4.c Task interactions and blocking (recap, exercises and extensions)

> Credits to A. Burns and A. Wellings RTSYORK

■ To illustrate an initial example of priority inversion,

consider the execution of the periodic task set shown below under *simple locking* (i.e., by use of binary semaphores)

Simple locking and priority inversion /1

Task	Priority	Execution sequence	Release time
a	1 (low)	EQQQQE	0
b	2	EE	2
с	3	EVVE	2
d	4 (high)	EEQVE	4

Legend: E: one unit of execution; Q (or V): one unit of use of resource Q (or V)

2013/14 UniPD / T. Vardanega

Real-Time Systems

232 of 416

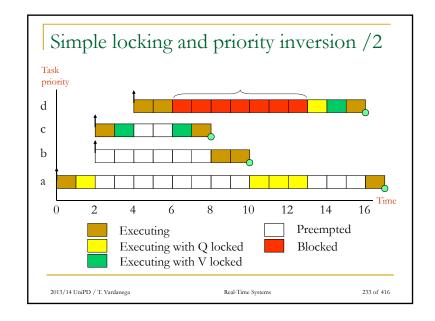
Task interactions and blocking

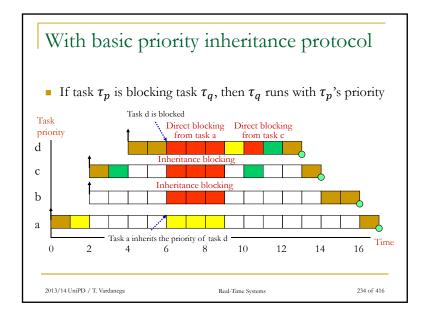
- If a task is suspended waiting for a lower-priority task to complete some required computation then the priority model is, in some sense, being undermined
- It is said to suffer *priority inversion*
- If a task is waiting for a lower-priority task, it is said to be *blocked* (as opposed to preempted or suspended)

Real-Time Systems

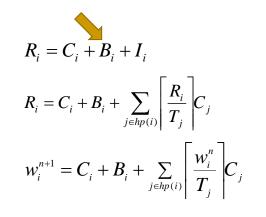
2013/14 UniPD / T. Vardanega

231 of 416





Incorporating blocking in response time



2013/14 UniPD / T. Vardanega

Real-Time Systems

Bounding direct blocking under BPIP

- If the system has $\{r_{j=1,\dots,K}\}$ critical sections that can lead to a task τ_i being blocked under BPIP then the maximum number of times that τ_i can be blocked is K
- The upper bound on the blocking time $B_i(rc)$ for τ_i with K critical sections in the system is given by $B_i(rc) = \sum_{j=1}^{K} use(r_j, i) \times C_{max}(r_j)$
 - □ $use(r_j, i) = 1$ if r_j is used by at least one task τ_l : $\pi_l < \pi_i$ and one task τ_h : $\pi_h \ge \pi_i \mid 0$ otherwise
 - \Box $C_{max}(r_i)$ the duration of use of r_i by any such task τ_l
- With BPIP, task τ_i blocks for the longest duration of use on access to <u>all</u> the resources it needs

2013/14 UniPD / T. Vardanega

Real-Time Systems

235 of 416

Ceiling priority protocols

- Two variants
 - Original CPP (a.k.a. BPCP)
 - □ Immediate CPP (a.k.a. CPP base version)
- When using them on a single processor
 - □ A high-priority task can only be blocked by lower-priority tasks at most once per job
 - Deadlocks are prevented
 - □ Transitive blocking is prevented
 - □ Mutual exclusive access to resources is ensured by the protocol itself so that locks are not needed (!)

2013/14 UniPD / T. Vardanega

Real-Time Systems

237 of 416

236 of 416

2013/14 UniPD / T. Vardanega

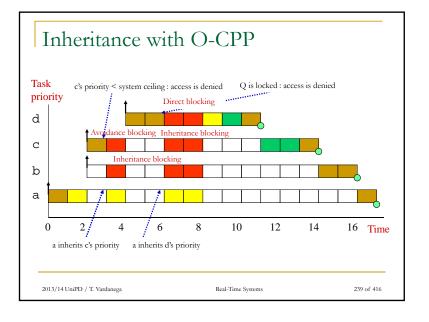
Original CPP (BPCP)

