

2012/13 UniPD / T. Vardanega

			T	ŕ	2011			1 1	.1 .1		$\frac{\alpha}{2}$		
				Γ	I nese task	s are s	cneau	ed and	they i	become	anead		_
		lag	$g \times p$	eriod		ch	aract	erist	ic st	ring	urgent	contending	tnegru
t	\overline{v}	w	x	y	z	\underline{v}	w	x	y	z	tasks	tasks	tasks
0	0	0	0	0	0			-			{}	y > z > x > w > v	{}
1	1	2	-2	-3	-127		0	+	+	+	$\{w\}$	y > z > x > v	{}
2	2	0	3	-6	-254	0	-	+	+	+	$\{v, x\}$	w > y > z	{}
3	0	(-2)	1	2	81	-	\bigcirc	-	-		-{}	y > z > x > v	w
-4	1	0	-1	-1	-46	-	1	+	+	+	{}	y > z > x > v = w	1
5	2	2	-3	-4	-173	0	0	+	+	+	$\{v, w\}$	y > z > x	$\langle \cdot \rangle$
6	0	0	2	-7	162	-	-	0	+	+	$\{x, z\}$	w > y > v	{}
7	1	-2	0	1	35	-	0					y > z > x > x	$\{w\}$
8	2	0	-2	+2	-92	0		+	+	+	$\{v\}$	$y > z > x \neq w$	{}
9	0	2	3	-5	-219	-	0	+	+	+	$\{w, x\}$	y > z > v	{}
10	1	0	1	-8	116	-	-	F	0		- {}	z > x > v = w	$\{y\}$
11	-1	2	-1	0	-\11	0	0	+	-	+	$\{w\}$	y > z > x	$\{v\}$
12	0	0	4	-3	-138	-	- 1	+	+	+	$\{x\}$	y > z > w > v	-{}
13	1	2	2	-6	-265	-	0	0	+	+	$\{w, x\}$	v > y > z	{}
14	$^{-1}$	0	0	2	70	0		- 1			$\{\}$ /	y > z > x > w	$\{v\}$
15	0	2	-2	-1	-57	-	0	+	+	+	$\{w\}$	y > z > x > v	{}
16	1	0	3	-4	-184	-	$ \rightarrow$	+	+	+	$\{x\}$	y > z > v = w	{}
17	2	2	- 1	-7	-311	0	0		+	+	$\{v, w\}$	x > y > z	{}
18	0	0	-1	- 1	24	-	- 1	+	+	7	{}	y > z > x > w > v	{}
19	1	2	-3	-2	-103	-	0	+	A	/++	$\{w\}$	y > z > v = x	-{}-

DP-Fair motivation	on	
• Focus on periodic, indep deadlines $(D_i = p_i)$	oendent task set wit	h implicit
 Scheduling overhead cos 	sts assumed in task req	uirements
• $\sum_i U_i \le m$ and $U_i \le 1 \forall$	'i	
Process migration allower	ed	
• With unlimited context s set meeting the above co	witches and migrat onditions will be fea	ions any task sible
• What's difficult is to find	l a valid schodula th	at minimizes
context switches and mig	grations	at minimizes
2012/13 UniPD / T. Vardanega	Real-Time Systems	364 of 405

0.2

DP-Fair optimality – Proof

Theorem 5

Any DP-Fair scheduling algorithm for periodic task sets with implicit deadlines is optimal

Lemma 3

- If tasks in T are scheduled within a time slice by DP-Fair scheduling and $R_T \leq m$ at all times $t \in \sigma_i$, then all tasks in T will meet their local deadline at the end of the slice
- Lemma 4
- If a task set T of periodic tasks with implicit deadlines is scheduled in σ_i using DP-Fair algorithm, then $R_T \leq m$ will hold at all times $t \in \sigma_i$

Real-Time Systems

```
2012/13 UniPD / T. Vardanega
```

370 of 405

Correctness		
Theorem 9		
Any DP-Fair scheduling algorith	m is optimal for spo	oradic
task sets with constrained deadl	ines where $\Delta(T) \leq$	m and
$\delta_i \leq 1 \ \forall i$		
Proof Lemma 7 A DP-Fair algorithm cannot cause more than $S(T)$?	$\times L_j + F_j(t)$ units of idle time	e in slice σ _j
Lemma 8		
If a set T of sporadic tasks with constrained deadlines then $R_t \leq m$ will hold at all times $t \in \sigma_j$	is scheduled in σ_j using a DP-1	Fair algorithm,
		<u> </u>
2012/13 UniPD / T. Vardanega Real	I-Time Systems	379 of 405

390 of 405

391 of 405

Is DP-Fair scheduling sustainable? /2

• Task set T is schedulable and the system allocates $\delta_i \times L_i$

• If $c'_i \leq c_i$ then task τ_i uses part of assigned workload and surely

• As DP-Fair is optimal when $\Delta(T) \leq m$ and $\delta_i \leq 1 \forall i = 1, ... n$

Real-Time Systems

• A feasible schedule for T' exists as $c'_i < c_i \Rightarrow \delta'_i < \delta_i \Rightarrow$

Shorter execution time

□ Case 1 (shorter *c*, same density)

workload per each task in each slice

a DF-Fair feasible schedule exists for T

completes before its deadline

□ Case 2 (shorter *c*, lesser density)

 $\Delta(T') < D(T)$

2012/13 UniPD / T. Vardanega

394 of 405

