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8. Multicore systems

Credits to A. Burns and A, Wellings
RTS /s
to B. Andersson and J. Jonsson for their work in Proc. of

the the IEEE Real-Time Systems Symposinm, WiP Session,
2000, pp. 53-56

and to a student of this class a few years back

‘ Fundamental issues

m Hardware architecture taxonomy

0 Homogeneous vs. heterogeneous processors

m  Research focused first on SMP (symmetric multiprocessors) which
make a much simpler problem

m Scheduling approach

0 Global or partitioned or alternatives between these extremes

m  Partitioning is an allocation problem followed by single processor
scheduling

m Optimality criteria are shattered
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than partitioned
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| Hardware architecture taxonomy

m A multiprocessor (or multi-core) is #ghtly coupled

o Global status and workload information on all processots
(cores) can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler

0 When each processor (core) has its own scheduler, the
decisions and actions of all schedulers are coherent

m Scheduling in this model is an NP-hard problem
m A distributed system is loosely coupled
o Itis too costly to keep global status

0 There usually is a dispatcher / scheduler per processor
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State of the art

m Some task sets may be unschedulable even though they have low
utilization
0 Much less than the number of processors
0 This is known as the Dhall’s effect [Dhall & Liu, 1978]

m The known exact schedulability tests have exponential time
complexity
0 The known sufficient tests have polynomial time complexity but obviously

are pCSSlmlSUC

m Rate-monotonic priority assignment is not optimal

= No optimal priority assighment scheme with polynomial time
complexity has been found yet
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| Interference

m We know what is the interference [; suffered by a
task T; for single-processor scheduling

o How does this change for multiprocessors?

m For globa/ multiprocessor scheduling with m
processors interference only occurs for tasks from
m + 1 onward

m Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors
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| Example (Dhall’s effect) — 1

Task T D C U

10 10 5 0.5 On 2 processors
5
8

b 10 | 10 0.5 Z_Ui=1-67<2
c 12 | 12 0.67

= Under global scheduling, EDF and FPS would run a and b
first on each of the 2 processors

= But this would leave no time for ¢ to complete

0 7 time units on each processor, 14 in total, but 8 on neither

m Even if the total system is underutilized (!
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| Example — 2

Task T D C U
d | 10 [ 10| 9| 09 | 0On2procesons
e | 10 |10 | 9] 09 Yui=2
£ 110 10]2]02 i

m Partitioned scheduling does not work here either

m After tasks d and e are allocated, task f cannot reside on just one
processor
0 It needs to migrate from one to the other to find room for execution

m And it also needs that d and e are willing to use cooperative
scheduling for it complete in time
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‘ Global scheduling anomalies

m In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
0 This suggests that increasing the petiod should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1

a A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time when tasks execute

= Anomaly 2

Q A decrease in processor demand of a task causes an znerease in
the interference suffered by that task
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: >
| Anomaly 1: decrease in hp demand | Anomaly 1 (cont’d)
Task | T D C U
3 5 12 Toe m = 2 processors and Y,; U; = 1.83 but
a . : —
Te ls saturated because Ce + Ie = De m If we reduce Ty to 4 we decrease system load to U = 1.67
4 4 2 1 0.50 hence any increase in I, would make it ) ) ) ] )
unschedulable m But in this way I, inereases from 4 to 6 and T, misses its
c 12 | 12 | 8 | 0.67 . 1
deadline (!)
3 6 9 4 8
P, b | - b | - b | S P, b | c b | c b | c |
4 38 4 8
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: >
| Anomaly 2: decrease in own demand | Anomaly 2 (cont’d)
Task C U
a 4 4 21 05 m = 2 processors and U = 1.8 but
b 5 3 1 06 T with I, = 3 is saturated m If we extend T to 11 we decrease system load to U = 1.74
c l1ol10] 7] o7 m But in this way I, increases from 3 to 5 (1) as it becomes
visible in the second job of T
P, a | c a | c a |
4 8
5 10
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| The defeat of greedy schedulers /1

m Greedy algorithms ate easy to explain, study, and
implement
0 They work very well on single processors
o EDF [1], LLF [2], EDZL [3] are optimal for single processors
m They collapse the urgency of a job into a single value
and use it to greedily schedule jobs
m Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors
o EDF, LLF, EDZL are no longer optimal

