2013/14 UniPD / T. Vardanega

3. Scheduling issues

‘ Common approaches /2

u Weighted round-robin scheduling
0 With basic round-robin
= All ready jobs are placed in a FIFO queue
= The job at head of queue is allowed to execute for one #me slice
0 If not complete by end of time slice it is placed at the tail of the queue
= Alljobs in the queue are given one time slice in one round
0 Weighted correction (as applied to scheduling of network traffic)

= Jobs are assigned differing amounts of CPU time according a given
‘weight’ (fractionary) attribute

= Job J; gets w; time slices per round — one round is),; ; of ready jobs
= Not good for jobs with precedence relations

0 Response time gets worse than basic RR which is already bad
= Fit for producer-consumer jobs that operate concurrently in a pipeline

2013/14 UniPD / T. Vardanega Real-Time Systems 112 of 413

‘ Common approaches /1

u Clock-driven (time-driven) scheduling
0 Scheduling decisions are made beforehand (off line) and carried out
at predefined time instants

= The time instants normally occur at regular intervals signaled by a
clock interrupt

s The scheduler first dispatches jobs to execution as due in the current
time period and then suspends itself until then next schedule time

= The scheduler uses an off-line schedule to dispatch
0 All parameters that matter must be known in advance
0 The schedule is static and cannot be changed at run time

0 The run-time overhead incurred in executing the schedule is
minimal

2013/14 UniPD / T. Vardanega Real-Time Systems 111 of 413

Real-Time Systems

| Common approaches /3

u Priority-driven (event-driven) scheduling
0 This class of algorithms is greedy

m They never leave available processing resources unutilized
0 Secking local optimization

= An available resource may stay unused iff there is no job ready to use it

u A cairvoyant alternative may instead defer access to the CPU to incur less
contention and thus reduce job response time

= Anomalies may occur when job parameters change dynamically
0 Scheduling decisions are made at run time when changes occur to the
“ready queue”, hence on local knowledge
= The event causing a scheduling decision is called “dispatching point”
a Itincludes algorithms also used in non real-time systems
= FIFO, LIFO, SETF (shortest e.t. first), LETF (longest e.t. first)
0 Normally applied at every round of RR scheduling

2013/14 UniPD / T. Vardanega Real-Time Systems 113 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

‘ Preemption vs. non preemption

m Can we compare preemptive scheduling with
non-preemptive scheduling in terms of performance?
a There is no response that is valid in general

= When all jobs have the same release time and the time overhead
of preemption is negligible then preemptive scheduling is
provably better

o It would be interesting to know whether the improvement of the
last finishing time (a.k.a. wzzninmum makespan) under preemptive
scheduling pays off the time overhead of preemption

u For 2 CPU we do know that the minimum makespan for
non-preemptive scheduling is never worse than 4/3 of
that for preemptive

2013/14 UniPD / T. Vardanega Real-Time Systems 114 of 413

 Optimality /1

= Priorities assigned in accord to (effective) deadlines
a Earliest Deadline First scheduling is gptimal for single
processor systems with independent jobs and preemption
= For any given job set, EDF produces a feasible schedule if one exists

= The optimality of EDF falls short under other hypotheses (e.g., no
preemption, multicore processing)

R, R, R, D; D D,

time

Ready queue: J};Jp)zl

2013/14 UniPD / T. Vardanega Real-Time Systems 116 of 413

Further definitions

u Precedence constraints effect release time and deadline
o One job’s release time cannot follow that of a successor job
o One job’s deadline cannot precede that of a predecessor job
u Effective release time
o For a job with predecessors this is the /azest value between its own release
time and the maximum of the effective release time of its predecessors
plus the WCET of the corresponding job
s Effective deadline
o For a job with successors this is the earfiest value between its deadline and
the effective deadline of its successors less the WCET of the
corresponding job
= For single processor with preemptive scheduling we may
disregard precedence constraints and just consider ERT and ED

2013/14 UniPD / T. Vardanega Real-Time Systems 115 of 413

Optimality /2

m Priorities assigned in accord to slack (i.e., laxity)

0 Least Laxity First scheduling is optimal under the same
hypotheses as for EDF optimality

= LLF is far more onerous than EDF to implement as it has to keep tab
of execution time!

