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Abstract precedence relations among tasks, within the analysis. In
this article we improve the analysis based on tasks with
In this paper we present improved techniques for the gynamic offsets, by directly including the precedence
schedulability analysis of tasks with precedence relations in (g|ations among tasks of the same response sequence in the
multiprocessor and distributed systems, scheduled under a analytical expressions. As we will show, in distributed
preemptive fixed priority scheduler. Recently developed gystems the new technique allows a significant increase of
techniques, based on the analysis of tasks with dynamic the schedulable utilization of the CPU compared to the case
offsets, take into account the precedence relations between \yhen previous analysis techniques were used. This comes
tasks only indirectly, through terms iteratively estimated gt no cost for the application, which will still be scheduled
from the response times of the tasks. With the techniques using fixed priorities.
presented in this paper, we exploit the precedence relations  The paper is organized as follows. In Section 2, we
in a more accurate way, and we also take advantage of the reyiew the analysis technique derived from the model of
priority structure of the different tasks. These considerations t5sks with dynamic offsets, which is directly applicable to
permit a significant improvement of the results of the gjstributed systems. In section 3, we present the activation
analysis applied to distributed and multiprocessor systems conflicts, a direct consequence of the precedence
_ relationships among tasks of the same response sequence,
1. Introduction and we will see how we can take advantage of their
existence to improve the analysis. In section 4, we derive
analytical expressions leading to the calculation of the
worst-case execution interference. Later, in section 5, we
consider the effect of the precedence relationships on tasks
belonging to the same sequence as the task under analysis,
and which complete the set of equations applicable to the
analysis. Section 6 shows the simulation results obtained
with the new technique, comparing them with those of
current techniques, based on independent tasks and dynamic

Rate monotonic analysis (RMA) [2][4] allows an exact
calculation of the worst-case response time of tasks in
single-processor real-time systems, including the effects of
task synchronization [9], the presence of aperiodic tasks, the
effects of deadlines before, at or after the periods of the
tasks [3], precedence constraints and tasks with varying
priorities [1], etc. However current RMA cannot provide
exact solutions to the response times in multiprocessor and
dlstanted hard_ rgal—tlme system_s. The general yvorst-case offsets, respectively. Finally, in Section 7 we give our
analysis of a distributed system is still an open issue, but conclusions
one approach that can be used is to analyze each processing '
and communication resource of the system as if it were . .
independent. Tindell and Clark developed a widely accepted 2. Analysis based on dynamic offsets
technique, based on the assumption that all tasks are p 1. Computational Model
independent [10][5] with a jitter term due to the execution
of preceding tasks. In [7] we derived an approximate The system model that we will consider as an
technique based on the model of tasks with dynamic offsets, approximation to the distributed system is composed of a set
which significantly improved the results obtained in systems of tasks executing in the same or different processors, which
with tasks that suspend themselves, and also in distributed are grouped into entities that we will cathnsactiong11].
systems. Nevertheless, these techniques are still somehowEach transactiof; is activated by a periodic sequence of
pessimistic since they do not exploit sufficiently the external events with period;, and contains a set ah
tasks The relative phasings between the different external
events are arbitrary. Each task is activated (released) when
a relative time —called theffset— elapses after the arrival
of the external event. Each activation of a task releases the
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execution of one instance of that task, that we will call a existence of offsets makes it impossible for some sets of
job. Each task has its own unique priority, and the task set tasks to become active simultaneously. The analysis
is scheduled using a preemptive fixed priority scheduler. calculates the worst-case interference of a transa€iiam
When the activation of the task occurs with an offset that is the response time of a tagk, in the potentially critical
constant, independent of the execution of other tasks in the instant that coincides with the most delayed activation of a
system, we say that is static offset. We call an offset taskT, belonging to the transaction:

dynamic if it can vary between some minimum and Oy = T, — (@4, ~P,) mod T, 1)
maximum interval. This variation is often caused by the : 0l 3+ : .1 0
execution of other tasks or activities for which the activated W, (1,0 = ) D‘”_”k’ + lge, @
task must wait. ey O Ty T 10

Each task is identified with two subscripts: the first one Where hp(t,,) represents the set of tasks belonging to
identifies the transaction to which it belongs, and the second transactionl’; with priority higher than or equal to the
one the position that the task occupies within the tasks of its Priority of T,, and executing in the same processorgs
transaction, when they are ordered by increasing offsets. In The main problem with this analysis technique is that we
this way, T; is thej-th task of transactioft,, with an offset don’t know which taskr,, must be used to create the worst-
of ®; and a worst-case execution time Gf. In addition, case busy period. We obtain an upper bound of the
each task is allowed to have jitter, that is, to have its interference of the tasks of a transactignn a busy period
activation time delayed by an arbitrary amount of time Of durationw, as the maximum of all possible interferences
between 0 and the maximum jitter for that task, which we that could be caused by considering each of the tasks of

will call J;. This means that the activation of tagkmay as the one originating the busy period:
occur at any time_ betwee+®; andto+CDij+J_ij, wheret, is W(T,,w) = max W, (T, ,w) (3)
the instant at which the external event arrived. Tk O hp(r,,)

We allow deadlines to be larger than the period, and so In order to introduce less pessimism, we will not use this
at each time there may be several activations of the same function for the transaqtion to which the. tgsk under anqusis
task pending. We also allow both the offsatand the jitter ~ Pelongs, but we will use the original transaction.
J; to be larger than the period of its transacti®p For each Consequently, we must consider all the possible critical
task T, we define its response time as the difference Instants created with each of the tagkin the sethp,(T,),
between its completion time and the instant at which the adding the ownr,,. We calculate the completion time of
associated external event arrived. The worst-case response€ach jobp in the busy periodw,,{p), by means of:
time will be calledR;. Each task may have an associated W, dP) = B+ (PPoanct)Cyp + 4
global deadlineD;, which is also relative to the arrival of W T W () + 3 WE(T i, (P) 4
the external event. Gra

