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Abstract

In this paper we present improved techniques for the
schedulability analysis of tasks with precedence relations in
multiprocessor and distributed systems, scheduled under a
preemptive fixed priority scheduler. Recently developed
techniques, based on the analysis of tasks with dynamic
offsets, take into account the precedence relations between
tasks only indirectly, through terms iteratively estimated
from the response times of the tasks. With the techniques
presented in this paper, we exploit the precedence relations
in a more accurate way, and we also take advantage of the
priority structure of the different tasks. These considerations
permit a significant improvement of the results of the
analysis applied to distributed and multiprocessor systems.

1. Introduction
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Rate monotonic analysis (RMA) [2][4] allows an exact
calculation of the worst-case response time of tasks in
single-processor real-time systems, including the effects of
task synchronization [9], the presence of aperiodic tasks, the
effects of deadlines before, at or after the periods of the
tasks [3], precedence constraints and tasks with varying
priorities [1], etc. However current RMA cannot provide
exact solutions to the response times in multiprocessor and
distributed hard real-time systems. The general worst-case
analysis of a distributed system is still an open issue, but
one approach that can be used is to analyze each processing
and communication resource of the system as if it were
independent. Tindell and Clark developed a widely accepted
technique, based on the assumption that all tasks are
independent [10][5] with a jitter term due to the execution
of preceding tasks. In [7] we derived an approximate
technique based on the model of tasks with dynamic offsets,
which significantly improved the results obtained in systems
with tasks that suspend themselves, and also in distributed
systems. Nevertheless, these techniques are still somehow
pessimistic since they do not exploit sufficiently the

precedence relations among tasks, within the analysis. In
this article we improve the analysis based on tasks with
dynamic offsets, by directly including the precedence
relations among tasks of the same response sequence in the
analytical expressions. As we will show, in distributed
systems the new technique allows a significant increase of
the schedulable utilization of the CPU compared to the case
when previous analysis techniques were used. This comes
at no cost for the application, which will still be scheduled
using fixed priorities.

The paper is organized as follows. In Section 2, we
review the analysis technique derived from the model of
tasks with dynamic offsets, which is directly applicable to
distributed systems. In section 3, we present the activation
conflicts, a direct consequence of the precedence
relationships among tasks of the same response sequence,
and we will see how we can take advantage of their
existence to improve the analysis. In section 4, we derive
analytical expressions leading to the calculation of the
worst-case execution interference. Later, in section 5, we
consider the effect of the precedence relationships on tasks
belonging to the same sequence as the task under analysis,
and which complete the set of equations applicable to the
analysis. Section 6 shows the simulation results obtained
with the new technique, comparing them with those of
current techniques, based on independent tasks and dynamic
offsets, respectively. Finally, in Section 7 we give our
conclusions.

2. Analysis based on dynamic offsets

2.1. Computational Model

The system model that we will consider as an
approximation to the distributed system is composed of a set
of tasks executing in the same or different processors, which
are grouped into entities that we will calltransactions[11].
Each transactionΓi is activated by a periodic sequence of
external events with periodTi, and contains a set ofmi

tasks. The relative phasings between the different external
events are arbitrary. Each task is activated (released) when
a relative time —called theoffset— elapses after the arrival
of the external event. Each activation of a task releases the



execution of one instance of that task, that we will call a
job. Each task has its own unique priority, and the task set
is scheduled using a preemptive fixed priority scheduler.
When the activation of the task occurs with an offset that is
constant, independent of the execution of other tasks in the
system, we say that is astatic offset. We call an offset
dynamic if it can vary between some minimum and
maximum interval. This variation is often caused by the
execution of other tasks or activities for which the activated
task must wait.

Each task is identified with two subscripts: the first one
identifies the transaction to which it belongs, and the second
one the position that the task occupies within the tasks of its
transaction, when they are ordered by increasing offsets. In
this way,τij is the j-th task of transactionΓi, with an offset
of Φij and a worst-case execution time ofCij. In addition,
each task is allowed to have jitter, that is, to have its
activation time delayed by an arbitrary amount of time
between 0 and the maximum jitter for that task, which we
will call Jij. This means that the activation of taskτij may
occur at any time betweent0+Φij and t0+Φij+Jij, wheret0 is
the instant at which the external event arrived.

We allow deadlines to be larger than the period, and so
at each time there may be several activations of the same
task pending. We also allow both the offsetΦij and the jitter
Jij to be larger than the period of its transaction,Ti. For each
task τij we define its response time as the difference
between its completion time and the instant at which the
associated external event arrived. The worst-case response
time will be calledRij. Each task may have an associated
global deadline,Dij, which is also relative to the arrival of
the external event.

The tasks can synchronize for using shared resources in
a mutually exclusive way using a hard real-time
synchronization protocol such as the priority ceiling protocol
[9]. Under this assumption, the effects of lower priority
tasks on a task under analysisτab are bounded by an
amount called the blocking termBab, calculated as the
maximum of all the critical sections of lower priority tasks
that have a priority ceiling higher than or equal to the
priority of τab.