Ry Rye,

D, D,
e, €pe
11 .12 i3 L) =Dy —t—(er — (exs + ez + 913H
| time
|
I
t Lz(f):szt*SZ_ﬁé—’
2
Ready queue: Jo i
2013/14 UniPD /T, Vardancga Real-Time Systems 117 of 413

Real-Time Systems

11/02/2014

2013/14 UniPD / T. Vardanega

 Optimality /3

u If the goal is that jobs just make their deadlines then having
jobs complete any earlier has not much point
0 The Latest Release Time algorithm (converse of EDF)
follows this logic and schedules jobs backwards from the
latest deadline

= LRT operates backward treating deadlines as release times and
release times as deadlines

= LRT is not greedy as it may leave the CPU unused with ready
tasks

u Greedy scheduling algorithms may cause jobs to incur
larger interference

2013/14 UniPD / T. Vardanega Real-Time Systems 118 of 413

‘ Predictability of execution

= Initial intuition
0 The execution of job set] under a given scheduling algorithm
is predictable if the actual start time and the actual response
time of every job in] vary within the bounds of the waximal
and mwinimal schedule
u Masxcimal schedule: the schedule created by the scheduling
algorithm under worst-case assumptions

u Minimal schedule: analogously for best-case

= Theorem: the execution of independent jobs with given

release times under preemptive priority-driven scheduling
on a single processor is predictable

2013/14 UniPD / T. Vardanega Real-Time Systems 120 of 413

Latest Release Time scheduling

n <l]

T1|T2|T3 20 18 1 9
A |0 (11|12
CcC (4 |3 |4 i i
T2 ¢
D |20)18 |17 N 18 17 13 11
(D=absolute deadline)
o I
17 13

Needs preemption and off line decisions

2013/14 UniPD / T. Vardanega Real-Time Systems 119 of 413

Classification of Scheduling Algorithms

All scheduling algorithms

Real-Time Systems

static scheduling dynamic scheduling
(or offline, or clock driven) (oronl?)r pri%eﬂ)
static-priority dynamic-priority
scheduling scheduling
Jim Anderson Real-Time Systems Intoduction - 30
2013/14 UniPD / T. Vardanega Real-Time Systems 121 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

‘ Ramifications for dynamic scheduling

dynamic scheduling

static priority

) - dynamic priority
fixed priority per task

‘ fixed priority per job dynamic priority per job
|

FPS EDF LLF

2013/14 UniPD / T. Vardanega Real-Time Systems 122 of 413

‘ Clock-driven scheduling /2

Input: stored schedule S(t) for k = {0,..,N — 1}; H (hyper-petiod)
SCHEDULER:
i = 0;k = 0; set timer to expire at ty ;
do forever :
sleep until timer interrupt;
if an apetiodic job is executing
preempt;
end if;
current task T = S(t) ;
i=i+1;k=imodN;
set timer to expire at [i/N| X H + ty 5 — at time ty, in all H forever
if current task T = [
execute job at head of aperiodic queue;
else execute job of task T;

‘ Clock-driven scheduling /1

u Workload model
0 N periodic tasks with N constant and statically defined
= In Jim Anderson’s definition of periodic (not Jane Liu’s)

o The (@;, i, €;, D;) parameters of every task T; are constant
and statically known

u The schedule is static and committed off line before system
start to a table S of decision times tj
o S[tx] = 7; if a job of task 7; must be dispatched at time tj,
o S[tr] =1 (idle) otherwise
0 Schedule computation can be as sophisticated as we like since
we pay for it only once and before execution
0 Jobs cannot overrun otherwise the system is in error