The tasks can synchronize for using shared resources in Parametep, ... corresponds to the first activation that occurs
a mutually exclusive way using a hard real-time atthe critical instant:
synchronization protocol such as the priority ceiling protocol {
[9]. Under this assumption, the effects of lower priority Poabe = ~ |
tasks on a task under analysig, are bounded by an
amount called the blocking terrB,, calculated as the

‘Jab+¢abc

a

The length of the busy period is calculated as:

+1 (%)

maximum of all the critical sections of lower priority tasks L. = Bab+% Labc_q)abc]p{)ab;lg C, *
that have a priority ceiling higher than or equal to the T, ’ O (6)
priority of T,,. + W (T Ll %V\/i*(rab,Labc)
2.2. Calculation of the worst-case response times and from it:
To calculate the worst-case global response time of a task PLabe = {ﬁ} ()

a

The global worst-case response time is obtained by
subtracting the instant at which the associated event arrived,
from the completion time :

T, We must build the worst-case scenario for its execution.
To achieve this, we must create a critical instant that leads
to the worst-case busy period. A task busy period is an
interval of time during which the CPU is busy processing
task 1, or higher priority tasks. In tasks with offset we RaodP) = WooP) = §p (P-1)T, + @ (®)
must take into account that the critical instant may not  And then we need to take the worst of all the response
include the simultaneous activation of all higher priority ~times obtained:

tasks, as was the case when all tasks were independent. The



R,- max max (Rabc(p)) ) of_ a task, .its _height being_ prqportioqal to its assigned
CEONPT)Ub | PPy Prase priority. Activations of tasks in different jobs are shown by
This model can be applied as an approximation for the different shading. The maximum jitter termsJ;,
analysis of distributed systems, considering for eachtask  corresponding to the activation of each task are also

an equivalent offset and jitter term calculated with: represented with horizontal lines. We will study the
o = R° contribution of tasks if"; to the worst-case response time
ij ij-1 (10) .. .
J=R,-R_+J of another taskt,, (whose priority is indicated by the
ij j-1 ij-1 clock

dashed horizontal line),in the busy period starting at tine
Figure 1-b shows three possible execution scenarios,
depending on the jitter chosen for each activation, which is
indicated in the figure by the lower dashed lines. The first
scenario represents the execution of the system when we
choose the jitter in the same way we used to built the worst-
case up to now, that is, delaying the activations
corresponding to jobs before the critical instant until they
coincide with it. If we ignore precedence relations, all task
activations with priority higher tham,, will interfere in its
execution so that the completion time would be, at least,
W=2C,+3C,;+3C+C,,. Nevertheless, the precedence
relations oblige the execution of tasl not to start until
the execution of the preceding task, has finished.
Moreover, given that task, has a lower priority than that
assigned tort,, T, cannot start to execute unti,, has
finished, as is shown in the first of the three situations in
Figure 1-b. This means that the completion time of tagk
would in this case be equal toV=C,+2C;+C,,. This
situation represents a more realistic execution scenario, but
it makes the worst-case analysis more difficult, since we
cannot construct the critical instant in the same way as
Although the method based on dynamic offsets is a major before. We would choose, for example, the activation time
improvement over previous methods that considered tasks as Of T, corresponding to the first job so that its execution
independent, it can be pessimistic in some situations, as is Would have finished before the critical instant and sp,
shown with the next example. Figure 1-a shows a periodic could be executed within the busy period. The second
transactionl’;, with 5 tasks of different priority levels  scenario in Figure 1-b shows an example of this case. The
executing in a single processor. The downward arrows difficulty lies in that, by makingr, execute earlier to force
indicate the occurrence of events and the upward arrows the Tis to execute within the busy period, the activationtgf

offsets of the tasksp,;. Each box represents the execution belonging to the same job also has to finish before the
critical instant and, therefore, cannot interfere in the

whereR?, is a lower bound for the best-case response time
of the previous task; , [6], andR;,; is an upper bound for

the worst-case response time. Wi, we model the
effects due to a coarse clock resolution and/or non-perfect
clock synchronization. Now, the main problem is that the
response times are dependent on the task offsets, and the
task offsets depend on the response times.F{-ifqr we can

use any lower bound to the best-case response time,
including zero. The solution to this problem can be found in
WCDO iterative method [7], based upon Tindell & Clark’s
holistic analysis [10]: starting from an initial value of
response times of zero, we apply the analysis using the
technique for static offsets with the equivalent offsets and
jitter terms. In this way we obtain the response times of
each task. Using these response times we re-calculate the
equivalent jitter using (10), and with this new value we
recalculate the response times. This calculation continues in
an iterative way until we obtain the same result in two
successive iterations, that iR = R? 0i, j .

3. Activation conflicts and priority schemes

a) T t, execution of taskt,. This originates a conflict when
N o =S I Y o == H 1, = deciding which of the two situations we must consider for
imﬂ@ﬁ .Tﬂ Imﬁt@ wmj_fis lemf'zfﬁ N ﬂ the worst-case, given that one or other may sometimes
ﬁ% 1.5J4 5 contribute more to the response time, depending on the
@5 %is execution time of each task. Exactly the same problem

occurs in the second job, since the execution of its tagks
andt; is incompatible with the execution of its task, as
shown in the last two scenarios. We will call these
incompatible situations conflicts. Now, let us define more
formally the concept of conflict.