2.2. Calculation of the worst-case response times

To calculate the worst-case global response time of a task
τab, we must build the worst-case scenario for its execution.
To achieve this, we must create a critical instant that leads
to the worst-case busy period. A taskτab busy period is an
interval of time during which the CPU is busy processing
task τab or higher priority tasks. In tasks with offset we
must take into account that the critical instant may not
include the simultaneous activation of all higher priority
tasks, as was the case when all tasks were independent. The

existence of offsets makes it impossible for some sets of
tasks to become active simultaneously. The analysis
calculates the worst-case interference of a transactionΓi on
the response time of a taskτab in the potentially critical
instant that coincides with the most delayed activation of a
taskτik belonging to the transaction:

(1)ϕijk Ti Φ ik Jik Φ ij mod Ti

(2)Wik(τ ab,t)
∀j∈hpi(τ ab)





Jij ϕijk

Ti

t ϕijk

Ti





Cij

where hpi(τab) represents the set of tasks belonging to
transactionΓi with priority higher than or equal to the
priority of τab and executing in the same processor asτab.
The main problem with this analysis technique is that we
don’t know which taskτik must be used to create the worst-
case busy period. We obtain an upper bound of the
interference of the tasks of a transactionΓi in a busy period
of durationw, as the maximum of all possible interferences
that could be caused by considering each of the tasks ofΓi

as the one originating the busy period:

(3)Wi (τ ab,w) max
∀k ∈ hpi(τ ab)

Wik(τ ab,w)

In order to introduce less pessimism, we will not use this
function for the transaction to which the task under analysis
belongs, but we will use the original transaction.
Consequently, we must consider all the possible critical
instants created with each of the taskτac in the sethpa(τab),
adding the ownτab. We calculate the completion time of
each jobp in the busy period,wabc(p), by means of:

(4)
wabc(p) Bab (p p0,abc 1)Cab

Wac τ ab,wabc(p)
∀i≠a

Wi τ ab,wabc(p)

Parameterp0,abc corresponds to the first activation that occurs
at the critical instant:

(5)p0,abc

Jab ϕabc

Ta

1

The length of the busy period is calculated as:

(6)
Labc Bab





Labc ϕabc

Ta

p0,abc 1




Cab

Wac τ ab,Labc
∀i≠a

Wi τ ab,Labc

and from it:

(7)pL,abc

Labc ϕabc

Ta

The global worst-case response time is obtained by
subtracting the instant at which the associated event arrived,
from the completion time :

(8)Rabc(p) wabc(p) ϕabc (p 1)Ta Φab

And then we need to take the worst of all the response
times obtained:



(9)Rab max
∀c∈hpa(τ ab) b

max
p p0,abc..pL,abc

Rabc(p)

This model can be applied as an approximation for the
analysis of distributed systems, considering for each taskτij

an equivalent offset and jitter term calculated with:

(10)Φ ij Rb
ij 1

Jij Rij 1 Rb
ij 1 Jclock

whereRij
b
-1 is a lower bound for the best-case response time
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Figure 1. Possible execution scenarios of a transaction

of the previous taskτij -1 [6], andRij -1 is an upper bound for
the worst-case response time. WithJclock we model the
effects due to a coarse clock resolution and/or non-perfect
clock synchronization. Now, the main problem is that the
response times are dependent on the task offsets, and the
task offsets depend on the response times. ForRij

b
-1, we can

use any lower bound to the best-case response time,
including zero. The solution to this problem can be found in
WCDO iterative method [7], based upon Tindell & Clark’s
holistic analysis [10]: starting from an initial value of
response times of zero, we apply the analysis using the
technique for static offsets with the equivalent offsets and
jitter terms. In this way we obtain the response times of
each task. Using these response times we re-calculate the
equivalent jitter using (10), and with this new value we
recalculate the response times. This calculation continues in
an iterative way until we obtain the same result in two
successive iterations, that isRi

(
j
n+1) = Ri

(
j
n) ∀i, ∀j .

3. Activation conflicts and priority schemes

Although the method based on dynamic offsets is a major
improvement over previous methods that considered tasks as
independent, it can be pessimistic in some situations, as is
shown with the next example. Figure 1-a shows a periodic
transactionΓi with 5 tasks of different priority levels
executing in a single processor. The downward arrows
indicate the occurrence of events and the upward arrows the
offsets of the tasks,Φij. Each box represents the execution

of a task, its height being proportional to its assigned
priority. Activations of tasks in different jobs are shown by
different shading. The maximum jitter terms,Jij,
corresponding to the activation of each task are also
represented with horizontal lines. We will study the
contribution of tasks inΓi to the worst-case response time
of another taskτab (whose priority is indicated by the
dashed horizontal line),in the busy period starting at timetc.

Figure 1-b shows three possible execution scenarios,
depending on the jitter chosen for each activation, which is
indicated in the figure by the lower dashed lines. The first
scenario represents the execution of the system when we
choose the jitter in the same way we used to built the worst-
case up to now, that is, delaying the activations
corresponding to jobs before the critical instant until they
coincide with it. If we ignore precedence relations, all task
activations with priority higher thanτab will interfere in its
execution so that the completion time would be, at least,
W=2Ci2+3Ci3+3Ci5+Cab. Nevertheless, the precedence
relations oblige the execution of taskτi5 not to start until
the execution of the preceding taskτi4 has finished.
Moreover, given that taskτi4 has a lower priority than that
assigned toτab, τi4 cannot start to execute untilτab has
finished, as is shown in the first of the three situations in
Figure 1-b. This means that the completion time of taskτab

would in this case be equal toW=Ci2+2Ci3+Cab. This
situation represents a more realistic execution scenario, but
it makes the worst-case analysis more difficult, since we
cannot construct the critical instant in the same way as
before. We would choose, for example, the activation time
of τi4 corresponding to the first job so that its execution
would have finished before the critical instant and so,τi

could be executed within the busy period. The second
scenario in Figure 1-b shows an example of this case. The
difficulty lies in that, by makingτi4 execute earlier to force
τi5 to execute within the busy period, the activation ofτi3

belonging to the same job also has to finish before the
critical instant and, therefore, cannot interfere in the
execution of taskτab. This originates a conflict when
deciding which of the two situations we must consider for
the worst-case, given that one or other may sometimes
contribute more to the response time, depending on the
execution time of each task. Exactly the same problem
occurs in the second job, since the execution of its tasksτi2

andτi3 is incompatible with the execution of its taskτi5, as
shown in the last two scenarios. We will call these
incompatible situations conflicts. Now, let us define more
formally the concept of conflict.