2012/13 UniPD / T. Vardanega Real-Time Systems 349 of 405

‘ The defeat of greedy schedulers /2

m Does a feasible schedule exist on 2 processors for T
(derivative of Example 2) where
o T ={r; =(109),1, =(10,9),73 = (40,8)},U(T) = 2
0 Tiand T, have laxity 1 in each period

o Hence they leave each processor idle for 1 unit of time and
for 2 units in total every 10-unit period

o In the interval [0,40) T;and T, leave the 2 processors idle for
a total of 2 X 4 = 8 units of time in which fits T3 exactly
m The answer should thus be yes since also T3 should be
able to meet its deadline
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| The defeat of greedy schedulers /3

m Let us schedule T with LLF

A

T, Bl
Tzn \_l
L N

| A O N N D I I I B
01 2 3 4 5 6 7 8 9 101112

0 T3 can execute only 1 unit of time in the interval [0,10)

o One of the two processors is idle for 1 unit of time

m T3 misses its deadline!

2012/13 UniPD / T. Vardanega Real-Time Systems 351 of 405

| Why do greedy schedulers fail?

When the total utilization of a periodic task set is equal to
the number of processors, then no feasible schedule can
allow any processor to remain idle for any length of time
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| The defeat of greedy schedulers /4

m One schedule we want for T is

4

T1 I A 4
A

T, | | | ¥

I SR T N T | TR
|1 L L L L
2 3 4 5 6 7 8 9 101112

.
0

0 Butatt = 8 tyand 7, have catlier deadline, lower laxity,
greater total and remaining utilization than T3

L
I
1

o Greedy schedulers lack knowledge to be wiser!
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| The defeat of greedy schedulers /5

m Things work if we modify T to
T'={ry = (10,9),7, = (10,9),7'3 = (10,2)}
0 Att = 8 we get a zero-laxity event for T'3
o This is good for T but surely not in general @

m The ultimate problem is to determine when (in time)
and how (by what means) jobs should be able to hit
their proportional rate quota

m In secking proportionate fairness we do not want to incur
large overhead with scheduling calculations and task
migrations
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| P-fair scheduling [Baruah et al. 1990]

m Proportional progress is a form of proportionate fairness
also known as P-fairness
0 Each task 7; is assigned resources in proportion to its weight
W, = Ci/ r; hence it progresses proportionately
a Useful e.g., for real-time multimedia applications
m At every time t task T; must have been scheduled cither
[W; X t] or [W; X t] time units
o Without loss of generality preemption is assumed to only
occur at integral time units

0 The workload model is periodic
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| P-fair scheduling /2

m lag(S,t;,t) is the difference between the total
resource allocations that task T; should have received
in [0, t) and what it received under schedule S

m For a P-fair schedule S at time ¢
a T; is abead iff lag (S, t;,t) <0
Q T; is bebind iff lag(S,t;,t) > 0
Q Tj is puncrual iff lag(S,t;, t) = 0

2012/13 UniPD / T. Vardanega Real-Time Systems 356 of 405

02/03/2013



2012/13 UniPD / T. Vardanega

| P-fair scheduling /3

n a7y, t) is the characteristic substring of task T; at time t
o Finite string over {-, 0, +} of @41 () &pyo (X) g, (x)
m Wheret' =mini:i > t:a;(x) =0
0 ay(x) =sign(W, x (t+1) = [W, xt]-1)

m For a P-fair schedule S at time £
Q T; is is wrgentiff T; is bebind and @, (1) # —
Q Ty is is snegru iff Ty is abead and o, (T;) # +
Q T; is is contending otherwise
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‘ Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a,(1;) = — and 7; not scheduled at t then T; is ahead at t + 1
e {EI If ay(t;) = 0 and 7; not scheduled at t then T; is punctual at t + 1
o If a;(t;) = + and 7; not scheduled at t then T; is behindat t + 1
o If a,(1;) = + and 7; scheduled at t then T; is ahead at t + 1