! Lo Definition 5-1. Two tasks are in conflict when the

. execution of one is incompatible with the execution of the

o (Nl ;‘%ﬁmﬂ other, within the same busy period. Lgt and T, be two

e A tasks with higher or equal priority than that assigned to
Figure 1. Possible execution scenarios of a transaction ~ another taskr,, and suppose that; precedest, j<k. If,




in the transactior’; there is a intermediate task (j<I<k)
in the same processor and with a lower priority thgp
then in a busy period of,, taskst; andTt, activated in
the same job cannot interferg, simultaneously. In this
case, the activation of taskg and 1 is said to be in
conflict.

We identify each task activation depending on the instant
of the arrival of the event that triggered its execution. We
assign consecutive positive humbers to the events arriving
after the critical instant, assignimpd=1 to the tasks activated
in the transactiom, triggered by an event which arrived in
the interval (OT], p'=2 to an event arriving inT,,2T], etc.

In the same way, the events occurring before the critical
instant are identified with consecutive numbers0; p'=0
corresponding to the tasks of the transaction triggered in the
interval (-T;,0], p’=-1 to the interval (-4,,-T]], etc. In this
way, we identify with the same index activations that have
precedence relations and correspond to the same job. In the
first of the two jobs of Figure 1, with indeg'=-1, there is

a conflict between the activations of the tasisand T;.

In the second f=0) there is a conflict between the
activation of taskg;, andt; and the activation of tasks.
Note that the execution of the tasks, and t; is
compatible in the same busy period.

To locate the activation conflicts we will identify the
pending activations of the tasks of a transactignin a
specific busy period. In Figure 2 three activation scenarios
are described for a task;, which will help with the
identification, and show a critical instarif delayed an
amountg with respect to the arrival of the events triggering
the transactior;. Scenario 1 corresponds to the cgee;
while Scenario 2 shows the cage®;; finally, Scenario 3
corresponds to a task with offset greater than the period,
®,;>T,, andp<®; (if @ were greater tham; we would refer
to the next event, with a new<®;). Once again we
represent the arrival of events with downward arrows and
the activation of tasks with upward arrows. The continuous
horizontal lines represent the offsets, and the dashed lines
represent the jitter delay of the activations. We calculate the
numbem; of events occurring before the critical instant and
that are awaiting the execution of task at the critical
instant. In the figure, the events arriving at the instapts
andt, are found in this situation so, in the three situations
n;=3.

For the calculation oh}; we define the magnitud¢’ as
the interval between the critical instant and the activation of
T; corresponding to the arrival of the first event after the
critical instant (identified withp'=1). As can be seen, this
value is equal to:

O =T -+ (11)

Note that the valug’ can be greater than the period, for
@<®;, even several times, if the offset is sufficiently big.
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Figure 2. Execution scenarios

Under the conditions when the potential critical instant is
created, corresponds to the instant of arrival of the first
event with the execution of the task still to be started at
the beginning of the busy period. Therefore, this first job
must simultaneously verify the following two inequalities:

t, + q)ij + Jij =t (12)
L-T+® +J <t

Focusing on Figure 2, we can see that the critical instant

t. can be expressed as:
t=t,+n T + @, - ¢ (13)
which substituting into the two previous expressions:
/
b+ @ + 2ty T @ - ¢
/

tofTi +q)ij +Jij<t0+nii Ti +cDij 7¢/

leads to:

(14)

J +0’ J +0’
n < ¢ and n > L 1 (15)
Ti Ti
Given thatn;; is a integer number, the only solution of
these two inequalities is:
J. +d’
- |2 (16)
T

If we apply this result at the critical instamt created
with the taskt,, in which the activation delay is equal to
= (P, +J,) mod T, we obtain the intervap;, between this
critical instant and the activation of the task;
corresponding to the first event occurring after

¢i/jk =T - (Py+ ) mod T, + cbij an
which, substituted into (16), gives the value of the number
n of events pending execution of the task at the
beginning of the busy period:



J,

/
+¢ijk } (18)
T |

Following the previously defined numbering scheme, the
last of these pending events has the ing&0; therefore,
the first of them is identified with the valug);, calculated:

/

_ } ‘]ij+¢iik} i1

L T

In the calculation of the maximum interference due to a
transition”; we must determine and resolve the possible

conflicts of activation in the busy period that starts at the
critical instant under consideration. Resolving a conflict

/
Ny = 1

pO/,ijk = - nij/k +1-= (19)

means choosing the execution of those tasks that have the

greatest interference with the task under analysjs,It is
important to highlight that the activations corresponding to
instances with indexp’'=1 are produced after the critical
instant and, therefore, the task activation phase cannot be
brought forward in order to resolve possible conflicts. In
this case, the tasks must execute according to the order of
precedence, starting with the first task of the transaction in
the same processor. In the example in Figure 1, it can be
seen that the first task of the transactiap, has lower
priority than t,, and so, no task corresponding to jobs
posterior to the instartt can interfere in the busy period.