Definition 5-1. Two tasks are in conflict when the
execution of one is incompatible with the execution of the
other, within the same busy period. Letτij and τik be two
tasks with higher or equal priority than that assigned to
another taskτab, and suppose thatτij precedesτik, j<k. If,



in the transactionΓi there is a intermediate taskτil (j<l<k )
in the same processor and with a lower priority thanτab,
then in a busy period ofτab, tasksτij and τik activated in
the same job cannot interfereτab simultaneously. In this
case, the activation of tasksτij and τik is said to be in
conflict.

We identify each task activation depending on the instant
of the arrival of the event that triggered its execution. We
assign consecutive positive numbers to the events arriving
after the critical instant, assigningp’=1 to the tasks activated
in the transactionΓi triggered by an event which arrived in
the interval (0,Ti], p’=2 to an event arriving in (Ti,2Ti], etc.
In the same way, the events occurring before the critical
instant are identified with consecutive numbersp’≤0; p’=0
corresponding to the tasks of the transaction triggered in the
interval (-Ti,0], p’=-1 to the interval (-2Ti,-Ti], etc. In this
way, we identify with the same index activations that have
precedence relations and correspond to the same job. In the
first of the two jobs of Figure 1, with indexp’=-1, there is
a conflict between the activations of the tasksτi3 and τi5.
In the second (p’=0) there is a conflict between the
activation of tasksτi2 andτi3 and the activation of taskτi5.
Note that the execution of the tasksτi2 and τi3 is
compatible in the same busy period.

To locate the activation conflicts we will identify the
pending activations of the tasks of a transactionΓi in a
specific busy period. In Figure 2 three activation scenarios
are described for a taskτij, which will help with the
identification, and show a critical instanttc delayed an
amountφ with respect to the arrival of the events triggering
the transactionΓi. Scenario 1 corresponds to the caseφ≥Φij

while Scenario 2 shows the caseφ<Φij; finally, Scenario 3
corresponds to a task with offset greater than the period,
Φij>Ti, andφ<Φij (if φ were greater thanΦij we would refer
to the next event, with a newφ’<Φij). Once again we
represent the arrival of events with downward arrows and
the activation of tasks with upward arrows. The continuous
horizontal lines represent the offsets, and the dashed lines
represent the jitter delay of the activations. We calculate the
numberni’ j of events occurring before the critical instant and
that are awaiting the execution of taskτij at the critical
instant. In the figure, the events arriving at the instantst0, t1

and t2 are found in this situation so, in the three situations
ni’ j=3.

For the calculation ofni’ j we define the magnitudeϕ’ as
the interval between the critical instant and the activation of
τij corresponding to the arrival of the first event after the
critical instant (identified withp’=1). As can be seen, this
value is equal to:

(11)ϕ Ti φ Φ ij

Note that the valueϕ’ can be greater than the period, for
φ<Φij, even several times, if the offset is sufficiently big.

Under the conditions when the potential critical instant is
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Figure 2. Execution scenarios

created,t0 corresponds to the instant of arrival of the first
event with the execution of the taskτij still to be started at
the beginning of the busy period. Therefore, this first job
must simultaneously verify the following two inequalities:

(12)t0 Φ ij Jij ≥ tc

t0 Ti Φ ij Jij < tc

Focusing on Figure 2, we can see that the critical instant
tc can be expressed as:

(13)tc t0 nij Ti Φ ij ϕ
which substituting into the two previous expressions:

(14)t0 Φ ij Jij ≥ t0 nij Ti Φ ij ϕ
t0 Ti Φ ij Jij < t0 nij Ti Φ ij ϕ

leads to:

(15)nij ≤
Jij ϕ

Ti

and nij >
Jij ϕ

Ti

1

Given thatni’ j is a integer number, the only solution of
these two inequalities is:

(16)nij

Jij ϕ
Ti

If we apply this result at the critical instanttc created
with the taskτik, in which the activation delay is equal to
φ = (Φik+Jik) mod Ti, we obtain the intervalϕ i’ jk between this
critical instant and the activation of the taskτij

corresponding to the first event occurring aftertc:
(17)ϕijk Ti (Φ ik Jik) mod Ti Φ ij

which, substituted into (16), gives the value of the number
ni’ jk of events pending execution of the taskτij at the
beginning of the busy period:



(18)nijk

Jij ϕijk

Ti

Following the previously defined numbering scheme, the
last of these pending events has the indexp’=0; therefore,
the first of them is identified with the valuep0’ ,ijk calculated:

(19)p0,ijk nijk 1
Jij ϕijk

Ti

1

In the calculation of the maximum interference due to a
transition Γi we must determine and resolve the possible
conflicts of activation in the busy period that starts at the
critical instant under consideration. Resolving a conflict
means choosing the execution of those tasks that have the
greatest interference with the task under analysis,τab. It is
important to highlight that the activations corresponding to
instances with indexp’≥1 are produced after the critical
instant and, therefore, the task activation phase cannot be
brought forward in order to resolve possible conflicts. In
this case, the tasks must execute according to the order of
precedence, starting with the first task of the transaction in
the same processor. In the example in Figure 1, it can be
seen that the first task of the transaction,τi1, has lower
priority than τab and so, no task corresponding to jobs
posterior to the instanttc can interfere in the busy period.

To determine and resolve the activation conflicts, we
must characterize the priority scheme of each transaction.
From the point of view of the analysis of a taskτab we will
classify the tasks of a transactionΓi in different sections,
which we will call H sections. AnH section is composed of
a set of contiguous tasks (in the processor whereτab

executes) with a priority higher than or equal to that
assigned toτab.