m For task T; bebind at time t under S
o If a,(1;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a,(1;) = — and 7; not scheduled at t then T; is behind at t + 1
b If a;(1;) = 0 and T; scheduled at t then T; is punctnalat t + 1
e {EI If a;(1;) = + and T; scheduled at t then T; is bebind at t + 1
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| P-fair scheduling /4

m General principle of P-fairness
o Every task uzgent at time t must be scheduled at t to preserve
P-fairness
o No task #zegru at time t can be scheduled at t without breaking
P-fairness
m Problems with ng #regru, Ny contending, Ny urgent tasks at
time ¢ with m resources and n = ng + nqy + Ny,

o If n, > m the scheduling algorithm cannot schedule all #zgent
tasks

o If ng > n — m the scheduling algorithm is forced to schedule
some #negru tasks
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P-fair scheduling /5

m The PF scheduling algorithm
0 Schedule all #rgent tasks
o Allocate the remaining resources to the highest-priotity contending
tasks according to the total order function = with ties broken
arbitrarily
n x 2 yiffa(xt) = a(y,t)
m  And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
= With PF we have Xy cpon We = m

o A dummy task may need to be added to the task set to top
utilization up

= No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

‘ Example (PF scheduling) /2
«l These tasks are scheduled and they become ahead |7

m m = 3 processors
Task | C | T W u 7= 4 tasks
v 1 3 0.333...| ® Tisadummy task used to top
system utilization up
w 2 4 0.5 m In general its period is set to the
X 5 7 0.714... system hyperperiod
8 1 0.727... 0 This time we halved it
m  With PF we always have
z 335 | 462 3-U n2>mandnoén—m
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| w is ahead and its current substring indicates it need not be scheduled |

lag periodl characteristic string || nrgent dontending tnegru
2 v w r 4 5 v | w y 2 tasks tasks
ol o ol o o= === = T 1
== 27 = 0 + | + {w} {}
2 2] 0| 3] -6 0| = + | + [ {v.x} {1
I <> WA = = ) D
KN AN - F |+ |+ ] U o ol
5 2] 2 N3] 0 ¥ w {3
6| o] o | -7 X + | + || {=.2} {}
7 1 =2 o\ 1 -0 — = {r {uw}
R 2 o[22 0= + | + {v} y r X u {
9 0 2 3 B — |0 |\+ |+ | + {w,x} {}
wl 1] o] 1= == 0 - } {y}
| =1 2 =1 o o]0 - | + {w} {v}
12 o] o] 4-3 - | = + | + {r} {}
B3 1| 2| 2[-6 — 10 + | + || {w,x} {}
=1 o o 2 - — | = T {e}
15 0] 2| —2|—1 BN + | + (X {
G 1| 0] 3| —4 | + | + 0! {}
17 2] 2 1| =7 00 F |+ v, w} {r
s o] o -1 1 - [ = h Y - {1
19 1| 2| =3 =2 ~To {w} Yy {

2012/13 UniPD / T. Vardanega Real-Time Systems 362 of 405

Predictability [Ha & Liu, 1994]

m  For arbitrary job sets on multiprocessors, if the scheduling
algotithm is work-conserving"), preemptive, global (with
migration), with fixed job priorities is predictable

a Job completion times monotonically related to job execution times

m  Hence it is safe to consider only upper bounds for job

execution times in schedulability tests

m  This is not true for non-preemptive scheduling

1) A scheduling algorithm is work conserving if processors are not idle
while tasks eligible for execution are not able to execute on other
processors

2012/13 UniPD / T. Vardanega Real-Time Systems 363 of 405

Real-Time Systems

DDP-Fair motivation

« Focus on periodic, independent task set with implicit
deadlines (D; = p;)
+ Scheduling overhead costs assumed in task requirements
< 2iUi<mand U; < 1Vi
- Process migration allowed
« With unlimited context switches and migrations any task
set meeting the above conditions will be feasible
- This problem is easy
« What’s difficult is to find a valid schedule that minimizes
context switches and migrations
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| Deadline partitioning

m Partition time into slices demarcated by the deadlines of
all tasks in the system

o All jobs are allocated a workload in each slide and these
wotkload share the same deadline

No optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on any m multiprocessor
system, where m > 1

m Why is DP so effectiver?
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‘ DP-Correct /1

m The time slice scheduler will execute all jobs’
allocated workload within the end of the time slice
whenever it is possible to do so

m Jobs are allocated workloads for each slice so that it
is possible to complete this work within the slice

m Completion of these workloads causes all tasks’
actual deadlines to be met
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| DP-Correct /2
ey

A :H [ | | - T
2 8 o 13
° . s 7.
T | mm  w T
- E) e 7 &8 = :
o ].Q
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2 | :
4 s 9 10 12 14 1S : .
-
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‘ Notation

m ty=0,t; : i > 0 denote distinct deadlines of all tasks in T

m gj is the j time slice in [tj_q, t})

mLi=tj—tiq

» Local execution remaining l; ; is the amount of time that T;
must execute before the next slice boundaty

» Local utilization 7, = l; ¢ /(t; — t)

m Ly =), 1; is the Jer of the whole task set

m R =Y, 1;is the Ju of the whole task set

m Slack S(T) = m — U(T) and represents a dummy job

m q;p is the arrival time of the h*" job of T;
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DP-Fair rules for periodic tasks set

m DP-Fair allocation
o All tasks hit their fluid rate curve at the end of each slice by
assigning each task a workload proportional to its utilization

o Atevery g; assign li,t]-_l =U; X Lj to1;

s DP-Fair scheduling for time slices
0 A slice-scheduling algorithm is DP-Fair if it schedules jobs
within a time slice 0; according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work

3. Do not allow more than §(t) X L; units of idle time to occur in g;
before time t
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DP-Fair optimality — Proof

Any DP-Fair scheduling algorithm for periodic task sets
with implicit deadlines is optimal

= Lemma 3

m If tasks in T are scheduled within a time slice by DP-Fair
scheduling and Ry < m at all times t € 0j, then all tasks in T
will meet their local deadline at the end of the slice

= Lemma 4

m Ifa task set T of periodic tasks with implicit deadlines is

scheduled in 0; using DP-Fair algorithm, then Ry < m will hold
at all times t € o;
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| A DP-Fair algorithm: DP-Wrap /1

m Make blocks of length §; for each 7; and line these
blocks up along a number line (in any order), starting at

Z€ro
03 05 05 06 03 0.5 0.4 02
[Ty
0 2 m-1 m

1
m Split this stack of blocks into chunks of length 1 a
1,2,..m —1

03 05 0.2 03 0.6 0.1 04 04 0.2
1 2 m
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| A DP-Fair algorithm: DP-Wrap /2

m Use deadline partitioning to divide time into slices

m Assign each chunk to its own processor and multiply each
chunk’s length (1) by the length of the segment (L;)

processor 4§ H :
1 0.3%L 0.5 Ol,z'Lli 'IE
o L ;2 i Time
I — : :
2 s W " "
T . . . .
o . t1 t= u Time

processor
m

o % tz u Time
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| DP-Wrap features

m A very simple algorithm that satisfied all DP-Fair

rules

Almost all calculations can be done in a

preprocessing step (with static task sets)

No computational overhead at secondary events

m 1 — 1 context switches and m — 1 migrations per
slice with mirroring

Heuristics may exist to improve performance

0 Less migration and context switches

2012/13 UniPD / T. Vardanega Real-Time Systems 373 of 405

Mirroring

m  For tasks that split across two slices

m If 7; and Ty are split and 7; executes at the beginning and Ty executes at the
end of the slice gj then revert the schedule in slice g}, so that Ty executes at
the beginning and 7; at the end

Not-mirrored schedule : : :

