
2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 1

4.b Task interactions and
blocking

Inhibiting preemption /1

 In many real-life situations some (fractions of) jobs
should not be preempted
 This is the case e.g. with the execution of non-reentrant

code shared by multiple jobs whether directly (by direct
call) or indirectly (e.g., within a system call primitive)

 Considerations of data integrity or efficiency require
that some system-level activities should not be
preempted
 Preemption is inhibited by simply disabling dispatching

2013/14 UniPD / T. Vardanega Real-Time Systems 204 of 413

Inhibiting preemption /2

 A higher-priority job ܬ that at its release time finds
a lower-priority job ܬ executing with disabled
preemption gets blocked for a time duration that
depends on ܬ
 Under FPS this is a flagrant case of priority inversion

 The feasibility of ܬ now depends on ܬ too!
 Under FPS this form of blocking for ܬ is determined as
ሻሺ݊ܤ ൌ max	ୀାଵ,..,ሺߠሻ where ߠ ݁ is the
longest non-preemptible execution of job ܬ	

 This cost is paid by of ܬ only once per activation

2013/14 UniPD / T. Vardanega Real-Time Systems 205 of 413

Self suspension /1

 A job ܬ that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time

 ܬ incurs a degenerate form of blocking that can be bounded as
ሻݏݏሺܤ ൌ max	ሺߜሻ ∑ min	ሺ݁,max	ሺߜሻሻୀଵ,..,ିଵ
 max	ሺߜሻ is the longest duration of self suspension by job ܬ
 The other term accounts for the cumulative interference from self-

suspending higher-priority jobs that may become ready during the busy
period of ܬ which, for every ܬ, can never be max	ሺߜሻ and ݁

 In general, a job ܬ that self suspends ܭ times during execution
incurs total blocking ܤ ൌ ܤ ݏݏ ሺܭ 1ሻܤሺ݊ሻ
 As ܤሺ݊ሻ is potentially incurred at at every resumption

2013/14 UniPD / T. Vardanega Real-Time Systems 206 of 413

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 2

 Self suspension with independent tasks on single-
core processors causes scheduling anomalies
 Deadlines can be missed when task utilization or

suspension delays are decreased
 Example: a feasible task set with EDF
 ߬ଵ ൌ 0,10, 2,2,2 , 6
 ߬ଶ ൌ 5,10, 1,1,1 , 4
 ߬ଷ ൌ 7,10, 1,1,1 , 3
 (In red the self suspension) If ߬ଵexecutes or suspends

1 time unit less, then ߬ଷ misses its deadline

Self suspension /2

2013/14 UniPD / T. Vardanega Real-Time Systems 207 of 413

Blocking effects with RMS

T2

࣎ ൌ , , . , , ࣎ ൌ , , , ࢁ		 ൌ . ૡૠ

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

࣎ self-suspends for 1.5 ࣎ misses its deadline

 ࢙࢙ ൌ . , . ൌ . is a pessimistic upperbound!
With ࣐ ൌ the actual blocking for ࣎ in [3,10) reduces to 1

But still ࢙࢙ ൌ ,ሺሻ࣌ ൌ .

2013/14 UniPD / T. Vardanega Real-Time Systems 208 of 413

ሺ߮, , ݁, ሻܦ

Access contention

 Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

 A resource access control protocol specifies
 When and under what condition a resource access request

may be granted
 The order in which requests must be serviced

 Access contention situations may cause priority
inversion to arise

2013/14 UniPD / T. Vardanega Real-Time Systems 209 of 413

Example /1

T1T2RT3RT1

2 4 6 8 10 12

࣎ = {-, -, 2, 20, R(4)}, ࣎ = {2, -, 3, 17, R(4)} , ࣎ = {6, -, 3, 14, R(2)}

under EDF

࣎ :: e; R(4); e. ࣎ :: e; e; R(4); e. ࣎ :: e; e; R(2); e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by ߬ଵ

R released by ߬ଵ
and is assigned
to ܬଷ,ଵ according to EDF

R in use by ߬ଷ R in use by ߬ଶ

R released by ߬ଷ

߬ଷ completes ߬ଶ completes

߬ଵ completes

߬ଶ gets blocked on access to R

ଵ,ଵܦ ൌ 20 ଶ,ଵܦ ൌ 17 ଷ,ଵܦ ൌ 14

2013/14 UniPD / T. Vardanega Real-Time Systems 210 of 413

ሺ߮, , ݁, ሻܦ

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 3

Example /2

2013/14 UniPD / T. Vardanega Real-Time Systems 211 of 413

࣎ = {-, -, 2, 20, R(2.5)}, ࣎	= {2, -, 3, 17, R(4)} , ࣎ = {6, -, 3, 14, R(2)}

under EDF

Same as before except with shorter use of R by ࣎

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

߬ଷ	misses its deadline

R in use by ߬ଵ
R released by ߬ଵ
R taken over by ߬ଶ

R released by ߬ଶ
R taken over by ߬ଷ

R released by ߬ଷ

ሺ߮, , ݁, ሻܦ

Scheduling anomaly!