Definition 5-2. Two tasksτij and τik of a transactionΓi

belong to the sameH section, for the analysis of a taskτab,
if both execute in the same processor asτab with priority
higher than or equal to that assigned toτab and there is no
intermediate task of the same transaction executing in the
same processor with priority lower than that ofτab. We will
identify with Hij(τab) the section to which taskτij belongs,
and that is made up of the set of tasks of the transactionΓi

which verify:

(20)Hij(τ ab) l ∈Γi j≤x≤l l≤x≤j

proc(τ ix) proc(τ ab) prio(τ ix)<prio(τ ab)
Tasks τij and τik will belong to the same section if

Hij(τab)=Hik(τab) is fulfilled. In the example in Figure 1,
from the point of view of the execution of the taskτab, the
transactionΓi is made up of two differentH sections, which
are: the sectionHi2(τab)=Hi3(τab)={τi2,τi3} and the section
Hi5(τab)={τi5}. Note that, according to definitions 1 and 2,
two tasks will be in conflict if and only if they execute in
the same processor and belong to differentH sections. If in

a specific busy period there is a job with various tasks of
different conflicting sections, we must choose for the worst-
case those tasks belonging to a singleH section whose sum
of execution times is the greatest. In the example in
Figure 1 we have two jobs with tasks that can be delayed
until the instanttc. The first job has conflicting activations
of tasks τi3 and τi5, belonging to different sections,
therefore, we will choose for the worst-case the one with
greatest execution time, equal toMax(Ci3,Ci5). The second
job has the activation ofτi2 and τi3 in conflict with the
activation ofτi5, since the first two belong to the sameH
section, different to that ofτi5, in such a way that for the
worst-case we chooseMax(Ci2+Ci3,Ci5). The maximum total
contribution to the busy period will be the one due to both
jobs, giving a bound:

(21)W Max(Ci3,Ci5) Max(Ci2 Ci3,Ci5) Cab

We can check that this result is the same as obtained
from calculating the maximum of the three execution
schemes considered in Figure 1-b. Remember that if we
apply the techniques without considering the precedence
relationships, we obtain at least a value
W=2Ci2+3Ci3+3Ci5+Cab.

4. Worst-case interference

We will deduce the expression for the maximum
interference due to the tasks of transactionΓi in the
execution of another taskτab, by studying all the possible
critical instants created with tasks ofΓi with higher or equal
priority thanτab. We will focus on the study of the critical
instant created with a taskτik. For this purpose, we
distinguish between the jobs initiated before or after the
critical instant. All the jobs posterior to the critical instant,
with indices p’≥1, must start execution in order of
precedence beginning with the first task; therefore, only the
tasks belonging to the firstH section can contribute to the
busy period. We identify these as:

(22)MPi(τ ab) l ∈ Γi x<l

proc(τ ix) proc(τ ab) prio(τ ix)<prio(τ ab)
and given that the activation corresponding top’=1 is
produced at the instantϕ’ ijk calculated with (17), the
expression for this interference is:

(23)Wik(τ ab,t) p >0
∀j ∈MPi(τ ab)

t ϕijk

Ti 0

Cij

Sinceϕ’ ijk can be greater thanTi and the contribution to
the response time cannot be negative, we must consider the
maximum with 0, and so x0 = max( x ,0).

For the contribution to the worst-case of jobs previous to
the critical instant created withτik, we must find and
resolve possible execution conflicts between tasks ofΓi. To
do this, we will construct a so-called conflict table in the



busy period of widtht for the taskτab. Each row represents
a vector of the tasks belonging to transactionΓi, while each
column represents the different jobs of the transaction (with
valuesp’≤0). Each cell (j,p’) can take one of two different
values: 0 if the activationp’ of task τij has not been
produced within the interval [0,t), or Cij —the worst-case
execution time— if activationp’ of τij has been produced
within the busy period of widtht. Given that activationp’=1
is originated at instantϕ’ ijk, the activation numberedp’ will
be released at instantϕ’ ijk- (p’-1)Ti.

We must construct a table of, at most,N columns and
ni’ Nk rows, N being the index of the last task in the set
hpi(τab) and ni’Nk the number of pending activations of this
last task. Next, we show the algorithm for creating the
conflict table for transactionΓi, corresponding to the critical
instant started with taskτik, for the analysis of a taskτab.

During the elaboration of the table we can reduce the
number of conflicts since when we study the critical instant
created with the taskτik we are implicitly eliminating the
possibility of some conflicts. Those tasks preceded byτik

entering in conflict with it can not execute since we have
already chosen the execution ofτik at least for the event
with which the critical instant is created, with an index
equal top0’ ,ikk, given by (19). This means that in those jobs
with index greater than or equalp0’ ,ikk, we can eliminate the
activations of tasks preceded byτik not belonging to the
sameH section, according to the following algorithm:

To resolve the activation conflicts we must go through

ProcedureBUILD_CONFLICTS_TABLE(τab, t, Γi,τik, out Table)is
begin

Initialize_Table;
For all τij ∈ hpi(τab) loop

For p’ in p0’ ,ijk .. 0 loop
if t ≥ ϕ i’ jk - (p’-1)Ti then Table(j,p’) := Cij;
else Table(j,p’) := 0;
if p’≥p0’ ,ikk and j>k andHij(τab)≠Hik(τab) then Table(j,p’):=0;

end loop;
end loop;

endBUILD_CONFLICTS_TABLE;

the table by rows (jobs), obtaining for each one the
maximum execution time required by the processor for an
H section. The execution time required by eachH section in
the job p’ is calculated by adding, in the rowp’, the
columns corresponding to tasks belonging to this section.
The total interference is obtained by adding the values
obtained for each row, as in the algorithm shown below.

In practice, building the conflicts table is not necessary

FunctionRESOLVE_CONFLICTS(τab, t, Γi,τik) return time is
begin

BUILD_CONFLICTS_TABLE(τab, t, Γi,τik, Table);
Total:=0;
For p’ in p0’ ,iNk .. 0 loop

max_section:=0; sum:=0;
For all τij in Γi loop

if prio(τij)<prio(τab) and proc(τij)=proc(τab) then sum:=0;
else sum:=sum+Table(j,p’);
if sum>max_section then max_section:=sum;

end loop;
Total:=Total+max_section;

end loop;
return Total;

endRESOLVE_CONFLICTS;

because it is possible to integrate the latter two algorithms
into a single one that obtains and then resolves each of the
conflicts in each pending activation [8].