2013/14 UniPD / T. Vardanega Real-Time Systems 123 of 413

end if}
end do;
end SCHEDULER
2013/14 UniPD / T. Vardanega Real-Time Systems 124 of 413
| Clock-driven scheduling /3
S[] T dispatch
0 assign T
L, = X, =N
1 t, Ty M T el
Timer i (67 8 %
= ek
4 4‘[
J 5,1 set
We need an znterval timer
K t, T
N-1
2013/14 UniPD / T. Vardanega Real-Time Systems 125 of 413

Real-Time Systems

11/02/2014

2013/14 UniPD / T. Vardanega

‘ Example
(i pirei, Dy)

J={t,=(0,4,1,4), t,= (0, 5, 1.8, 5), t; = (0, 20, 1, 20), t, = (0, 20, 2, 20}
U =0.76

H=20 t t, t t, t, t, t 19.8
EI 4 .

t3 tz . t4 Lz . tz

0 4 8 12 16
m Static schedule table S for | would need 17 entries

0 That’s too many and too fragmented!

= Why 172

2013/14 UniPD / T. Vardanega Real-Time Systems 126 of 413

Clock-driven scheduling /5

= Constraint 1: Every job / must complete within f
o f = max;_(1,n)(€;) so that overruns can be detected

u Constraint 2: fmust be an integer divisor of hyper-
period H : H = Nf where N is an integer
0 Satisfied if f is an integer divisor of at least one task petiod p;
0 The hyper-petiod beginning at minor cycle kf fork = 0,..N — 1

is termed major cycle

= Constraint 3: There must be one fu// frame f between
J’s release time t” and its deadline: t' + Dj = t + 2f so
that J can be scheduled in that frame
0 ‘This can be expressed as: 2f — ged(p;,) < D; for every task T;

2013/14 UniPD / T. Vardanega Real-Time Systems 128 of 413

‘ Clock-driven scheduling /4

= Obvious reasons suggest we should minimize the size and
complexity of the cyclic schedule (table S)
0 The scheduling point tj should occur at regular intervals
= Each such interval is termed minor cycle (frame) and has duration f
w We need a periodic timer

= Within minor cycles there is no preemption but a single minor cycle may
contain the execution of multiple (run-to-completion) jobs

0 @; for every task T; must be a non-negative integer multiple of f
u The first job of every task has release time (forcedly) set at the beginning

of a minor cycle

= We must therefore enforce some artificial constraints

2013/14 UniPD / T. Vardanega Real-Time Systems 127 of 413

Understanding constraint 3

pj

© -

r
t +pj .
Constraint 3

t+2f§t’+Dj j

@ ¢ Tt+f t+2f l T t'—t = ged(pj, f)
t’ t’+Dj [

2f —ged(pj, f) < D;

t'+p;

2013/14 UniPD / T. Vardanega Real-Time Systems 129 of 413

Real-Time Systems

11/02/2014

2013/14 UniPD / T. Vardanega

Example

T = {(0,4,1,4),0,5,2,5), 0, 20, 2, 20)}

H =20

[c1]: f = max(e;): f=>2

[€2] : |pi/f] —pi/f =0:f=1{2 4,5,10, 20}

[c3]:2f —gcd(p;, f) < D;:f<2
f=2:4—gcd(42) < 40K f=5:10—gcd(4,2) < 4KO

4—ged(5,2) <5 OK 1090 <4K
4—ged(202) <200k = 10120~ ged(®2) <4KO

f=418—ng(4,4)S4OK f=2024—0—ng(4,2)$4—KO
8 —gcd(54) <5 KO

2013/14 UniPD / T. Vardanega Real-Time Systems 130 of 413

Clock-driven scheduling /6

To construct a cyclic schedule we must therefore
make three design decisions

o Fixanf

o Slice (the large) jobs

0 Assign (jobs and) slices to minor cycles

There is a very unfortunate inter-play among these
decisions

0 Cyclic scheduling thus is very fragile to any change in
system parameters

2013/14 UniPD / T. Vardanega Real-Time Systems 132 of 413

Clock-driven scheduling /5

It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given fsimultaneously

In that case we must decompose T’s jobs by slicing
their larger €45 into fragments small enough to
artificially yield a “good” f