To determine and resolve the activation conflicts, we
must characterize the priority scheme of each transaction.
From the point of view of the analysis of a task we will
classify the tasks of a transactidn in different sections,
which we will callH sections. ArH section is composed of
a set of contiguous tasks (in the processor whege
executes) with a priority higher than or equal to that
assigned ta,

Definition 5-2. Two taskst; andTt, of a transactior;
belong to the samkl section, for the analysis of a task,
if both execute in the same processortgswith priority
higher than or equal to that assignedtipand there is no
intermediate task of the same transaction executing in the
same processor with priority lower than thatigf. We will
identify with H;(t,,) the section to which task; belongs,
and that is made up of the set of tasks of the transadtjon
which verify:

H(t)={ 10r, 3] joxet Visxs || (20)

proc(t,,)=proc(t ) A prio(t, )<prio(t ) }

Tasks 1; and 1, will belong to the same section if
H;(Ta)=Hi(T,) is fulfilled. In the example in Figure 1,
from the point of view of the execution of the task, the
transactior; is made up of two different sections, which
are: the sectiorH,(T,)=H;3(T.n)={T. Tz} and the section
Hs(1..)={Ts}. Note that, according to definitions 1 and 2,
two tasks will be in conflict if and only if they execute in
the same processor and belong to diffetdrgections. If in

a specific busy period there is a job with various tasks of
different conflicting sections, we must choose for the worst-
case those tasks belonging to a singlsection whose sum
of execution times is the greatest. In the example in
Figure 1 we have two jobs with tasks that can be delayed
until the instantt.. The first job has conflicting activations
of tasks t1; and Tt belonging to different sections,
therefore, we will choose for the worst-case the one with
greatest execution time, equal keax(C,,Cs). The second
job has the activation of;, and 1, in conflict with the
activation oft,, since the first two belong to the sarkt
section, different to that of,, in such a way that for the
worst-case we choosdax(C,+C;,C;s). The maximum total
contribution to the busy period will be the one due to both
jobs, giving a bound:

W = MaxC,,C,) + MaxC,+C,C,) +~ C, (21)

We can check that this result is the same as obtained
from calculating the maximum of the three execution
schemes considered in Figure 1-b. Remember that if we
apply the techniques without considering the precedence
relationships, we obtain at least a value
W=2G;,+3C;5+3Cs+Cype

4. Worst-case interference

We will deduce the expression for the maximum
interference due to the tasks of transactibpin the
execution of another task,, by studying all the possible
critical instants created with tasks lofwith higher or equal
priority thant,, We will focus on the study of the critical
instant created with a task;. For this purpose, we
distinguish between the jobs initiated before or after the
critical instant. All the jobs posterior to the critical instant,
with indices p'21, must start execution in order of
precedence beginning with the first task; therefore, only the
tasks belonging to the firdtl section can contribute to the
busy period. We identify these as:

MP,(t,) = {1 0T, | @x< | (22)

prod(t,)=proc(t,,) A prio(t, )<prio(t ab))}
and given that the activation corresponding g1 is
produced at the instand’;, calculated with (17), the
expression for this interference is:

W = % t_q’ék] C
ik\ " ab’ p’>0 oML Ti 0 ij

Since¢’; can be greater thaf and the contribution to
the response time cannot be negative, we must consider the
maximum with 0, and s¢ = max[x],0).

For the contribution to the worst-case of jobs previous to
the critical instant created with,, we must find and
resolve possible execution conflicts between tasks,.ofo
do this, we will construct a so-called conflict table in the

(23)




busy period of widtht for the taskt,,. Each row represents

a vector of the tasks belonging to transactionwhile each
column represents the different jobs of the transaction (with
valuesp’<0). Each cell ,p’) can take one of two different
values: 0 if the activationp’ of task T1; has not been
produced within the interval [0, or C; —the worst-case
execution time— if activatiorp’ of t; has been produced
within the busy period of widtl. Given that activatiop'=1

is originated at instanp’,, the activation numberep will

be released at instagt - (p'-1)T,.

We must construct a table of, at mobt,columns and
niy rows, N being the index of the last task in the set
hp(t,,) andni, the number of pending activations of this
last task. Next, we show the algorithm for creating the
conflict table for transactiof;, corresponding to the critical
instant started with task,, for the analysis of a task,,.

During the elaboration of the table we can reduce the
number of conflicts since when we study the critical instant
created with the task, we are implicitly eliminating the
possibility of some conflicts. Those tasks precededtpy
entering in conflict with it can not execute since we have
already chosen the execution gf at least for the event
with which the critical instant is created, with an index
equal topy, given by (19). This means that in those jobs
with index greater than or equp) ;. we can eliminate the
activations of tasks preceded ly not belonging to the
sameH section, according to the following algorithm:

ProcedureBUILD_CONFLICTS_TABL&,,, t, I',T,, out Table)is
begin
Initialize_Table;
For all t; O hp(t,,) loop
Forp'in pg .. 0 loop
if t= ¢ - (p-1)T, then Table(p) := C,
else Tablg(p) := 0;
if 2Py andj>k and H;(T,)#H,(T,) then Tablejp’):=0;
end loop;
end loop;
endBUILD_CONFLICTS_TABLE

i

To resolve the activation conflicts we must go through
the table by rows (jobs), obtaining for each one the
maximum execution time required by the processor for an
H section. The execution time required by e&tkection in
the job p' is calculated by adding, in the row’, the
columns corresponding to tasks belonging to this section.
The total interference is obtained by adding the values
obtained for each row, as in the algorithm shown below.

In practice, building the conflicts table is not necessary
because it is possible to integrate the latter two algorithms
into a single one that obtains and then resolves each of the
conflicts in each pending activation [8].

Considering the resolution of conflicts in jobs before the

FunctionRESOLVE_CONFLICTS,, t, I';,T,) return time is
begin
BUILD_CONFLICTS_TABL&,, t, I',T,, Table);
Total:=0;
Forp’ in pgn -- O loop
max_section:=0; sum:=0;
For allt; in I'; loop
if prio(t;)<prio(t,,) and proct;)=proc(t,,) then sum:=0;
else sum:=sum+Tablg(");
if sum>max_section then max_section:=sum;
end loop;
Total:=Total+max_section;
end loop;
return Total;
endRESOLVE_CONFLICTS

critical instant with p£0 and equation (23) fop’>0, we
obtain the interference due to the tasks of transadfjan
the busy period of widtht starts in the critical instant
created withr,, as

/
W, (T ) =RESOLVECONFLICTSt , t,T,T,) { t Tqﬂ C,
i 0

Starting from this equation we can derive the function
W,(T,,t), which obtains an upper bound of the maximum
interference due to tasks of the transaction

W'(t 1) = max W, (1.t
CkOhp(t,)

Next, we will illustrate this technique applying it to the
example shown in Figure 1. We will analyze the possible
worst-case situations constructed with each of the tasks with
priority higher thant,,. In Figures 3 to 5 each of the three
constructed scenarios is shown, according to the critical
instant that has been created wit}) 15, of Tjs.