Considering the resolution of conflicts in jobs before the

critical instant with p’≤0 and equation (23) forp’>0, we
obtain the interference due to the tasks of transactionΓi in
the busy period of widtht starts in the critical instant
created withτik, as

Wik(τ ab,t) RESOLVECONFLICTS(τ ab,t,Γi,τ ik)
t ϕijk

Ti 0

Cij

Starting from this equation we can derive the function
W*

i (τab,t), which obtains an upper bound of the maximum
interference due to tasks of the transactionΓi

(25)Wi (τ ab,t) max
∀k∈hpi(τ ab)

Wik(τ ab,t)

Next, we will illustrate this technique applying it to the
example shown in Figure 1. We will analyze the possible
worst-case situations constructed with each of the tasks with
priority higher thanτab. In Figures 3 to 5 each of the three
constructed scenarios is shown, according to the critical
instant that has been created withτi2, τi3, or τi5.

Figure 3 shows the case of the critical instant created
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Figure 3. Critical instant created with taskτi2

when we activate taskτi2 undergoing its maximum possible
delay. As can be observed, at instanttc the execution of
tasks τi2, τi3, and τi5 corresponding to the job numbered
p’=0 is pending, and so we create the table of conflicts
shown at the bottom of the figure. Note that we can
eliminate the cell corresponding to the taskτi5 from the
table, given that the critical instant created withτi2 would
be incompatible with its execution, as is indicated in the
algorithm for creating the conflict table. In fact, there is no
activation conflict since the only possible scenario is the one



shown in the figure. The resolution of conflicts is shown on
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Figure 4. Critical instant created with taskτi3

the right of the table: given that tasksτi2 andτi3 belong to
the sameH section, the result in the only job (p’=0) of the
table is equal toCi2+Ci3. The set of tasksMPi is empty,
given that the first task of the transaction executes in the
same processor and has a priority lower than that assigned
to τab, and therefore, the contribution of posterior jobs to
the critical instant, with indicesp’>0, will be null. The
possible contribution to the worst case ofτab in the busy
period studied will beWi2=Ci2+Ci3.

Figure 4 shows the critical instant constructed withτi3.
In this case, the job numberedp’=0 has the execution of
tasksτi2, τi3 and τi5 pending, but the executions ofτi3 and
τi5 corresponding to the previous job (p’=-1) are also
pending. The table will therefore have two rows, as is
shown in the figure, in which the executions incompatible
with the critical instant are eliminated. For each of these
two jobs, the maximum section is calculated and they are
added. The estimated bound in this case for the contribution
to the busy period is equal toWi3=Ci3+Ci2+Ci3.

Finally, Figure 5 shows the two possible scenarios when

Ji2Φi2Ji3 Ji5
Φi3 Φi5

τi3 τi4 τi5

p’= -1
=> =>

p’0,i25=0 p’0,i35=0
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0 0 0 0 Ci5

τi2

Wi5=Ci5+Max(Ci2+Ci3,Ci5)p’=  0 0 Ci2 Ci3 0 Ci5
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τab
τi1 τi2 τi3 τi4 τi5

τi5

τi1 τi2 τi3 τi4 τi5

Figure 5. Critical instant created with taskτi5

the critical instant is created with the taskτi5. In the instant
tc, one job of tasksτi2 and τi3 and two jobs of taskτi5 are
pending. Note that in this case, by applying the reduction as
in other cases, we do not eliminate any activation from the
table. Furthermore, now we have a conflict in the table (in
the previous two cases there were no effective conflicts).
The jobp’=-1 contributes withCi5, but in the jobp’=0 we
have activations in two different sections that can contribute
to the busy period. The resolution of this conflict obtains a
contribution, for this job, equal to the maximum of the
contribution of the two sections,Max ( Ci2+Ci3 , Ci5 ). The
total contribution at the critical instant created with the task

τi5 is Wi5 = Ci5 + Max ( Ci2+Ci3 , Ci5).
The maximum contribution of tasks of transactionΓi to

the worst-case response of taskτab can therefore be bound
with the expression:

Wi Max(Wi2,Wi3,Wi5) MaxCi2 2Ci3,Ci5 Max( Ci2 Ci3,Ci5)
It can be seen that this expression is equivalent to the

one obtained in equation (21), obtained by inspection of the
example in Figure 1.

In real-time systems with precedence relationships, in
which one task is activated when the previous one finalizes,
it is possible to reduce the pessimism in the analysis, also
reducing the number of cases to analyze, if we bear in mind
the following lemma:

Lemma 5-1. Let τij andτij+1 be two consecutive tasks in
the same transactionΓi, such that taskτij+1 is activated
when the execution of taskτij finalizes. If both tasks are
located in the same processor, there cannot be a busy period
of level pr = minimum( prio(τij) , prio(τij+1) ) or lower,
whose start time coincides with the activation of taskτij+1.

