ߬ and line these
blocks up along a number line (in any order), starting at
zero

 Split this stack of blocks into chunks of length 1 at
1,2,...,m − 1

2012/13 UniPD / T. Vardanega Real-Time Systems 371 of 405

A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each

chunk’s length (1) by the length of the segment (ܮ)

2012/13 UniPD / T. Vardanega Real-Time Systems 372 of 405

Time

Time

Time

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 10

DP-Wrap features

 A very simple algorithm that satisfied all DP-Fair
rules

 Almost all calculations can be done in a
preprocessing step (with static task sets)

 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches

2012/13 UniPD / T. Vardanega Real-Time Systems 373 of 405

Mirroring

 For tasks that split across two slices
 If ߬ and ߬ are split and ߬ executes at the beginning and ߬ executes at the

end of the slice ߪ then revert the schedule in slice ߪାଵ so that ߬ executes at
the beginning and ߬ at the end

2012/13 UniPD / T. Vardanega Real-Time Systems 374 of 405

߬

߬

Time

Time

Not-mirrored schedule

Mirrored schedule

Sporadic tasks and ܦ

375 of 405

 DP-Fair algorithms are still optimal when ∆ሺܶሻ ݉
and ߜ 1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ,ିଵ ,,ሻܦ
 Active: ሺܽ,, ܽ, ሻܦ
 ሻݐሻ, ݂,ሺݐ,ሺߙ : amounts of time that task ߬ has been active

or freeing slack during slice ߪ as of time ݐ
 Local capacity: ܿ,௧ೕషభ ൌ ߜ ൈ ܮ ൌ ,ߙሺߜ ݂,ሻ
 Freed slack in ߪ as of time ܨ :ݐሺݐሻ ൌ ∑ ሺߜ ൈ ݂,ሺݐሻሻ

ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ

2012/13 UniPD / T. Vardanega Real-Time Systems

DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules
jobs within a time slice ߪ according to the following
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ܮ ሻݐሺܨ units of idle time

to occur in ߪ before time ݐ
4. Initialize ݈,௧ೕషభ to 0. At the start time ݐ′ of any active time

segment for ߬ in ߪ (either ݐ′ ൌ ିଵݐ or ܽ,) that ends at
time ݐ" ൌ ݉݅݊ ܽ, ,௧ೕܦ , increment ݈,௧ by ߜሺݐ" െ ሻ′ݐ

376 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 11

DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬ arrives in a slice ߪ at time ݐ and its

deadline falls within ߪ
 Split the remainder of ߪ after ݐ into two secondary slices ߪଵ, ଶߪ

so that the deadline of ߬ coincides with the end of ߪଶ

 Divide the remaining local execution (and capacity) of all jobs in
ଵߪ (as well as the slack allotment from RULE 3) proportionally
to the lengths of ߪଵ, ଶߪ

 This step may be invoked recursively for any ߬ within ߪ

377 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

DP-Fair scheduling for time slices /3

2012/13 UniPD / T. Vardanega Real-Time Systems 378 of 405

Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ܮ ሻݐሺܨ units of idle time in slice ߪ
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ using a DP-Fair algorithm,
then ܴ௧ ݉	will hold at all times ݐ ∈ ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic
task sets with constrained deadlines where ∆ሺܶሻ ݉ and
ߜ 1	∀݅

Correctness

379 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

DP-Wrap modified

 If task ߬ issues a job at time ݐ in slice ߪ and
ݐ ܦ ݐ then allocate execution time
݈,௧ ൌ ݐሺߜ െ ሻݐ following RULE 4

 If instead ݐ ܦ ൏ ݐ then split the remainder of ߪ
following RULE 5

380 of 4052012/13 UniPD / T. Vardanega Real-Time Systems

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 12

Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ

 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6

2012/13 UniPD / T. Vardanega Real-Time Systems 381 of 405

Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬ has ܦ we simply impose an artificial

deadline ܦ′ ൌ
 Density is not increased hence if ܦ′ is met, ܦ will

also be
 But this increases the number of context switches

and migrations!