Figure 3 shows the case of the critical instant created
when we activate task, undergoing its maximum possible
delay. As can be observed, at instanthe execution of
tasks 1, T, and 15 corresponding to the job numbered
p'=0 is pending, and so we create the table of conflicts
shown at the bottom of the figure. Note that we can
eliminate the cell corresponding to the task from the
table, given that the critical instant created withwould
be incompatible with its execution, as is indicated in the
algorithm for creating the conflict table. In fact, there is no
activation conflict since the only possible scenario is the one

(25)
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Figure 3. Critical instant created with task,
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Figure 4. Critical instant created with tasik,

shown in the figure. The resolution of conflicts is shown on
the right of the table: given that tasks andt,; belong to
the sameH section, the result in the only jolp’€0) of the
table is equal toC,+C;. The set of taskdvP, is empty,
given that the first task of the transaction executes in the

same processor and has a priority lower than that assigned

to 1., and therefore, the contribution of posterior jobs to
the critical instant, with indiceg’>0, will be null. The
possible contribution to the worst case ©f in the busy
period studied will baN,=C,+C,.

Figure 4 shows the critical instant constructed with
In this case, the job numberga=0 has the execution of
tasksT,, T,; and 1 pending, but the executions of and
T, corresponding to the previous jolp'{¥-1) are also
pending. The table will therefore have two rows, as is
shown in the figure, in which the executions incompatible
with the critical instant are eliminated. For each of these
two jobs, the maximum section is calculated and they are
added. The estimated bound in this case for the contribution
to the busy period is equal ¥/,=C,;+C,+C.

Finally, Figure 5 shows the two possible scenarios when
the critical instant is created with the tagk In the instant
t., one job of taskg;,, andt;; and two jobs of task, are
pending. Note that in this case, by applying the reduction as
in other cases, we do not eliminate any activation from the
table. Furthermore, now we have a conflict in the table (in
the previous two cases there were no effective conflicts).
The jobp'=-1 contributes withCg, but in the jobp'=0 we
have activations in two different sections that can contribute
to the busy period. The resolution of this conflict obtains a
contribution, for this job, equal to the maximum of the
contribution of the two sectiondfax ( C,+C; , Cs ). The
total contribution at the critical instant created with the task
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Figure 5. Critical instant created with task,

=>Wg=Cig+Max(C;p+C;3,Cs)

Tis iIs W = Cs + Max ( C,+Cy , Cp).

The maximum contribution of tasks of transactibnto
the worst-case response of tagk can therefore be bound
with the expression:

W =Max(W,,,W,;,W,;)=MaxC,, +2C,,,C;+Max(C,,+C,,C))

It can be seen that this expression is equivalent to the
one obtained in equation (21), obtained by inspection of the
example in Figure 1.

In real-time systems with precedence relationships, in
which one task is activated when the previous one finalizes,
it is possible to reduce the pessimism in the analysis, also
reducing the number of cases to analyze, if we bear in mind
the following lemma:

Lemma 5-1 Lett; andt;,, be two consecutive tasks in
the same transaction;, such that taskr;,, is activated
when the execution of task; finalizes. If both tasks are
located in the same processor, there cannot be a busy period
of level pr = minimum( prio;) , prio(t;,,) ) or lower,
whose start time coincides with the activation of tagk.

Proof. Suppose there were a busy period of lepebr
lower initiated at an instarttat which taskr;,, is activated.
Given that taskr;,, is activated immediately after tag,
just at the instant the execution oft; will have finished
and, given that they execute in the same processor, this
means that the start of the busy period cannot be the instant
t, but it must go back, at least, to the instant of the
activation of taskr;. Note that this reasoning would not be
valid if task 1;,, had a priority higher than that of tasi
and we were studying an intermediate level busy pdriod.

This lemma allows us to reduce the number of cases to
be considered for the task,. If in a transactionl’;, two
consecutive tasks execute in the same processuy, and
they are assigned higher or equal priorities thgnthen it
is sufficient to analyze the busy period that starts in the
possible critical instant created with the first of the tasks.
Extending this reasoning, it is only necessary to analyze the
possible critical instants created with the tasks in the set:

| prog(t,)=proc(t  )Aprio(t,)=prio(t , )A O
XPi(T ab)_@DrilprOC(T | jl)iprOC(T ab)\/prio(l'liI _J<prio(t ab)%

that is, the set of tasks of the transitibpexecuting in the
same processor as tasl, with higher or equal priority
than that assigned to, and whose predecessor, if there is
one, is not found in the same conditions. The expression to
obtain an upper bound of the maximum interference due to
tasks of transactiof;, is as follows;

W (T, = max W, (Tt

[KOXP(t,,)

whereW, (t,,,t) corresponds to equation (24). Given that the
set XP(t,) can contain fewer tasks that the dgt(t,)
defined previously, we eliminate the analysis of non-
possible busy periods, thus, reducing the pessimism

(28)



introduced in the analysis and the number of cases to be
analyzed, making the algorithm faster.