Mirrored schedule

0 h t 13
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| Sporadic tasks and D; < p;

m DP-Fair algorithms are still optimal when A(T) < m
and §; < 1Vi

m Definitions
Q Freeing slack: unused capacity (a;p—1 + Diq;,)
a Active: (ai,h, ajn + Dl)
o a;;(t), fi j(t) : amounts of time that task T; has been active
or freeing slack during slice oj as of time t
a Local capacity: Citjy = 6; X L; = ai(ai,j + flj)
Q Freed slack in 0} as of time t: F;(t) = X2, (6; X fi (1))
a Slack: S(T) = m — A(T)
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DP-Fair scheduling for time slices /1

m A slice-scheduling algorithm is DP-Fair if it schedules
jobs within a time slice 0; according to the following
rules:

1. Always run a job with zero local laxity

2. Never run a job with no remaining local work

3. Do not allow more than S(T) X L; + F;(t) units of idle time
to occur in g; before time t

4. Initialize li.tj_ , to 0. At the start time t' of any active time
segment for 7; in g; (either t'= tj_1 or ;) that ends at

time t" = min {ai_h + Di,tj}s increment l; ; by 8;(t" — t')

Real-Time Systems
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DP-Fair scheduling for time slices /2

m Rules continued ...

5. When a task T; atrives in a slice 0 at time t and its
deadline falls within g;

m  Split the remainder of 0; after t into two secondary slices crjl, ajz
so that the deadline of 7; coincides with the end of (sz

= Divide the remaining local execution (and capacity) of all jobs in

ajl (as well as the slack allotment from RULE 3) proportionally

12
to the lengths of a7, o]

= This step may be invoked recursively for any Ty within o}

2012/13 UniPD / T. Vardanega Real-Time Systems 377 of 405

ain, azh,a3h<ti1 2
a1,h41, @2,h41, A3ha1 > s

DP-Fair scheduling for time slices /3

1 T4 deadline T4 ends

Allocated local

1
1
1
capacity for T4 |

Allocated local
capacity for T2

ash
Allocated local (Tanarrives) —> 84h
capacity for T3 ‘

| |

Allocated local I |
capacity for T4 I |
1 |

b ] t & f
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Correctness

Any DP-Fair scheduling algorithm is optimal for sporadic
task sets with constrained deadlines where A(T) < m and
8 <1vi

Proof

Lemma 7

A DP-Fair algorithm cannot canse more than S(T) X L; + Fj(t) units of idle time in slice 0
prior to time t

Lemma 8

If asetT of sporadic tasks with constrained deadlines is scheduled in 0f nsing a DP-Fair algorithm,
then Ry < m will hold at all times t € o}
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| DP-Wrap modified

m If task T; issues a job at time t in slice g} and
t + D; > t; then allocate execution time
lis = 6;(tj — t) following RULE 4

m [finstead t + D; < t; then split the remainder of d;
following RULE 5
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| Arbitrary deadlines /1

m Task set T below is not feasible on 2 processors
am=2T={t; =(64),7, =173 =174 =75 = (3,1,6)}
4 1
0 A(T) =3+4x5=2

0 12 units of work to be completed by time 6

1
2 T2 T3 T2 T3 T4 T5
1| Ta 5 T
1
0 1 2 3 4 5 é 7 8
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| Arbitrary deadlines /2

m [s there a cure to this problem?

m If task 7; has D; > p; we simply impose an artificial
deadline D,i = Dbi

m Density is not increased hence if D'; is met, D; will
also be

m But this increases the number of context switches
and migrations!
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| Related work: Boundary Fair /1

Very similar to P-Fair

o It still uses a function and a characteristic string to evaluate
the fairness of tasks [4] with per-quantum task allocation

m It uses deadline partitioning

It uses a less strict notion of fairness

o At the end of every slice the absolute value of the allocation
error for any task T; is less than one time unit

Scheduling decisions made at the start of every slice

o It reduces context switches packing two or more allocated
time units of processor to the same task into consecutive units
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‘ Related work: Boundary Fair /2