2012/13 UniPD / T. Vardanega Real-Time Systems 382 of 405

Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation
error for any task ߬ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated

time units of processor to the same task into consecutive units

2012/13 UniPD / T. Vardanega Real-Time Systems 383 of 405

Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct

2012/13 UniPD / T. Vardanega Real-Time Systems 384 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 13

Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ܶ is represented by a token within a triangle and its position
stands for the local remaining work of ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed

2012/13 UniPD / T. Vardanega Real-Time Systems 385 of 405

Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work

2012/13 UniPD / T. Vardanega Real-Time Systems 386 of 405

Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares

them with other light tasks

 Some light tasks are split in two processors and they are executed
either before ݐ or after ݐ

 Light tasks that are not split are executed between ݐ or and
and they are scheduled by EDF	ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are

satisfied

2012/13 UniPD / T. Vardanega Real-Time Systems 387 of 405

Comparisons with DP-Wrap /1

 DP-Wrap causes about 1/3 as many context switches
and migrations as LLREF

 LLREF has some inefficiencies ([7],[8])
 Inefficiencies stem from the non working-conservative

propriety
 BF and EKG should show improvements comparable to DP-

Wrap

 EKG with appropriately tuned k parameter should
outperform DP-Wrap and BF on task set with
ܷሺܶሻ ൏ ݉

2012/13 UniPD / T. Vardanega Real-Time Systems 388 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 14

Comparisons with DP-Wrap /2

 Algorithmic complexity
 DP-Wrap is the best. O(n) work at the beginning and

then each event just requires a constant time lookup
 LLREF is O(n2)
 EKG is O(n log n) but is more efficient in practice
 BF is O(n) per slice

2012/13 UniPD / T. Vardanega Real-Time Systems 389 of 405

Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in

the scheduling and allocation policies
 The new value of the relaxed parameter becomes

known a priori/at job arrival and it is used in the
scheduling and allocation policies

2012/13 UniPD / T. Vardanega Real-Time Systems 390 of 405

Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ ൈ ܮ
workload per each task in each slice

 If ܿ′ ܿ then task ߬ uses part of assigned workload and surely
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ ݉ and ߜ 1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′ ൏ ܿ ⇒ ′ߜ ൏ ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ

2012/13 UniPD / T. Vardanega Real-Time Systems 391 of 405

Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer , same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer , lesser density)
 If ′ ′ߜ	݀݊ܽ	 ൏ ሺܶᇱሻ∆	݄݊݁ݐ	ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is

feasible if ܶ was feasible

2012/13 UniPD / T. Vardanega Real-Time Systems 392 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 15

Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀ ൏ ݀′
 Task ߬′ completes its workload at time t ൌ min	ሺ݀, ሻ

 Case 2 (longer ݀, lesser density)
 If ݀′ ݀	ܽ݊݀	ߜ′ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair
scheduling is sustainable

2012/13 UniPD / T. Vardanega Real-Time Systems 393 of 405

Useful DP-Fair bibliography

 C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Environment”, Journal of the ACM (JACM), 20(1):46–61, 1973

 A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time
environment”, Technical report, Massachusetts Institute of Technology, 1983

 S. K. Cho, S. Lee, A. Han, and K.-J. Lin, “Efficient Real- Time Scheduling Algorithms for
Multiprocessor Systems”, IEICE Transactions on Communications, E85-B(12):2859– 2867,
2002

 D. Zhu, D. Mossé ́ and R. Melhem, “Multiple-Resource Periodic Scheduling Problem: how much
fairness is necessary?”, IEEE Real-Time Systems Symposium (RTSS), 2003

 H. Cho, B. Ravindran and E. Jensen, “An Optimal Real-Time Scheduling Algorithm for
Multiprocessors”, IEEE Real-Time Systems Symposium (RTSS), 2006

 B. Andersson and, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, IEEE
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2006

 K. Funaoka, S. Kato and N. Yamasaki, “Work-Conserving Optimal Real-Time Scheduling on
Multiprocessors” Euromicro Conference on Real-Time Systems (ECRTS), 2008