Proof. Suppose there were a busy period of levelpr or
lower initiated at an instantt at which taskτij+1 is activated.
Given that taskτij+1 is activated immediately after taskτij,
just at the instantt the execution ofτij will have finished
and, given that they execute in the same processor, this
means that the start of the busy period cannot be the instant
t, but it must go back, at least, to the instant of the
activation of taskτij. Note that this reasoning would not be
valid if task τij+1 had a priority higher than that of taskτij

and we were studying an intermediate level busy period.
This lemma allows us to reduce the number of cases to

be considered for the taskτab. If in a transactionΓi, two
consecutive tasks execute in the same processor asτab and
they are assigned higher or equal priorities thanτab, then it
is sufficient to analyze the busy period that starts in the
possible critical instant created with the first of the tasks.
Extending this reasoning, it is only necessary to analyze the
possible critical instants created with the tasks in the set:

XPi(τ ab)



l∈Γi

proc(τ il) proc(τ ab) prio(τ il)≥prio(τ ab)
proc(τ il 1)≠proc(τ ab) prio(τ il 1)<prio(τ ab)





that is, the set of tasks of the transitionΓi executing in the
same processor as taskτab with higher or equal priority
than that assigned toτab and whose predecessor, if there is
one, is not found in the same conditions. The expression to
obtain an upper bound of the maximum interference due to
tasks of transactionΓi is as follows;

(28)Wi (τ ab,t) max
∀k∈XPi(τ ab)

Wik(τ ab,t)

whereWik(τab,t) corresponds to equation (24). Given that the
set XPi(τab) can contain fewer tasks that the sethpi(τab)
defined previously, we eliminate the analysis of non-
possible busy periods, thus, reducing the pessimism



introduced in the analysis and the number of cases to be
analyzed, making the algorithm faster.

5. Application to the transaction under analysis

We are now going to apply the considerations about the
precedence relations and priority schemes to the transaction
to which the task under analysisτab belongs. The
methodology of analysis estimates upper bounds on the
response times of a task by studying the possible critical
instants created with each of the tasks of a transactionΓa

with a priority higher than or equal to that of the task under
analysis, including the task itself. In this section, we derive
the expression for the contribution of tasks ofΓa to the
worst case of a taskτab, in the busy period starting in the
instant of maximum jitter of the activation of a taskτac.

Figure 6-a shows an example of a transactionΓa with
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Figure 6. Critical instant created with taskτa5

four tasks executing in a processor (supposing that the rest
of the tasks are executing in others processors). Once again,
the downward arrows indicate the occurrence of events and
the upward arrows the offsets of the tasks. Each box
represents the execution of a task, its height being
proportional to its assigned priority. Activations of tasks in
different jobs are represented by different shadings, and
maximum activation delays by continuous lines. We will
consider the critical instant created through taskτa5 for the
analysis of taskτa3. In these conditions, the transaction has
two H sections: one made up of a taskτa1 and another
made up of the tasksτa3 and τa5. As can be observed, in
that critical instant there are three jobs that have the
execution of some of their tasks pending, so we must take
into account the activation conflicts between tasks of
differentH sections. The lower part shows the three possible
execution scenarios depending on the tasks chosen for
execution. The first scenario represents the execution when
the two pending activations of taskτa1 are delayed until the
critical instant, with indicesp’=-1 and p’=0. The second
represents the execution when only the one corresponding
to p’=0 is delayed, and third when neither is delayed (or

they are not delayed enough so as to occur after the critical
instant).

Although the three execution scenarios start with a
possible critical instant created withτa5, they are not all
valid for the analysis of the taskτa3. We will focus on the
first scenario created, in which the pending activations of
taskτa1 are delayed so as to execute within the busy period.
Given that tasksτa1 andτa3 belong to differentH sections,
the corresponding busy period does not contain any
execution of the taskτa3 and, thus, is not useful for the
analysis. The other two scenarios, however, do contain
executions of taskτa3 and must be analyzed.

This means that we can reduce the number of possible
cases to be considered in the analysis. As was deduced in
the previous section, when considering the critical instant
created with a taskτac we must bear in mind that the
execution of this taskτac has been forced to execute inside
the associated busy period, at least for the job with which
the critical instant was created. For the analysis of taskτab

we are also forcing another situation: that the activation
analyzed is within the constructed busy period. Once again,
focusing on the example in Figure 6, the busy period
represented in the third scenario contains the execution of
task τa3 corresponding to the jobsp’=-1 and p’=0.
However, the second scenario contains only the execution
of τa3 belonging to the jobp’=-1, since for the jobp’=0 the
execution of taskτa1 was chosen for the busy period. This
means that in the analysis of the jobp’=-1 we must consider
the two scenarios, but in the analysis corresponding to the
job p’=0 it is sufficient to analyze the last scenario, given
that the others are incompatible with the execution ofτa3 in
the busy period.

Therefore, we can extend the rules applicable for the
reduction of the conflict table in the analysis of taskτab

corresponding to the jobpa’ b in the busy period created with
task τac. On the one hand, the reduction rule mentioned
above, due to the creation of the critical instant. On the
other hand, the conflicts in the jobpa’ b and the previous ones
will have had to be resolved in a way compatible with the
execution, within the busy period considered, of the
activationpa’ b of τab. In the example, if for the jobsp’=-1
and p’=0, task τa1 has executed inside the busy period, it
is not necessary to analyze the execution ofτa3

corresponding to the jobpa’ 3 =0. These reduction rules are:
1st Reduction rule (due to the creation of a critical

instant). In the conflict table, the activations corresponding
to p0’ ,acc and posterior jobs entering in conflict with taskτac

can be eliminated. That is, we can eliminate the cells (j,p’)
verifying the condition.

(29)p ≥p0,acc j>c Haj(τ ab)≠Hac(τ ab)
2nd Reduction rule (due to the execution of the jobpa’ b

of τab in the busy period). We can eliminate the conflicts in



jobs pa’ b and anterior jobs, incompatible with the execution
of τab. That is:

(30)p ≤pab j<b Haj(τ ab)≠Hab(τ ab)

Furthermore, we can consider another reduction rule in
the analysis. The tasks preceded byτab can not interfere in
the execution of a jobpa’ b if they correspond to jobs
posterior to the analysis. That is take into account in the
next reduction rule:

3rd Reduction rule (due to the analysis of the jobpa’ b of
τab). The cells corresponding to the tasks preceded byτab

in the same or posterior jobs can be eliminated from the
conflict table. The activations posterior to the taskτab itself
do not have to be considered either. Therefore, we can
eliminate the cells (j,p’) which fulfil:

(31)( p ≥pab j>b ) ( p >pab j b )

With all these considerations, the table of conflicts in the
transactionΓa for the analysis of the jobpa’ b of τab can be
created according to an algorithmBUILD_CONFLICTS
_TABLE_IN_Γa similar to the one used to create a conflict
table in the previous section, but adding the new reduction
rules. The process of resolution of the conflicts is similar to
the functionRESOLVE_CONFLICTSdescribed in the previous
section, but using this last algorithm to create the table.