5. Application to the transaction under analysis

We are now going to apply the considerations about the
precedence relations and priority schemes to the transaction
to which the task under analysis,, belongs. The
methodology of analysis estimates upper bounds on the
response times of a task by studying the possible critical
instants created with each of the tasks of a transadtion
with a priority higher than or equal to that of the task under
analysis, including the task itself. In this section, we derive
the expression for the contribution of tasks [of to the
worst case of a task,, in the busy period starting in the
instant of maximum jitter of the activation of a task.

Figure 6-a shows an example of a transactigrwith

they are not delayed enough so as to occur after the critical
instant).

Although the three execution scenarios start with a
possible critical instant created withy;, they are not all
valid for the analysis of the task, We will focus on the
first scenario created, in which the pending activations of
taskt,, are delayed so as to execute within the busy period.
Given that tasks,, andT,; belong to differentH sections,
the corresponding busy period does not contain any
execution of the task,; and, thus, is not useful for the
analysis. The other two scenarios, however, do contain
executions of task,; and must be analyzed.

This means that we can reduce the number of possible
cases to be considered in the analysis. As was deduced in
the previous section, when considering the critical instant
created with a task,, we must bear in mind that the
execution of this task,, has been forced to execute inside

four tasks executing in a processor (supposing that the rest ihe gssociated busy period, at least for the job with which
of the tasks are execu'glng. in others processors). Once again, ine critical instant was created. For the analysis of tagk
the downward arrows indicate the occurrence of events and e are also forcing another situation: that the activation

the upward arrows the offsets of the tasks. Each box analyzed is within the constructed busy period. Once again,

represents the execution of a task, its height being
proportional to its assigned priority. Activations of tasks in
different jobs are represented by different shadings, and
maximum activation delays by continuous lines. We will
consider the critical instant created through tagkfor the
analysis of task ;. In these conditions, the transaction has
two H sections: one made up of a task and another
made up of the tasks,; and 1,;. As can be observed, in
that critical instant there are three jobs that have the
execution of some of their tasks pending, so we must take
into account the activation conflicts between tasks of
differentH sections. The lower part shows the three possible
execution scenarios depending on the tasks chosen for
execution. The first scenario represents the execution when
the two pending activations of task; are delayed until the
critical instant, with indicegp’=-1 and p'=0. The second
represents the execution when only the one corresponding
to p'=0 is delayed, and third when neither is delayed (or
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Figure 6. Critical instant created with task,

focusing on the example in Figure 6, the busy period
represented in the third scenario contains the execution of
task 1,; corresponding to the jobg'=-1 and p'=0.
However, the second scenario contains only the execution
of 1,5 belonging to the jolp’'=-1, since for the jolp’=0 the
execution of task,, was chosen for the busy period. This
means that in the analysis of the jpl-1 we must consider
the two scenarios, but in the analysis corresponding to the
job p'=0 it is sufficient to analyze the last scenario, given
that the others are incompatible with the execution@fn

the busy period.

Therefore, we can extend the rules applicable for the
reduction of the conflict table in the analysis of task
corresponding to the jop), in the busy period created with
task 1,.. On the one hand, the reduction rule mentioned
above, due to the creation of the critical instant. On the
other hand, the conflicts in the jqi), and the previous ones
will have had to be resolved in a way compatible with the
execution, within the busy period considered, of the
activationp), of 1., In the example, if for the jobp'=-1
andp'=0, task t1,, has executed inside the busy period, it
is not necessary to analyze the execution ofi,
corresponding to the jolp, =0. These reduction rules are:

1st Reduction rule (due to the creation of a critical
instant). In the conflict table, the activations corresponding
to pj ... and posterior jobs entering in conflict with task
can be eliminated. That is, we can eliminate the céJ{s)(
verifying the condition.

p/Zpo/,acc /\ j>C /\ Haj(T ab)iHac(T ab) (29)
2nd Reduction rule (due to the execution of the jqti,
of 1,, in the busy period). We can eliminate the conflicts in



jobs p,, and anterior jobs, incompatible with the execution
of 1,,. That is:

P'<pp A j<b A H (T )ZH(T.) (30)

Furthermore, we can consider another reduction rule in
the analysis. The tasks precededtycan not interfere in
the execution of a jobp,, if they correspond to jobs
posterior to the analysis. That is take into account in the
next reduction rule:

3rd Reduction rule (due to the analysis of the jg#j, of
T,,). The cells corresponding to the tasks preceded_py
in the same or posterior jobs can be eliminated from the
conflict table. The activations posterior to the tagkitself
do not have to be considered either. Therefore, we can
eliminate the cellsj(p’) which fulfil:

(p'2pp A j>b) V (p'>psy A j=b)

With all these considerations, the table of conflicts in the
transactionl”, for the analysis of the jolp,, of t,, can be
created according to an algorithrBUILD_CONFLICTS
_TABLE_INT, similar to the one used to create a conflict
table in the previous section, but adding the new reduction
rules. The process of resolution of the conflicts is similar to
the functionRESOLVE_CONFLICT8escribed in the previous
section, but using this last algorithm to create the table.

Through the resolution of the activation conflicts we
obtain the interference due to jobs activated before the
critical instant. Another aspect we still have to consider is
the preemption due to tasks activated in jobs posterior to the
critical instant. To obtain the expression of this interference
we must take two effects into account due to the precedence
relationships in the tasks of transactidbp and which, in
part, we have already taken into account to reduce the
conflict table.

« Jobs posterior to the critical instant can only interfere in
the busy period with tasks belonging to the first section
H, included in the seMP,.

« In the analysis of the activatiop,, of a taskt,, there
cannot be interference due to tasks preceded by it,
activated in the same joj, or posterior.