1‘4‘1|3|4|1!4 1 2\51‘4‘1!1’3‘5’1‘4‘113|4i||4|1|2i5\4\|‘1[3‘51
ARRARAARRARARRRARRRARARRARARRDR
180400806 05008 KIB0E KIB0E Kaeas
4 s Ie!s] 5 Ha‘s‘s ‘6!4’ 515|6!4l 5 !a[4| 5 ‘si

b. A boundary fair schedule

m Not DP-Fair but DP-Correct
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| Related work: LLREF [5] /1

m It uses deadline partitioning with DP-Wrap task allocation

m In each slice scheduling is made using the notion of T-L Plane
o Each task Tj is represented by a token within a triangle and its position

stands for the local remaining work of Tj at time i

The horizontal cathetus indicates the time

The length of the vertical cathetus is one processot’s execution capacity

The hypotenuse represents the-no laxity line

0O 0o o o

Token can move in two directions. Horizontally if the task doesn’t
execute, diagonally down if it does

0 When a token hits the horizontal cathetus or the hypotenuse (secondary
events) a scheduling decision is made

m  Tasks are sorted and m tasks with the least laxity are executed
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| Related work: LLREF /2

local laxity of T,
token

Iino local laxity diagonal

j_ fluid schedule path

T
A

| S— ceiling hitting event
bottom hitting event

m DP-Fair algorithm but does unnecessary work

1%

2012/13 UniPD / T. Vardanega Real-Time Systems 386 of 405

Related work: EKG [6]

m Tasks are divided into heavy and light
o Each heavy task is assigned to a dedicate processor

o Every light task is assigned to one group of K processors and it shares
them with other light tasks

m Some light tasks are split in two processors and they are executed
cither before t, or after ty,

m Light tasks that are not split are executed between tg or and
tp and they are scheduled by EDF

m Heavy tasks start executing when they become ready

m EDF is not a DP-Fair allocation but the DP-Fair rules are
satisfied
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Compatisons with DP-Wrap /1

m DP-Wrap causes about 1/3 as many context switches
and migrations as LLREF

m LLREF has some inefficiencies ([7],[8])
0 Inefficiencies stem from the non working-conservative
propriety
o BF and EKG should show improvements comparable to DP-
Wrap
m EKG with appropriately tuned k parameter should
outperform DP-Wrap and BF on task set with
UT)<m
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| Compatrisons with DP-Wrap /2

m Algorithmic complexity

o DP-Wrap is the best. O(#) work at the beginning and
then each event just requires a constant time lookup

a LLREF is O(#?)
a EKG is O(# log n) but is more efficient in practice
a BF is Ofn) per slice

Is DP-Fair scheduling sustainable? /1

m Consider model with sporadic tasks and
arbitrary deadline

m T'wo cases may occur

0 The new value of the relaxed parameter is not used in
the scheduling and allocation policies

0 The new value of the relaxed parameter becomes
known a prioti/at job arrival and it is used in the
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

m Shorter execution time

a Case 1 (shorter ¢, same density)
m Task set T is schedulable and the system allocates §; X L;
workload per each task in each slice
m Ifc¢’; < ¢ then task T; uses part of assigned workload and surely
completes before its deadline
a Case 2 (shorter C, lesser density)
w  As DP-Fair is optimal when A(T) < mand §; <1Vi=1,..n
a DF-Fair feasible schedule exists for T

m A feasible schedule for T' existsas ¢'; < ¢; = §'; < §; =
A(T") < D(T)

Is DP-Fair scheduling sustainable? /3

m Longer inter-arrival time

a Case 1 (longer p, same density)
= Simply a less demanding instance of sporadic task

m The allocation and scheduling rules cover this case
a Case 2 (longer p, lesser density)
m Ifp'; > p;and §'; < §; then A(T") < A(T) whereby T is
feasible if T was feasible
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Is DP-Fair scheduling sustainabler /4

m Longer deadline
a Case 1 (longer d, same density)
md;<d;
m Task 7'; completes its workload at time t = min(d;, p;)
a Case 2 (longer d, lesser density)

n If d’i > di and 5’1' < 51' then A(T’) < A(T) Whereby T’ is
feasible if T was feasible

m We may therefore conclude that DP-Fair
scheduling is sustainable
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| Other results /1

m For the simplest workload model made of
independent periodic and sporadic tasks

m A P-fair scheme can sustain U = m form
processors but its run-time overheads are excessive