2013/14 UniPD / T. Vardanega Real-Time Systems 131 of 413

Real-Time Systems

Clock-driven scheduling /7

Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:
t:=0;k=0;
do forever:
sleep until clock interrupt @ time t x f;
currentBlock = S(k);
t:=t+1; k:= tmod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute aperiodic job at top of queue;
end do;
end do;
end SCHEDULER

2013/14 UniPD / T. Vardanega Real-Time Systems 133 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

Example (slicing) — 1/2

(¢ipirei, D)

J={r;=(0,4,1,4),7, = (0,5,2,7),73 = (0,20,5,20)}, H = 20
T3 causes disruption since we need e3 < f < 4 to satisfy c3
We must therefore slice €3 : how many slices do we need?

f=4 S(t=4)

4 8 12 16

We first look at the schedule with f = 4 and F = (?) =5

without T3, to see what least-disruptive opportunities we have ...

2013/14 UniPD / T. Vardanega Real-Time Systems 134 of 413

Design issues /1

u Completing a job much ahead of its deadline is of no use

= If we have spare time we might give aperiodic jobs more
opportunity to execute hence make the system more responsive
u The principle of slack stealing allows aperiodic jobs to execute
in preference to periodic jobs when possible
o Every minor cycle include some amount of slack time not used for
scheduling periodic jobs
= The slack is a static attribute of each minor cycle
= A scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)

0 This provision requires a fine-grained interval timer (again!) to signal the
end of the slack time for each minor cycle

2013/14 UniPD / T. Vardanega Real-Time Systems 136 of 413

Example (slicing) — 2/2

... then we obsetrve that e3 = {1, 3,1} is a good choice

/'.7\?*'\

g

. / 0/) ~ =~ N ~
e : . T~
- / ‘ -
. . e, ~
| 3 4 A BN
t iy i t, t t, [
4 8 12 16
73 = {15 = (0,20,1,x),75 = (0,20,3,y), 73" = (0,20,1,20)}

where x <y < 20 represent the precedence constraints that

must hold between the slices (could have used phases instead)

2013/14 UniPD / . Vardanega Real-Time Systems 135 of 413

Real-Time Systems

Design issues /2

® What can we do to handle overruns?
o Halt the job found running at the start of the new minor cycle
= But that job may not be the one that overrun!

= Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual u#lity

0 Defer halting until the job has completed all its “critical actions”

= To avoid the risk that a premature halt may leave the system in an
inconsistent state

o Allow the job some extra time by delaying the start of the next
minor cycle

= Plausible if producing a late result still had #zlity

2013/14 UniPD / T. Vardanega Real-Time Systems 137 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

| Design issues /3

= What can we do to handle mode changes?

0 A mode change is when the system incurs some
reconfiguration of its function and workload parameters

= Two main axes of design decisions
0 With or without deadline during the transition

0 With or without overlap between outgoing and incoming
operation modes

2013/14 UniPD / T. Vardanega Real-Time Systems 138 of 413

‘ Priority-driven scheduling

= Base principle

0 Every job is assigned a priority

0 The job with the highest priority is selected for execution
» Dynamic-priority scheduling

o Distinct jobs of the same task may have distinct priorities
m Static-priority scheduling

o All jobs of the same task have one and same priority

2013/14 UniPD / T. Vardanega Real-Time Systems 140 of 413

Overall evaluation

= Pro
o Comparatively simple design
o Simple and robust implementation

o Complete and cost-effective verification

= Con
o Very fragile design
u Construction of the schedule table is a NP-hard problem
= High extent of undesirable architectural coupling
0 All parameters must be fixed a priori at the start of design
= Choices may be made arbitrarily to satisfy the constraints on f