The activation of a task, corresponding to the first job
after the critical instant (with indeg’=1), is by definition
produced in the instanfi,.. Therefore, a task, of the set
MP, will be activated periodically every, starting from
instantdy;..

We differentiate the contribution of tasks belonging to
the setMP, depending on whether they precede or are
preceded by the task under analysis. The tasks preceging
have no restriction in terms of their possible preemptions, so
that their contribution to the busy period of widthwvill be
given by the expression:

(1)

(32)

t_¢z/:1jc
C,
govey | Ta o

j<b
The tasks preceded by, do have a limit in terms of
their possible preemptions, since they can only preempt the
execution of their activatiop;, if they correspond to jobs
before the jolp,,; so their contribution will be:
/
IFq)ajc EC

0

(33)

aj

min Ops-1 | ‘
0

HOMP(t,)

>h

Finally, W(JB consider the contribution to the busy period
of the task under analysis itself. In the conflict table, the
activations of jobs before the critical instant were taken into
account and t, therefore, we only have to consider those
jobs activated after the critical instant (with indicp’s0)
until the activation analyzeg,,, that is

pafb Cab (34)

Note that these last two expressions only make sense for
the analysis of the activations of, corresponding to jobs
posterior to the critical instant and so, for negative values of
p., they must be equal to 0. In summary, the contribution to
the worst case of tasks activated by events occurring after
the critical instant, including taskr,, itself, can be
expressed as follows:

t-¢.,
W (T 1) = Ga C.+
ac\ - ab’ pL>0 o) T o aj
j<ba a ? (35)
O, . |ttu| 0. O
+max%),pa’bcab+ Y minpg-1, a’ﬂ %Jaju
O GOMP(T,,) OJ T, 10070

>b
Thus, the total contribution of tasks of transactianto
the busy period for the activatiop,, of task T, is
calculated as:

W, (T, Papt) = RESOLVECONFLICTSIN_T (T_,,Papt, [, T,)

W, (T, Pat) | pL>0
This expression completes the new analysis technique, in
which we consider the precedence relationships and the
priority schemes of the transactions. In this technique, the
completion timew,,(p,,) of an activationp,, is calculated
according to the expression:

Wabc(pafb) :Bab+Wac(T ap’ pﬁ\/b’wabc(pa/b)) +DZ VV' *(T ab’Wabc(pa/b))
#a

whereW. (1,,,W,.{p,,)) corresponds to equation (28). Using
this result, the worst-case global response tiRg(p;,), iS
determined as:

RipdPa) = W (Pa) ~ b ~ (P DT, + @, (38)
We must extend this analysis to all the activations
occurring in the busy period,,, calculated using the
equation:



L =

abc

Bab + WaJT ab’ Labc) + Z VVI*(T ab’ Labc) (39)

O#a

whereW,(1,,L..J is given by (24). We must analyze the
activations with indices betweqn_,,. andp; ,,, obtain from
the busy period as:

/ { Labc_(b;bc
pL,abc T | —
Ta 0
Nevertheless, if task,, does not belong to the first
sectionH, a busy period can not contain executions of jobs
originated after the critical instant, with indices>0, so is
sufficient to analyze until:
P ane = O if T, OMP(T,) (41)
The response time will correspond to the greatest of all
of them, that is:

E max

(40)

R,= max (W (Pa) O (P 1)T,+® ] H42)
EEOXP,(Ta) (B P P ave O

We will see how this technique is applied in the example
shown in Figure 6, for the analysis of tagk, in the
potential critical instant created with tagk.. Figure 7-a
shows the table of conflicts corresponding to the jobs before
the critical instant. As can be seen, there are two pending
activations of taskr,, corresponding to the indicgs=-1
andp’=0. Figure 7-b shows the tables of conflicts generated
for the analysis of each of these two activations, resulting
from applying the reduction rules seen previously on the
original table of conflicts. In the same way, the lower part
of each table shows the result obtained after the resolution
of these conflicts.

a) Critical instant created with,
Ta1 Tap Tz Tas
2/0]0]| 0|Cyq
'=-1 Cal 0 Ca3 CaS
0 Cal 0 Ca3 CaS

Poms -1 Poass -1 Poass -2 =>

T T T

b) Conflicts resolution in the analysis of tagk

Tal Taz Ta3 Ta5 Tal Taz TaS Ta5

00| 0|Cs 0| 0| 0|Cas
Pl /ﬁ 0 % /ﬁ 0 |Ca3/Cas
Cal 0 p’a3: 0 /% 0

Ca5 + Ca3 + Cal CaS + Ca3 + CaS + CaS

(O Job under analysis 7 Reduced, 2nd Rule \\ Reduced, 3rd R
Figure 7. Analysis applied to task,,

If we apply the criteria defined for the number of
activations to be analyzed, we could see that we only have
to carry out the analysis for values betwegj,=-1 to
PLass=0 since taskr,; does not belong to the s&lP.(t,)
made up only of task,,.

The contribution to the worst case of,, in its first
analyzed activation, witlp},=-1 is:

t‘¢;15
WaS(TaS’ 71’t) = Ca5+Ca3+Cal * ?
a 0
which we will use to calculate the completion timeg,(-1)
and, as a result, the corresponding global response time

Rose(-1) = W (-1) - ¢;35+ 2T+ @, (44)
For the second activation, withj,=0, the contribution to
the worst case is calculated as:

Cal (43)

t—¢;15] Cal(45)

WaS(TaS’O’t) = Ca5+ Ca3+ Ca5+ Ca3 * {
a 0
from which we obtainw,,{0) and, from it, the response

time as:

Raas(o) = Wass(o) - q)2135Jr TaJr (Das (46)

In this way, the response time of the task, in any
busy period starting with a critical instant created by a task
1,5 IS bounded by the value

Ras = Max(R,{(-1),R (0)) (47)

Integrating this new formulation in the iterative algorithm
for dynamic offsets, we will obtain better estimations of the
worst-case response times in systems with precedence
relations in the activation of their tasks. We will call this
new algorithm WCDOPS (Worst-Case Dynamic Offsets
with Priority Schemes). The complexity of this algorithm is
approximately the same as for the previous algorithm
(WCDO, Worst Case Dynamic Offsets) multiplied by the
number of rows to be processed in the conflicts table, which
is upper-bounded by the maximum ratio of task deadline
over period in the system.