 S. Funk and V. Nadadur “LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task
Sets”, Conference on Real-Time and Networked Systems (RTNS), 2009

2012/13 UniPD / T. Vardanega Real-Time Systems 394 of 405

2012/13 UniPD / T. Vardanega Real-Time Systems 395 of 405

Other results /1

 For the simplest workload model made of
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Especially because tasks incur very many preemptions

and are frequently required to migrate across processors

 Partitioned FPS first-fit (on decreasing task utilization)
can sustain ܷ ݉ሺ 2 െ 1ሻ
 But this is a sufficient test only [Oh & Baker, 1998]

2012/13 UniPD / T. Vardanega Real-Time Systems 396 of 405

Other results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௫ this bound gets rapidly lower than
0.6 ൈ ݉, but can get close to ݉ for some examples
 Again this is a sufficient test only [Lopez et al., 2004]

Per task

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 16

2012/13 UniPD / T. Vardanega Real-Time Systems 397 of 405

Other results /3

 Global EDF can sustain

 For high ܷ௫ this bound can be as low as
0.2 ൈ ݉ but also close to ݉ for other
examples
 Again, only sufficient [Goossens et al., 2003]

2012/13 UniPD / T. Vardanega Real-Time Systems 398 of 405

Other results /4

 Combinations
 FPS (higher band) to those tasks with ܷ 0.5
 EDF for the rest

 Again, only sufficient [Baruah, 2004]

Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is called the

synchronization processor for that resource
 It knows all the use requirements of all its resources

 The critical sections of a resource execute on the
processor that hosts that resource
 Jobs that use remote resources should be treated as “transactions”

 The processor to which a task is assigned is the local
processor for all of the jobs of that task

2012/13 UniPD / T. Vardanega Real-Time Systems 399 of 405

Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Global resources are used by tasks residing on different

processors

 Resource access control needs actual locks for
protection from true parallelism
 Lock-free algorithms then become attractive

 Synchronization processors use M-PCP to control
access to their global resources

2012/13 UniPD / T. Vardanega Real-Time Systems 400 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 17

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections are executed at higher ceiling

priorities than local tasks on the synchronization
processor and any other tasks in the system

 A task ߬ that is denied access to a global shared
resource ߩ suspends and waits in a priority-based
queue for that resource
 Tasks with lower-priority than ߬	on its local processor

may thus acquire global resources with higher ceiling
2012/13 UniPD / T. Vardanega Real-Time Systems 401 of 405

Multiprocessor PCP /4

 If the global resource being acquired by task ߬ with
priority lower than ߬ resides on the same
synchronization processor as ߩ	then ߬ suffers an
anomalous form of priority inversion
 This obviously exposes resource nesting to the risk of

deadlock → M-PCP disallows resource nesting
 This is the reason why other protocols want ߬ to spin-

lock!

2012/13 UniPD / T. Vardanega Real-Time Systems 402 of 405

Blocking under M-PCP

 With M-PCP task ߬ is blocked by lower-priority tasks in 5 ways
 Local blocking (once per execution): when finding a local resource held by a

local lower-priority task that got running as a consequence of ߬
suspension on access to a remote resource

 Remote blocking (once per access): when finding a remote resource held by
remote lower-priority tasks

 Local preemption: when global critical sections are executed on ߬’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

 Remote preemption (once per access): when higher-ceiling global critical
section execute on the remote processors where ߬ needs a global resource

 Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects

2012/13 UniPD / T. Vardanega Real-Time Systems 403 of 405

Multiprocessor SRP

 Partitioned EDF with resources bound to
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is busy are
placed in a FIFO queue on the synchronization
processor and spin-lock on their local processor
 On release from the task that held it the global resource is

assigned to the task (request) at the head of the queue

2012/13 UniPD / T. Vardanega Real-Time Systems 404 of 405

2012/13 UniPD / T. Vardanega 02/03/2013

Real-Time Systems 18

2012/13 UniPD / T. Vardanega Real-Time Systems 405 of 405

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions [2010]: DP-Fair
 Incorporating global resource sharing