Through the resolution of the activation conflicts we
obtain the interference due to jobs activated before the
critical instant. Another aspect we still have to consider is
the preemption due to tasks activated in jobs posterior to the
critical instant. To obtain the expression of this interference
we must take two effects into account due to the precedence
relationships in the tasks of transactionΓa and which, in
part, we have already taken into account to reduce the
conflict table.
• Jobs posterior to the critical instant can only interfere in

the busy period with tasks belonging to the first section
H, included in the setMPa.

• In the analysis of the activationpa’ b of a taskτab there
cannot be interference due to tasks preceded by it,
activated in the same jobpa’ b or posterior.
The activation of a taskτaj corresponding to the first job

after the critical instant (with indexp’=1), is by definition
produced in the instantϕa’ jc. Therefore, a taskτaj of the set
MPa will be activated periodically everyTa starting from
instantϕa’ jc.

We differentiate the contribution of tasks belonging to
the setMPa depending on whether they precede or are
preceded by the task under analysis. The tasks precedingτab

have no restriction in terms of their possible preemptions, so
that their contribution to the busy period of widtht will be
given by the expression:

(32)
∀j ∈MPa(τ ab)

j<b

t ϕajc

Ta 0

Caj

The tasks preceded byτab do have a limit in terms of
their possible preemptions, since they can only preempt the
execution of their activationpa’ b if they correspond to jobs
before the jobpa’ b; so their contribution will be:

(33)
∀j ∈MPa(τ ab)

j>b

min




pab 1 ,
t ϕajc

Ta 0





Caj

Finally, we consider the contribution to the busy period
of the task under analysis itself. In the conflict table, the
activations of jobs before the critical instant were taken into
account and t, therefore, we only have to consider those
jobs activated after the critical instant (with indicesp’>0)
until the activation analyzedpa’ b, that is

(34)pab Cab

Note that these last two expressions only make sense for
the analysis of the activations ofτab corresponding to jobs
posterior to the critical instant and so, for negative values of
pa’ b they must be equal to 0. In summary, the contribution to
the worst case of tasks activated by events occurring after
the critical instant, including taskτab itself, can be
expressed as follows:

(35)
Wac(τ ab,t) pab>0

∀j ∈MPa(τ ab)
j<b

t ϕajc

Ta 0

Caj

max



0,pabCab

∀j ∈MPa(τ ab)
j>b

min



pab 1,

t ϕajc

Ta 0




Caj





Thus, the total contribution of tasks of transactionΓa to
the busy period for the activationpa’ b of task τab is
calculated as:

Wac(τ ab,pab,t) RESOLVECONFLICTSIN Γa(τ ab,pab,t,Γa,τ ik)

Wac(τ ab,pab,t) pab>0

This expression completes the new analysis technique, in
which we consider the precedence relationships and the
priority schemes of the transactions. In this technique, the
completion timewabc(pa’ b) of an activationpa’ b is calculated
according to the expression:

wabc(pab) Bab Wac τ ab,pab,wabc(pab)
∀i≠a

Wi τ ab,wabc(pab)

whereW*
i (τab,wabc(pa’ b)) corresponds to equation (28). Using

this result, the worst-case global response time,Rabc(pa’ b), is
determined as:

(38)Rabc(pab) wabc(pab) ϕabc (pab 1)Ta Φab

We must extend this analysis to all the activations
occurring in the busy periodLabc, calculated using the
equation:



(39)Labc Bab Wac τ ab,Labc
∀i≠a

Wi τ ab,Labc

whereWac(τab,Labc) is given by (24). We must analyze the
activations with indices betweenp0’ ,abc andp’L,abc, obtain from
the busy period as:

(40)pL,abc

Labc ϕabc

Ta 0

Nevertheless, if taskτab does not belong to the first
sectionH, a busy period can not contain executions of jobs
originated after the critical instant, with indicesp’>0, so is
sufficient to analyze until:

(41)pL,abc 0 if τ ab ∉ MPa(τ ab)
The response time will correspond to the greatest of all

of them, that is:

(42)Rab max
∀c∈XPa(τ ab)









max
p p0,abc..pL,abc

wabc(pab) ϕabc (pab 1)Ta Φab

We will see how this technique is applied in the example
shown in Figure 6, for the analysis of taskτa3 in the
potential critical instant created with taskτa5. Figure 7-a
shows the table of conflicts corresponding to the jobs before
the critical instant. As can be seen, there are two pending
activations of taskτa3 corresponding to the indicesp’=-1
andp’=0. Figure 7-b shows the tables of conflicts generated
for the analysis of each of these two activations, resulting
from applying the reduction rules seen previously on the
original table of conflicts. In the same way, the lower part
of each table shows the result obtained after the resolution
of these conflicts.

If we apply the criteria defined for the number of

τa3 τa5

p’=-2

p’=-1=>p’0,a15= -1 p’0,a35= -1 p’0,a55= -2

b) Conflicts resolution in the analysis of task τa3

a) Critical instant created with τa5
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Figure 7. Analysis applied to taskτa3

activations to be analyzed, we could see that we only have
to carry out the analysis for values betweenp0’ ,a35=-1 to
p’L,a35=0 since taskτa3 does not belong to the setMPa(τa)
made up only of taskτa1.