= Totally inapt for sporadic jobs

2013/14 UniPD / T. Vardanega Real-Time Systems 139 of 413

Real-Time Systems

Dynamic-priority scheduling

= Two main algorithms

0 FEarliest Deadline First (EDF)

o Least Laxity First (LLF)

Theorem [Liu, Layland: 1973] EDF is optimal for
independent jobs with preemption

0 Also true with sporadic tasks

0 The relative deadline for periodic tasks may be arbitrary with the
respect to period (<, =, >)

Result trivially applicable to LLF

= EDF is not optimal for jobs that do not allow preemption

2013/14 UniPD / T. Vardanega Real-Time Systems 141 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

Static (fixed)-priority scheduling (FPS)

Two main variants with respect to the strategy for
priority assignment
0 Rate monotonic
A task with lower period (faster rate) gets higher priority
0 Deadline monotonic
A task with higher urgency (shorter deadline) gets higher priority

0 What about “execution-monotonic”?

Before looking at those strategies in more detail we
need to fix some basic notions

2013/14 UniPD / T. Vardanega Real-Time Systems 142 of 413

Dynamic scheduling: compatison criteria /2

Theorem [Liu, Layland: 1973] for single processors
the schedulable utilization of EDF is 1

For arbitrary deadlines, the density
e

0, = ———— is an important feasibility factor
k™ min(pr.Dy) p v

o A= Zk 6}(>U lfDl < p; for some Ti
0 Hence A< 1 is a sufficient schedulability test for EDF

2013/14 UniPD / T. Vardanega Real-Time Systems 144 of 413

Dynamic scheduling: compatison criteria /1

Priority-driven scheduling algorithms that disregard
job urgency (deadline) perform poorly

o The WCET is not a factor of interest for priority!

How to compare the performance of scheduling
algorithms?

Schedulable utilization is a useful criterion

0 A scheduling algorithm can produce a feasible schedule
for a task set T on a single processor if U(T) does not
exceed its schedulable utilization

2013/14 UniPD / T. Vardanega Real-Time Systems 143 of 413

Real-Time Systems

Dynamic scheduling: compatison criteria /3

The schedulable utilization criterion alone is not
sufficient: we must also consider predictability

On transient overload the behavior of static-priority
scheduling can be determined a-priori and is reasonable

0 The overrun of any job of a given task T does not hinder the
tasks with higher priority than T

Under transient overload EDF becomes instable

0 For EDF a job that missed its deadline is more urgent than a
job with a deadline in the future!

2013/14 UniPD / T. Vardanega Real-Time Systems 145 of 413

11/02/2014

2013/14 UniPD / T. Vardanega 11/02/2014

Dynamic scheduling: compatison criteria /3 ‘ Example (EDF) /2

(9i, i€, D;)
T = {t,= (0, 2,1,2), t,= (0,5,3,5)} > U(t) = % + % =1.1

m Other figures of merit for comparison exist i)
T has no feasible schedule: what job suffers most under EDF?

0 Normalized Mean Response Time (NMRT)

= Ratio between the job response time and the CPU time actually s t 3
consumed for its execution tI‘\ t, !
= The larger the NMRT value, the larger the task idle time v F X
0 Guaranteed Ratio (GR) 0 2 4 56 . .8 N 10
= Number of tasks (jobs) whose execution can be guaranteed ettt
versus the total number of tasks that request execution T = {t,= (0, 2, 0.8, 2), t,= (0, 5, 3.5, 5)} = U(t) = % + :—72' =1.1
0 Bounded Tardiness (BT) T has no feasible schedule: what job suffers most under EDF?
= Number of tasks (jobs) whose tardiness can be guaranteed to
stay within given bounds What about e e
= With BT, soft real-time systems can have some utility T=1{t1=(0,2,08,2),2=(0,5,4,5)} with U(t) = p_i + i =1.27?
2013/14 UniPD / T. Vardanega Real-Time Systems 146 of 413 2013/14 UniPD / T. Vardanega Real-Time Systems 148 of 413

