2013/14 UniPD / T. Vardanega

4.b Task interactions and

blocking

Inhibiting preemption /2

A higher-priority job Jj, that at its release time finds
a lower-priority job J; executing with disabled
preemption gets blocked for a time duration that
depends on J;

0 Under FPS this is a flagrant case of priority inversion

The feasibility of [, now depends on J; tool

0 Under FPS this form of blocking for J; is determined as
B;(np) = maxg=i+1 n(0k) where Oy < ey is the
longest non-preemptible execution of job Ji

0 This cost is paid by of J; only once per activation

2013/14 UniPD / T. Vardanega Real-Time Systems 205 of 413

Inhibiting preemption /1

In many real-life situations some (fractions of) jobs
should not be preempted

0 This is the case e.g. with the execution of non-reentrant
code shared by multiple jobs whether directly (by direct
call) or indirectly (e.g., within a system call primitive)

Considerations of data integrity or efficiency require

that some system-level activities should not be

preempted

0 Preemption is inhibited by simply disabling dispatching

2013/14 UniPD / T. Vardanega Real-Time Systems 204 of 413

Real-Time Systems

Self suspension /1

A job J; that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time

Ji incurs a degenerate form of blocking that can be bounded as
Bi(ss) = max(6;) + Xy=1, ;— min(e,, max(dy))

o max(6;) is the longest duration of self suspension by job J;

0 The other term accounts for the cumulative interference from self-
suspending higher-ptiority jobs that may become ready during the busy
petiod of J; which, for evety Jj, can never be > max(dy) and > ey

In general, a job J; that self suspends K times during execution
incurs total blocking B; = B;(ss) + (K + 1)B;(np)

o As Bj(np) is potentially incurred at at every resumption

2013/14 UniPD / T. Vardanega Real-Time Systems 206 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

‘ Self suspension /2

= Self suspension with independent tasks on single-
core processors causes seheduling anomalies

0 Deadlines can be missed when task utilization or
suspension delays are decreased

= Example: a feasible task set with EDF

a1, ={0,10,(2,2,2),6} T |
01, ={510,(1,1,1),4} | e
013 = {7,10,(1,1,1),3} 1, S|
0 (In red the self suspension) If T;executes or sus7pends B
1 time unit less, then T3 misses its deadline
2013/14 UniPD / T. Vardanega Real-Time Systems 207 of 413

‘ Access contention

m Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

m A resource access control protocol specifies

0 When and under what condition a resoutce access request
may be granted

0 The order in which requests must be setviced
= Access contention situations may cause priority
inversion to arise

2013/14 UniPD / T. Vardanega Real-Time Systems 209 of 413

‘ Blocking effects with RMS

(¢i.pirei, Dy)

7, ={0,4,2.5,4}, 7, = {3,10,2,10} U = 0.875

T, self-suspends for 1.5 ‘ T, misses its deadline

|/

1 2 3 4 5 6 7 8 9 10 1 12

B;(ss) = 0 + min(2.5,1.5) = 1.5 is a pessimistic upperbound!
With ¢, = 3 the actual blocking for T in [3,10) reduces to 1
But still By(ss) = 1> 6,,(0) = 0.5

2013/14 UniPD / T. Vardanega Real-Time Systems 208 of 413

Real-Time Systems

| Example /1

(pipirei D) 7 Max use of shared resource per execution

T = {') -5 2, 207\1‘(4}}’ 2= {2) -3, 17) R(4)} > T3 = {69 -3, 14, R(Z)}

under EDF

T1:¢; R@);e. Ty:e;e;RM@);e. T3 1 ¢; ¢; R(2); e.

R in use by 74 R in use by 73

Rin use by 7,

T, gets blocked on access to R

R released by f; T3 completes T, completes

Dy =14 and is assigned|

T letes
to J3,1 accordipg to EDF 1 compretes

R released by 73

2013/14 UniPD / T. Vardanega Real-Time Systems 210 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

| Example /2

(91, pir €1, D;)
T = {'a) 2: 20) R(&)}a T2 = {2’ T 3) 17) R(4)} > T3 = {6a) 3’ 14) R(Z)}

under EDF

Same as before except with shorter use of R by Tq ------oo-oommmiy

R released by 7y R released by 7, i
R in use by 7y R taken over by T, R taken over by T3 !
R released by 73 H
:
i
T, T, ;
2 4 6

8

2013/14 UniPD / T. Vardanega Real-Time Systems 211 of 413

‘ Example

Wait-for graph

Units required Duration of use

.
(25 3)