Assumptions and notations

 In order that interference can be minimized, it is preferable
for real-time design to prescribe that
 All jobs do not self suspend (directly or indirectly)
 All jobs can be preempted

 We say that job ܬ is directly blocked by a lower-priority
job ܬ when
 ܬ is granted exclusive access to a shared resource ܴ
 ܬ has requested ܴ and its request has not been granted

 To study the problem we may want to use a wait-for graph

2013/14 UniPD / T. Vardanega Real-Time Systems 212 of 413

Example

T1

T2

T3

T4

R1, 5

R2, 1

(2; 3)

(1; 1)

(1; 2)

[R2,1;8[R1,4;1][R1,1;5]]

Units available

Units required Duration of use

Obviously!

Wait-for graph

2013/14 UniPD / T. Vardanega Real-Time Systems 213 of 413

Where T3 cumulates up to 2 resources

Resource access control [a]

 Inhibiting preemption in critical sections
 A job that requires access to a resource is always granted it
 A job that has been assigned a resource runs at a priority

higher than any other job
 These two clauses imply each other
 They jointly prevent deadlock situations from occurring

 They cause bounded priority inversion
 At most once per job

 We already understood why

 For a maximum duration ܤሺܿݎሻ ൌ ܥୀାଵ,..,ݔܽ݉
 For job indices in monotonically non-increasing order and ܥ denoting

worst-case duration of critical-section activity by job ܬ

2013/14 UniPD / T. Vardanega Real-Time Systems 214 of 413

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 4

Critique of [a]

 This strategy causes distributed overhead
 All jobs – including those that do not compete for resource access –

incur some time penalty
 Very unfair hence not desirable

 Better if time overhead is solely incurred by the jobs that
actually compete for resource access
 The priority of the job that is granted the resource must only be

higher than that of its competitor jobs
 This is the principle of the ceiling priority: we shall return to it

 The resource requirements must be statically known

2013/14 UniPD / T. Vardanega Real-Time Systems 215 of 413

Resource access control [b]

 Basic priority inheritance protocol (BPIP)
 The priority of a job varies over time from that initially assigned
 The variation follows inheritance principles

 Protocol rules
 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;

at release time they take on their assigned priority
 Allocation: when job ܬ requires access to resource ܴ at time ݐ

 If ܴ is free, ܴ is assigned to ܬ until release
 If ܴ is busy, the request is denied and ܬ becomes blocked

 Priority inheritance: when job ܬ becomes blocked, job ܬ that blocks it
takes on ܬ’s current priority as its inherited priority and retains it until ܴ is
released; at that point ܬ reverts to its previous priority

2013/14 UniPD / T. Vardanega Real-Time Systems 216 of 413

Critique of [b]

 BPIP suffers two forms of blocking
 Direct blocking owing to resource contention
 Inheritance blocking owing to priority raising

 Priority inheritance is transitive
 Direct blocking is transitive as jobs may need to acquire multiple resources

 BPIP does not prevent deadlock as cyclic blocking is a devious
form of transitive direct blocking

 BPIP incurs reducible distributed overhead
 Under BPIP a job may become blocked multiple times when competing

for more than one shared resource

 BPIP needs no prior knowledge on which resources are shared
 It is inherently dynamic

2013/14 UniPD / T. Vardanega Real-Time Systems 217 of 413

Resource access control [c]

 Basic priority ceiling protocol (BPCP)
 As BPIP but with the additional constraint that all

resource requirements must be statically known
 Every resource ܴ is assigned a priority ceiling attribute

set to the highest priority of the jobs that require ܴ
 At time ݐ the system has a ceiling ߨ௦ሺݐሻ attribute set to the

highest priority ceiling of all resources currently in use
 If no resource is currently in use at ݐ defaults to Ω	ሻݐ௦ሺߨ < the

lowest priority of all jobs

2013/14 UniPD / T. Vardanega Real-Time Systems 218 of 413

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 5

BPCP protocol rules

 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

 Allocation: when job ܬ requests access to resource ܴ at time ݐ
 If ܴ is assigned to another job, request is denied and ܬ becomes blocked
 If ܴ is free and ܬ’s priority ߨሺݐሻ ሻ, the request is grantedݐ௦ሺߨ
 If ܬ owns the resource with priority ceiling ߨ௦ሺݐሻ, the request is granted
 Otherwise the request is denied and ܬ becomes blocked

 Priority inheritance: when job ܬ becomes blocked by job ܬ – for
direct or avoidance blocking – ܬ takes ܬ’s current priority ߨሺݐሻ
until ܬ releases all resources with priority ceiling ሻ; at thatݐሺߨ
point ܬ’s priority reverts to the level that preceded access to
those resources

2013/14 UniPD / T. Vardanega Real-Time Systems 219 of 413

Critique of [c] /1

 BPCP is not greedy (whereas BPIP is)
 Under BPCP a request for a free resource may be denied !