 Example (EDF) /1 | Critical instant /1
(91, pi e, D)
T={ty=(0,2,0.61),7; = (0,5,2.3,5)} u Feasibility and schedulability tests must consider the
Density A(T) = ;—11 + ;—ZZ =1.06>1 worst case for all tasks
Utilization U(T) = ﬁ + % =0.76 <1 0 The worst case for task T; occurs when the worst possible
What happens to T under EDF? relation holds between its release time and that of all higher-
s s s . priority tasks
t . 5 l_. t . t l 0 The actual case may differ depending on the admissible
T 0K T OK relation between D; and p;
o ! 2 X ¢ i 5 6 7 N u The notion of critical instant — if one exists — captures
He10 the worst case
0 The response time R; for a job of task 7; with release time on
the critical instant is the longest possible value for T;
2013/14 UniPD / T. Vardanega Real-Time Systems 147 of 413 2013/14 UniPD / T. Vardanega Real-Time Systems 149 of 413

Real-Time Systems 10

2013/14 UniPD / T. Vardanega 11/02/2014

| Critical instant /2 | Time demand analysis /2

T={t,= (-3, 1, 3), ,5(5, 1.5, 5), t,= (-, 7, 1.25, 7)} (@upies D)
= Theorem: under FPS with D; < p; vi, the cr1t1ca_l instant . U(T) = 3, e;/p; = 0.82
for task T; occurs when the release time of any of its jobs is] I rerrmmrerrerrs—, v
. his is when the critical-instant jo .)
in phase with a job of every higher-priority task in the task of 1, completes, where w(t) = phases can be arbitrary
/ since they have no impact
set N6 — J i .
'§ on the aritical instant
= We seeck max(w; ;) for all jobs {j} of task 7; for §
B (wij + @i — i) M
wj= e+ — e — ¢ E*
(k=1,,i-1) Pk S S
For task indi woned in d . der of priority Py - w ()<t
or task indices assigned in decreasing order of priority = hence supply satisfies demand
0 The summation term captures the znzerference that any job j of task T; 2= /. at all t of interest
incurs from jobs of all higher-priority tasks {7y} between the release -
time of the first job of task T (with phase @) to the response time e { A | |
of job j of task T; , which occurs at ¢; + w; j]

2 4 6 8 0 Time supply

2013/14 UniPD / T. Vardanega Real-Time Systems 150 of 413

2013/14 UniPD / T. Vardanega

Real-Time Systems 152 of 413

' Time-demand analysis /1 ' Time demand analysis /3

T = {t,= (- 3, 1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}
m When ¢ is 0 for all jobs considered then this equation
captures the absolute worst case for task T; 8

u This equation stands at the basis of Time Demand

Analysis which investigates how w varies as a function of
time

=

wy ()<t

0 Solong as w(t) < t for some t within the time intetval of interest the
supply satisfies the demand, hence the job can complete in time

= Theorem [Lehoczky, Sha, Ding: 1989] condition w(t) < ¢t
is an exact feasibility fest (necessary and sufficient)
0 The obvious question is for which ‘¢’ to check

Time demand
+—

The supply exceeds the demand

d
N
—_———
N~

. . L. e . Time suppl)
0 The method proposes to check at all periods of all higher-priority ! { : 2| | 6| J; 1!) PPy
tasks until the deadline of the task under study 4
2013/14 UniPD / T. Vardanega Real-Time Systems 151 of 413 2013/14 UniPD / T. Vardanega Real-Time Systems 153 of 413

Real-Time Systems 11

2013/14 UniPD / T. Vardanega

| Time demand analysis /4

T = {t,= (- 3, 1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}

Ps3
g —
r-,-' wz(t) <t
E 6— g For D < p it suffices
§ to verify (w(t) < t) at time
) instants that are multiple
E of the period of the
M= “The supply exceeds the demand highest-priority tasks
e.l K while it does not at all other ¢ and <D
3 of interest to t; (1)
e, 2
e { Time supply
2 3 4 5 6 7 8 10
2013/14 UniPD / T. Vardanega Real-Time Systems 154 of 413

| Time demand analysis /6

= What changes in the definition of critical instant when D>p ?