Units available

»7
R, 5
15
T,
R, 1
= [Ry,18[Ry,4:1] [Ry,155]]
Where T; cumulates up to 2 resources
T (4;2)
4 4
Obviously!
2013/14 UniPD / T. Vardanega Real-Time Systems 213 0f 413

‘ Assumptions and notations

u In order that interference can be minimized, it is preferable
for real-time design to prescribe that

o All jobs do not self suspend (directly or indirectly)
o All jobs can be preempted
» We say that job [, is directly blocked by a lowet-ptiotity
job J; when
o J;is granted exclusive access to a shared resource R
o Jp has requested R and its request has not been granted

u To study the problem we may want to use a wait-for graph

2013/14 UniPD / T. Vardanega Real-Time Systems 212 of 413

Real-Time Systems

Resource access control [a]

u Inhibiting preemption in critical sections
0 A job that requires access to a resource is always granted it
0 A job that has been assigned a resource runs at a priority
higher than any other job

u These two clauses imply each other

= They jointly prevent deadlock situations from occurring
u They cause bounded priority inversion
0 At most once per job
= We already understood why
o For a maximum duration B;(rc¢) = maxy=i4+1, nCk

= For job indices in monotonically non-increasing order and Cy denoting
worst-case duration of critical-section activity by job J

2013/14 UniPD / T. Vardanega Real-Time Systems 214 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

| Critique of [a]

u This strategy causes distributed overhead

a All jobs — including those that do not compete for resource access —
incur some time penalty

a Very unfair hence not desirable

= Better if time overhead is solely incurred by the jobs that
actually compete for resource access

0 The priority of the job that is granted the resource must only be
higher than that of its competitor jobs

= This is the principle of the cedling priority: we shall return to it

0 The resource requirements must be statically known

2013/14 UniPD / T. Vardanega Real-Time Systems 2150f 413

| Critique of [b]

= BPIP suffers two forms of blocking
0 Direct blocking owing to resource contention
0 Inheritance blocking owing to priority raising
u Priority inheritance is transitive
o Direct blocking is transitive as jobs may need to acquire multiple resources
= BPIP does not prevent deadlock as cyclic blocking is a devious
form of transitive direct blocking
u BPIP incurs reducible distributed overhead

o Under BPIP a job may become blocked multiple times when competing
for more than one shared resource

= BPIP needs no prior knowledge on which resources are shared

0 Itis inherently dynamic

2013/14 UniPD / T. Vardanega Real-Time Systems 217 of 413

Resource access control [b]

u Basic priority inheritance protocol (BPIP)
a The priority of a job vaties over time from that initially assigned
0 The variation follows inheritance principles

= Protocol rules

o Scheduling: jobs ate dispatched by preemptive priority-driven scheduling;
at release time they take on their assigned priority

0 Allocation: when job] requires access to resource R at time t
= IfRis free, R is assigned to J until release

u If R is busy, the request is denied and]| becomes blocked
0 Priority inheritance: when job J becomes blocked, job Jj that blocks it

takes on J’s curvent priority as its inberited priority and retains it until R is
released; at that point J; reverts to its previous priority

2013/14 UniPD / T. Vardanega Real-Time Systems 216 of 413

Real-Time Systems

Resource access control [c]

m Basic priority ceiling protocol (BPCP)
0 As BPIP but with the additional constraint that all
resource requirements must be statically known

o Every resource R is assigned a priority ceiling attribute
set to the highest priority of the jobs that require R
= At time t the system has a ceiling 5 (t) attribute set to the
highest priority ceiling of all resources currently in use

= If no resource is currently in use at t 4 (t) defaults to Q < the
lowest priority of all jobs

2013/14 UniPD / T. Vardanega Real-Time Systems 218 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

‘ BPCP protocol rules

those resources

u Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

= Allocation: when job J requests access to resoutce R at time t
o If R is assigned to another job, request is denied and] becomes blocked
a IfRis free and J’s priority 7r;(t) > m,(t), the request is granted
o If] owns the resource with priority ceiling 5 (t), the request is granted
o Otherwise the request is denied and J becomes blocked —

= Priority inheritance: when job J becomes blocked by job J; — for
direct or avoidance blocking — J; takes J’s cutrent priority 7 (t)
until J; releases all resources with priority ceiling > 1;(t); at that
point J’s priority reverts to the level that preceded access to

2013/14 UniPD / T. Vardanega Real-Time Systems

| Critique of [d] /2

u Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
o Ifjob J at time t has 7;(t) > 74(t) then it must be so that
=] will never use any of the resources in use at time ¢
= So won’t all jobs with higher priority than J
0 The system ceiling 75 (t) determines which jobs can be
assigned a resource free at time t without risking deadlock
= All jobs with priority higher than the system ceiling 74 (t)
u Caveat
a To stop job J from blocking itself in the attempt of nesting

resources, BPCP must grant its request if 77, (t) < m4(t) but J
holds the resources {X} with ceiling = mg(t)