6. Simulation results

We have compared the results of the new analysis for
tasks with dynamic offsets and priority schemes with the
results obtained using the previous analysis technique for
distributed systems based on dynamic offsets without
priority schemes [7]. This comparison will be made by
means of the results given by Tindell and Clark’s technique,
which assumes that each task is independent of the others
[10]. For this purpose, we have conducted extensive
simulations with different task sets whose execution times
and periods were generated randomly. Priorities were
assigned using the deadline monotonic algorithm with a
small random variation that allows us testing cases with
different priority schemes. The results of some of these
simulations are shown in this section.

The first set of graphs (Figures 8 to 10) compares the
response times obtained using Tindell and Clark’s technique
for independent tasksR,., With the response times
obtained using algorithm WCDOR,cpo» and using
algorithm WCDOPSR,,poes In these figures, we show the

average ratiofRe/Rycpo and Ry¢e/Rycoops Obtained for



in the WCDO algorithm and between 1.65 and 2.23 in the
WCDOPS algorithm. Figure 10 shows the results for the
same case as Figure 9, except that the best case response
time of each task is considered equal to the sum of the

10 -
Analysis for:

1 processor

10 transactions

10 tasks per transaction
Best case =0

71 [=“woooes, 5= 10 execution times of itself and all its predecessor tasks in the
cel cooms, 5~ 1000 same transaction. We can see that the results are better, with
3 Temo. 2w response times between 1.45 and 1.77 times better than in
=3 - wepo,  5=1000 the analysis with independent tasks, for a utilization of 40%

in the WCDO, that increase until 2 and 3 times for

N WCDOPS.
s The second set of graphs (Figure 11 and Figure 12)
“] mm:;:,ffj.;.;..'--4""‘ """ compare the maximum schedulable utilization that can be
1 05101520 e . e e o obtained for a given task set using the analysis for
% Utilization independent tasks, algorithms WCDO and WCDOPS with
Figure 8. Comparison, one processor, best-case=0 zero best case response times, and algorithm WCDOPS with

best case response times equal to the task execution times.

five simulated tasks sets for each point in the graph. The X The maximum schedulable utilization is obtained by
axis represents processor utilization. Each figure presents the analyzing a system with low utilization, and then increasing
results for three different ratios of the maximum transaction its utilization until the system no longer meets its deadlines.
period over the minimum transaction periok T,/ T The maximum schedulable utilization is taken as the last of
Figure 8 shows the results for a set of 10 transactions with the task sets for which the deadlines were met. The
10 tasks per transaction, in one processor, for the case in simulations have been done for different ratios of deadlines
which the best-case response times are considered over periodsD,/T.
negligible, and thus the task offsets are all zero. It can be Figure 11 shows the results for the simulation of a
seen that for normal utilization levels of around 40%, the system with 4 processors, 5 transactions and 20 tasks per
response times with independent tasks are roughly between transaction, witho=T,,,/T,,=100. Figure 12 shows the
1.7 and 2.5 times larger than in the analysis with dynamic results for a similar task system, but with 12 tasks per
offsets. This result increases to between 6 and 12.5 for the transaction instead of 20. We can see that from values of
analysis with dynamic offsets and priority schemes. The D/T,=3 and higher, we can get a increase of around 8%
results with best case response times equal to the task more schedulable utilization in the case of 12 tasks, and
execution times are the same for this case. 15% more in the case of 20 tasks. In Figure 11, for the case

Figure 9 shows the results for a similar case, but running D,/T,=4, that we would consider as normal for a system with
on four processors. We can see that as the number of tasks4 processors, we achieve an increase from 15% to 24% of
of the same transaction that are in the same processor the maximum schedulable utilization, that gives a relative
diminishes, the benefits of the algorithms also diminish. improvement of 60%. In Figure 12, foD/T=4 the
However, these benefits are still significant, with response maximum is increased from 23% up to 34%, with a relative
times between 1.13 and 1.17 times better for 40% utilization improvement of 43%. It is also worth mentioning that for
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Analysis for:

4 processors

10 transactions
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Best case >0
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systems with several processors the results are better if we

consider best-case response times larger than zero, although
it is still possible to get benefits from our new analysis if
we consider the best execution times equal to zero.

7.

the schedulability analysis of tasks with precedence relations
in multiprocessor and distributed systems. These techniques
are based on the analysis of tasks with dynamic offsets that
we had previously developed, which we have improved here
by exploiting the precedence relations in a more accurate
way, and considering the priority structure of the different

tasks. Through simulation results, we have shown that the

Conclusions

5]

In this paper we have presented improved techniques for [6]

benefits of the new analysis over the previous analysis (8]

techniques for distributed and multiprocessor systems are
very high. The response times with the new technique are
significantly lower, and the maximum schedulable utilization

can be increased; in the examples shown, it was increased

by an additional 11% of schedulable utilization.

An implementation of the algorithms WCDO and

WCDOPS may be found iftp://ftp.deyc.unican.es/pub/real-
time
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