The contribution to the worst case ofτa3, in its first
analyzed activation, withpa’ b=-1 is:

(43)Wa5( τ a3, 1 ,t ) Ca5 Ca3 Ca1

t ϕa15

Ta 0

Ca1

which we will use to calculate the completion timewa35(-1)
and, as a result, the corresponding global response time

(44)Ra35( 1) wa35( 1) ϕa35 2Ta Φa3

For the second activation, withpa’ b=0, the contribution to
the worst case is calculated as:

(45)Wa5( τ a3, 0 ,t ) Ca5 Ca3 Ca5 Ca3

t ϕa15

Ta 0

Ca1

from which we obtainwa35(0) and, from it, the response
time as:

(46)Ra35(0) wa35(0) ϕa35 Ta Φa3

In this way, the response time of the taskτa3, in any
busy period starting with a critical instant created by a task
τa5, is bounded by the value

(47)Ra35 Max Ra35( 1) ,Ra35(0)
Integrating this new formulation in the iterative algorithm

for dynamic offsets, we will obtain better estimations of the
worst-case response times in systems with precedence
relations in the activation of their tasks. We will call this
new algorithm WCDOPS (Worst-Case Dynamic Offsets
with Priority Schemes). The complexity of this algorithm is
approximately the same as for the previous algorithm
(WCDO, Worst Case Dynamic Offsets) multiplied by the
number of rows to be processed in the conflicts table, which
is upper-bounded by the maximum ratio of task deadline
over period in the system.

6. Simulation results

We have compared the results of the new analysis for
tasks with dynamic offsets and priority schemes with the
results obtained using the previous analysis technique for
distributed systems based on dynamic offsets without
priority schemes [7]. This comparison will be made by
means of the results given by Tindell and Clark’s technique,
which assumes that each task is independent of the others
[10]. For this purpose, we have conducted extensive
simulations with different task sets whose execution times
and periods were generated randomly. Priorities were
assigned using the deadline monotonic algorithm with a
small random variation that allows us testing cases with
different priority schemes. The results of some of these
simulations are shown in this section.

The first set of graphs (Figures 8 to 10) compares the
response times obtained using Tindell and Clark’s technique
for independent tasks,Rindep, with the response times
obtained using algorithm WCDO,RWCDO, and using
algorithm WCDOPS,RWCDOPS. In these figures, we show the
average ratiosRindep/RWCDO and Rindep/RWCDOPS obtained for



five simulated tasks sets for each point in the graph. The X
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Figure 8. Comparison, one processor, best-case=0

axis represents processor utilization. Each figure presents the
results for three different ratios of the maximum transaction
period over the minimum transaction period,δ=Tmax/Tmin.
Figure 8 shows the results for a set of 10 transactions with
10 tasks per transaction, in one processor, for the case in
which the best-case response times are considered
negligible, and thus the task offsets are all zero. It can be
seen that for normal utilization levels of around 40%, the
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response times with independent tasks are roughly between
1.7 and 2.5 times larger than in the analysis with dynamic
offsets. This result increases to between 6 and 12.5 for the
analysis with dynamic offsets and priority schemes. The
results with best case response times equal to the task
execution times are the same for this case.

Figure 9 shows the results for a similar case, but running
on four processors. We can see that as the number of tasks
of the same transaction that are in the same processor
diminishes, the benefits of the algorithms also diminish.
However, these benefits are still significant, with response
times between 1.13 and 1.17 times better for 40% utilization

in the WCDO algorithm and between 1.65 and 2.23 in the
WCDOPS algorithm. Figure 10 shows the results for the
same case as Figure 9, except that the best case response
time of each task is considered equal to the sum of the
execution times of itself and all its predecessor tasks in the
same transaction. We can see that the results are better, with
response times between 1.45 and 1.77 times better than in
the analysis with independent tasks, for a utilization of 40%
in the WCDO, that increase until 2 and 3 times for
WCDOPS.

The second set of graphs (Figure 11 and Figure 12)
compare the maximum schedulable utilization that can be
obtained for a given task set using the analysis for
independent tasks, algorithms WCDO and WCDOPS with
zero best case response times, and algorithm WCDOPS with
best case response times equal to the task execution times.
The maximum schedulable utilization is obtained by
analyzing a system with low utilization, and then increasing
its utilization until the system no longer meets its deadlines.
The maximum schedulable utilization is taken as the last of
the task sets for which the deadlines were met. The
simulations have been done for different ratios of deadlines
over periods,Di/Ti.

Figure 11 shows the results for the simulation of a
system with 4 processors, 5 transactions and 20 tasks per
transaction, withδ=Tmax/Tmin=100. Figure 12 shows the
results for a similar task system, but with 12 tasks per
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transaction instead of 20. We can see that from values of
Di/Ti=3 and higher, we can get a increase of around 8%
more schedulable utilization in the case of 12 tasks, and
15% more in the case of 20 tasks. In Figure 11, for the case
Di/Ti=4, that we would consider as normal for a system with
4 processors, we achieve an increase from 15% to 24% of
the maximum schedulable utilization, that gives a relative
improvement of 60%. In Figure 12, forDi/Ti=4 the
maximum is increased from 23% up to 34%, with a relative
improvement of 43%. It is also worth mentioning that for



systems with several processors the results are better if we
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consider best-case response times larger than zero, although
it is still possible to get benefits from our new analysis if
we consider the best execution times equal to zero.

7. Conclusions

In this paper we have presented improved techniques for
the schedulability analysis of tasks with precedence relations
in multiprocessor and distributed systems. These techniques
are based on the analysis of tasks with dynamic offsets that
we had previously developed, which we have improved here
by exploiting the precedence relations in a more accurate
way, and considering the priority structure of the different
tasks. Through simulation results, we have shown that the
benefits of the new analysis over the previous analysis
techniques for distributed and multiprocessor systems are
very high. The response times with the new technique are
significantly lower, and the maximum schedulable utilization
can be increased; in the examples shown, it was increased
by an additional 11% of schedulable utilization.

An implementation of the algorithms WCDO and
WCDOPS may be found inftp://ftp.deyc.unican.es/pub/real-
time.
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