0 Especially because tasks incur very many preemptions
and are frequently required to migrate across processors

w Partitioned FPS first-fit (on decreasing task utilization)
can sustain U < m(v2 — 1)
0 But this is a sufficient test only [Oh & Baker, 1998]
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Other results /2

w Partitioned EDF first-fit can sustain

< Pl
ﬁ +]_ Per}task
1 "
Pl

m For high Uy, 4y this bound gets rapidly lower than
0.6 X m, but can get close to m for some examples
o Again this is a sufficient test only [Lopez ez al., 2004]
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| Other results /3

m Global EDF can sustain

U<m—(m-1HU

max

m For high Uy, g this bound can be as low as
0.2 X m but also close to m for other
examples

o Again, only sufficient [Goossens ¢f al., 2003]
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‘ Other results /4

o Combinations
m EPS (higher band) to those tasks with U; > 0.5
m EDF for the rest

1< m+1
L2

0 Again, only sufficient [Baruah, 2004]
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Multiprocessor PCP /1

m Partitioned FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]

o The processor that hosts a resource is called the
synchronization processor for that resource
m It knows all the use requirements of all its resources
0 The critical sections of a resource execute on the
processor that hosts that resource
m  Jobs that use remote resources should be treated as “transactions”
0 The processor to which a task is assigned is the /oca/
processor for all of the jobs of that task

2012/13 UniPD / T. Vardanega Real-Time Systems 399 of 405

Real-Time Systems

Multiprocessor PCP /2

m A task may need local and global resources
0 Local resources reside on the local processor of that task

o Global resources are used by tasks residing on different
processors

m Resource access control needs actual locks for
protection from true parallelism
a Lock-free algorithms then become attractive

m Synchronization processors use M-PCP to control
access to their global resources

2012/13 UniPD / T. Vardanega Real-Time Systems 400 of 405

02/03/2013

16



2012/13 UniPD / T. Vardanega

| Multiprocessor PCP /3

m The task that holds a global lock should not be
preempted locally
o All global critical sections are executed at higher ceiling
priorities than local tasks on the synchronization
processor and any other tasks in the system
m A task Ty that is denied access to a global shared
resource Py suspends and waits in a priority-based
queue for that resource

o Tasks with lower-priority than Ty, on its local processor
may thus acquire global resources with higher ceiling
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| Multiprocessor PCP /4

m If the global resource being acquired by task 7; with
priority lower than Ty resides on the same
synchronization processor as pg then Tp, suffers an
anomalous form of priority inversion

o This obviously exposes resource nesting to the risk of
deadlock = M-PCP disallows resource nesting

0 This is the reason why other protocols want Ty to spin-
lock!
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| Blocking under M-PCP

m With M-PCP task T; is blocked by lower-priority tasks in 5 ways

0 Local blocking (once per execution): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;
suspension on access to a remote resource

0 Remote blocking (once per access): when finding a remote resource held by
remote lower-priority tasks

0 Local preemption: when global critical sections are executed on T;’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

a  Remote preemption (once per access): when higher-ceiling global critical
section execute on the remote processors where T; needs a global resource

Q  Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects
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‘ Multiprocessor SRP

m Partitioned EDF with resources bound to

processors [Gai, Lipari, Di Natale, 2001]

o SRP is used for controlling access to local resources

o Tasks that lock a global resource cannot be preempted
m They become preemptable again when releasing the resource

o Tasks that request a global resource that is busy are
placed in a FIFO queue on the synchronization
processor and spin-lock on their local processor

= On release from the task that held it the global resource is
assigned to the task (request) at the head of the queue
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| Summary

Issues and state of the art

Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions [2010]: DP-Fair

m Incorporating global resource sharing
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