2013/14 UniPD / T. Vardanega Real-Time Systems 221 of 413

| Critique of [c] /1

u BPCP is not greedy (whereas BPIP is)

of blocking caused by lower-priotity job J;

- @—-® ©—@

3. Avoidance blocking

0 Under BPCP a request for a free resource may be denied !

= Hence under BPCP each job J incurs three distinct forms

requires owns. . Ty, > nj

1. Direct blocking 2. Priority-inheritance blocking

- g(t) = my > n,(t)

2013/14 UniPD / T. Vardanega Real-Time Systems

Real-Time Systems

Critique of [c] /3

= BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

u Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
0 Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job

0 The job that causes others to block cannot itself be blocked
= Hence BPCP does not permit transitive blocking

0 Demonstration: by exercise

The maximum possible value of that duration for job J; is
termed the blocking time B;(rc) due to resource contention
0 B;(rc) must be accounted for in the schedulability test for J;

2013/14 UniPD / T. Vardanega Real-Time Systems 222 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

Computing the BPCP blocking time /1

High

Directly blocked by
Jz2 J3 J4 Js

J5

Avoidance blocked b
[J2 T 33

Low . .
| B;(rc) = max value in row 7 actross all tables |

2013/14 UniPD / T. Vardanega Real-Time Systems 223 of 413

Resource access control [d]

m Stack-based ceiling priority protocol
o SB-CPP beats BPCP in terms of
= Saving memoty resources especially precious to embedded
systems by sharing stack space across jobs

0 It prevents a job’s stack space from fragmenting because
it ensures that none of the job’s request for resources
may be denied during execution

What BPCP instead allows
Stack fragmentation from blocking and not from preemption ()

0 We must also require that jobs do not self suspend

= Having lower algorithmic complexity in time and space
from needing less checks against mg(t)

2013/14 UniPD / T. Vardanega Real-Time Systems 225 of 413

Computing the BPCP blocking time /2

u Table “directly blocked by” is straightforward
u ‘Table “priority-inberitance blocked by’

0 The value in cell [i, k] is the maximum value found in
(rows 1, ..., i-1; column k) in Table “directly blocked by’
u Table “avoidance blocked by’

a If (desirably) jobs are assigned distinct priorities, the cells here are as
in Table “priority-inberitance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2013/14 UniPD / T. Vardanega Real-Time Systems 224 of 413

Real-Time Systems

'SB-CPP protocol rules [Baker, 1991]

= Computation of and updates to ceiling s (t):

0 When all resources ate free, mg(t) = Q
0 mg(t) is updated any time ¢t a resource is assigned or released
m Scheduling: on its release time job J stays blocked until
its assigned priority 7, (t) > ms(t)
0 Jobs that are not blocked are dispatched to execution by
preemptive priority-driven scheduling

= Allocation: whenever a job issues a request for a

resoutce, the request is granted Ao
@50) Q)
3

2013/14 UniPD / T. Vardanega Real-Time Systems 226 of 413

11/02/2014

2013/14 UniPD / T. Vardanega

Critique of [d]

Under SB-CPP a job J can only begin execution when
the resources it may need are free

o Otherwise 7;(t) > ms(t) cannot hold

Under SB-CPP a job J that may get preempted does
not become blocked on resumption

0 The preempting job surely does not contend any resources
with J

SB-CPP prevents deadlock from occurring

Under SB-CPP B;(rc) for any job J; is computed in
the same way as with BPCP

2013/14 UniPD / T. Vardanega Real-Time Systems 227 of 413

Summary

Issues arising from task interactions under
preemptive priority-based scheduling

Survey of resource access control protocols

Critique of the surveyed protocols

2013/14 UniPD / T. Vardanega Real-Time Systems

229 of 413

Resource access control [e]

Ceiling priority protocol (base vetsion)
o CPP does not use the system ceiling mg(t) although the
resources continue to have a ceiling priority attribute

Scheduling:

0 A job that does not hold any resource executes at the level of
its assigned priority

0 Jobs are scheduled under FPS with FIFO_within_priorities

0 A job that holds any resources has its curtent priotity set to
the highest value among the ceiling priority of those resources

Allocation: Whenever a job issues a request for a =

resource, the request is granted (‘jf

2013/14 UniPD / T. Vardanega Real-Time Systems 228 of 413

Real-Time Systems

11/02/2014