= Theorem [Lehoczky, Sha, Strosnidet, Tokuda: 1991] The first
job of task T; may #ot be the one that incurs the worst-case
response time

= Hence we must consider a// jobs of task T; within the so-called
level-i busy period
0 The (tp,t) time interval within which the processor is busy executing jobs
with priority 2 I, release time in (tg, t), response time falling within ¢
0 The release time in (to, t) captures the full backlog of interfering jobs

0 The response time of all those jobs falling within t ensures that the busy
period includes their completion

2013/14 UniPD / T. Vardanega Real-Time Systems 156 of 413

| Time demand analysis /5

m It is straightforward to extend TDA to determine
the response time of tasks

= The smallest value t that satisfies the fixed-point
. t .
equationt = ¢; + Z(k=1 i-1) [p—] ey is the worst-
.
case response time of task T;

m Solutions methods to calculate this value were
independently proposed by
0 [Joseph, Pandia: 1986]
0 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2013/14 UniPD / T. Vardanega Real-Time Systems 155 of 413

Real-Time Systems

‘ Example

T, = {-, 70, 26, 70}, T, = {-, 100, 62, 120} (i, pi, €, Dy)
Let’s look at the level-2 busy period

Ready queue:] 1,)5, Ready queue:], 5, |,

Ready queue: [, , |,

Time window 1 [0,70)

‘i ity 2 PUHID) Time window 3 [100,140)

Tl.me left for J,;: 30-26 = 4 Time left for J,, = 40

il o eeees =10 L J,, completes at: 114 (R = 114)
ltene i o b Iy Time available for J,,,: 40-14 = 26
Still to execute: 62-26 = 36

Time left for J,: 70-26 = 44
Still to execute: 62-44 = 18 I

Ready queue: |5,)55

Time window 5 [200,210)

Release time of job J, ; Ready queue:),)2

J2 completes at: 202 (R = 102) 41 Time window 4 [140,200)

Time available for J,;:10-2=8 Time available for J;,: 60-26 = 34
Still to execute: 62-8 = 54 Still to execute: 36-34 = 2

Ready queue: 1,]

Ready queue:], 5, I

Time window 6 [210,280) ?"‘e Wi"i‘l*‘:lv 7f[23°’3f'3()) oo
Time available for J,5: 70-26 = 44 | | _!me avarable for J23:20-20 =

Still to execute: 54-44 = 10 ItEEE e il
Ready queuct)y o Jos Jor
Still in ready queue:], 4 " "

The T, busy period Time window 8 [300,350)

extends beyond +——————| Time available for J,;: 50-6 = 44

this point (1) J,; completes at: 300+6+10 = 3 =116)| J,; s response time is not worst-casel

2 N
VV
2013/14 UniPD / T. Vardanega Real Time Systems 157 of 413

11/02/2014

12

2013/14 UniPD / T. Vardanega

Level-i busy period

T, = {-, 100, 20, 100}, T, = {-, 150, 40, 150}, T; = {-, 350, 100, 350} = U = 0.75
The same definition of level-i busy period holds also for D < p
but its width is obviously shorter!

1|
0 20 100 120 200 220 300 320
T2 l
[] | []
o 20 60 150 190 300

-+—— 13 busyperiod ———»

S [1T 1 1 [1 l
o 60 100 120 150 190200 220 240 350 time
2013/14 UniPD / T. Vardanega Real-Time Systems 158 of 413

Initial survey of scheduling approaches
Important definitions and criteria

Detail discussion and evaluation of main scheduling
algorithms

Initial considerations on analysis techniques

2013/14 UniPD / T. Vardanega Real-Time Systems 159 of 413

Real-Time Systems

11/02/2014

13