 Hence under BPCP each job ܬ incurs three distinct forms
of blocking caused by lower-priority job ܬ

3. Avoidance blocking

J R Jl

1. Direct blocking

Jh R Jl

2. Priority-inheritance blocking

J R X Jlࡶ࣊ሺ࢚ሻ ሻ࢚ሺ࢙࣊ ൌ ࢄ࣊ ሻ࢚ሺࡶ࣊

J ࢎࡶ࣊ requires࣊ owns

2013/14 UniPD / T. Vardanega Real-Time Systems 220 of 413

Critique of [c] /2

 Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
 If job ܬ at time ݐ has ߨሺݐሻ ሻݐ௦ሺߨ then it must be so that
 ܬ will never use any of the resources in use at time ݐ
 So won’t all jobs with higher priority than ܬ

 The system ceiling ߨ௦ሺݐሻ determines which jobs can be
assigned a resource free at time ݐ without risking deadlock
 All jobs with priority higher than the system ceiling ߨ௦ሺݐሻ

 Caveat
 To stop job ܬ from blocking itself in the attempt of nesting

resources, BPCP must grant its request if ߨሺݐሻ ሻݐ௦ሺߨ but ܬ
holds the resources ܺ with ceiling ൌ ሻݐ௦ሺߨ

2013/14 UniPD / T. Vardanega Real-Time Systems 221 of 413

Critique of [c] /3

 BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

 Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
 Under BPCP when a job becomes blocked, its blocking can only be

caused by a single job
 The job that causes others to block cannot itself be blocked

 Hence BPCP does not permit transitive blocking
 Demonstration: by exercise

 The maximum possible value of that duration for job ܬ is
termed the blocking time ሻܿݎሺܤ due to resource contention
 ሻܿݎሺܤ must be accounted for in the schedulability test for ܬ

2013/14 UniPD / T. Vardanega Real-Time Systems 222 of 413

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 6

Computing the BPCP blocking time /1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

ሻࢉ࢘ሺ ൌ max value in row i across all tables
Low

High

2013/14 UniPD / T. Vardanega Real-Time Systems 223 of 413

Computing the BPCP blocking time /2

 Table “directly blocked by” is straightforward

 Table “priority-inheritance blocked by”
 The value in cell [i, k] is the maximum value found in

(rows 1, …, i-1; column k) in Table “directly blocked by”

 Table “avoidance blocked by”
 If (desirably) jobs are assigned distinct priorities, the cells here are as

in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2013/14 UniPD / T. Vardanega Real-Time Systems 224 of 413

Resource access control [d]

 Stack-based ceiling priority protocol
 SB-CPP beats BPCP in terms of
 Saving memory resources especially precious to embedded

systems by sharing stack space across jobs
 It prevents a job’s stack space from fragmenting because

it ensures that none of the job’s request for resources
may be denied during execution
 What BPCP instead allows
 Stack fragmentation from blocking and not from preemption (!)

 We must also require that jobs do not self suspend
 Having lower algorithmic complexity in time and space

from needing less checks against ߨ௦ሺݐሻ

2013/14 UniPD / T. Vardanega Real-Time Systems 225 of 413

SB-CPP protocol rules [Baker, 1991]

 Computation of and updates to ceiling :ሻݐ௦ሺߨ
 When all resources are free, ߨ௦ሺݐሻ ൌ Ω
 ሻݐ௦ሺߨ is updated any time ݐ a resource is assigned or released

 Scheduling: on its release time job ܬ stays blocked until
its assigned priority ߨሺݐሻ ሻݐ௦ሺߨ
 Jobs that are not blocked are dispatched to execution by

preemptive priority-driven scheduling
 Allocation: whenever a job issues a request for a

resource, the request is granted

2013/14 UniPD / T. Vardanega Real-Time Systems 226 of 413

2013/14 UniPD / T. Vardanega 11/02/2014

Real-Time Systems 7

Critique of [d]

 Under SB-CPP a job ܬ can only begin execution when
the resources it may need are free
 Otherwise ߨሺݐሻ ሻݐ௦ሺߨ cannot hold

 Under SB-CPP a job ܬ that may get preempted does
not become blocked on resumption
 The preempting job surely does not contend any resources

with ܬ

 SB-CPP prevents deadlock from occurring

 Under SB-CPP ܤሺܿݎሻ for any job ܬ is computed in
the same way as with BPCP

2013/14 UniPD / T. Vardanega Real-Time Systems 227 of 413

Resource access control [e]

 Ceiling priority protocol (base version)
 CPP does not use the system ceiling ߨ௦ሺݐሻ although the

resources continue to have a ceiling priority attribute
 Scheduling:

 A job that does not hold any resource executes at the level of
its assigned priority

 Jobs are scheduled under FPS with FIFO_within_priorities
 A job that holds any resources has its current priority set to

the highest value among the ceiling priority of those resources
 Allocation: Whenever a job issues a request for a

resource, the request is granted
2013/14 UniPD / T. Vardanega Real-Time Systems 228 of 413

Summary

 Issues arising from task interactions under
preemptive priority-based scheduling

 Survey of resource access control protocols
 Critique of the surveyed protocols

2013/14 UniPD / T. Vardanega Real-Time Systems 229 of 413