- Each task τ_i has an assigned static priority
- \blacksquare Each resource r_k has a static ceiling attribute defined as the maximum priority of the tasks that may use it
- τ_i has a current priority $\pi_i(t)$ that is set to the maximum of its assigned priority and any priorities it inherited from blocking higher-priority tasks
- τ_i can lock a resource r_k iff $\pi_i(t) > max_j(\pi_{r_j})$ for all r_j currently locked (excluding those τ_i locks itself) at time t
 - \Box The blocking suffered by τ_i is bounded by the longest critical section with ceiling $\pi_{r_k} > \pi_i$, that is to say:
 - $\Box B_i = max_{k=1,..K}(use(r_k, i) \times C_{max}(r_k))$
 - With use() and C_{max}() as per BPIP

2013/14 UniPD / T. Vardanega

Real-Time Systems

238 of 416



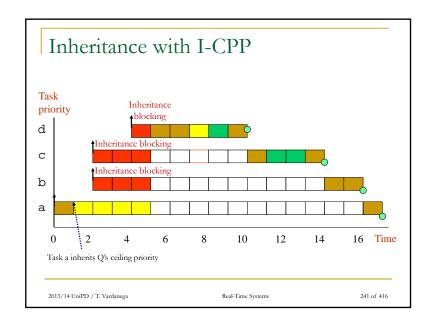
Immediate CPP

- Each task has an assigned static priority
 - Perhaps determined by deadline monotonic assignment
- Each resource has a static ceiling attribute defined as the maximum priority of the tasks that may use it
- A task has a *dynamic* current priority that is the maximum of its own static priority and the ceiling values of any resources it is currently using
- Any job of that task will only suffer a block at release
 - □ Once the job starts executing all the resources it needs must be free
 - □ If they were not then some task would have priority ≥ than the job's hence its execution would be postponed
- Blocking computed as for O-CPP

2013/14 UniPD / T. Vardanega

Real-Time Systems

240 of 416



O-CPP versus I-CPP

- Although the worst-case behavior of the two ceiling priority schemes is identical (from a scheduling viewpoint), there are some points of difference
 - □ I-CPP is easier to implement than O-CPP as blocking relationships need not be monitored
 - I-CPP leads to less context switches as blocking occurs prior to job activation
 - I-CPP requires more priority movements as they happen with all resource usages
 - □ O-CPP changes priority only if an actual block has occurred
- I-CPP is called Priority Protect Protocol in POSIX and Priority Ceiling Emulation in Ada and Real-Time Java

2013/14 UniPD / T. Vardanega

Real-Time Systems

242 of 416

Model extensions

- Cooperative scheduling
- Release jitter
- Arbitrary deadlines
- Fault tolerance
- Offsets
- Optimal priority assignment

2013/14 UniPD / T. Vardanega

Real-Time Systems

244 of 416

An extendible task model

- Our workload model so far allows
 - \square Constrained and implicit deadlines ($D \le T$)
 - □ Periodic and sporadic tasks
 - As well as aperiodic tasks under some server scheme
 - ☐ Task interactions with the resulting blocking being (compositionally) factored in the response time equations

2013/14 UniPD / T. Vardanega

Real-Time Systems

243 of 416

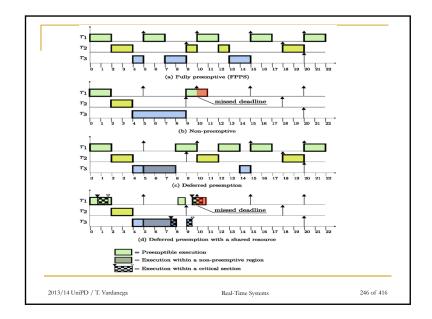
Cooperative scheduling /1

- Fully preemptive behavior may not be always acceptable for safety-critical systems
- Cooperative or deferred-preemption scheduling splits tasks into (fixed or floating) slots
 - □ The running task calls the scheduler (yield) at the end of each slot
 - ☐ If no higher-priority task is ready then the task continues into the next slot
 - \Box The time duration of each such slot is bounded by B_{max}
 - □ Mutual exclusion is realized by non-preemption (else it gets broken)
- The use of deferred preemption has two important benefits
 - ☐ It increases system feasibility as it can lead to lower response time values
 - □ No interference can occur (by definition) during each last slot of execution

2013/14 UniPD / T. Vardanega

Real-Time Systems

245 of 416



Cooperative scheduling /2

• Let the execution time of the final slot be F_i

$$w_i^{n+1} = B_{MAX} + C_i \left(-F_i \right) + \sum_{j \in hp(i)} \left[\frac{w_i^n}{T_j} \right] C_j$$

■ When the response time equation converges, that is, when $W_i^n = W_i^{n+1}$, the response time is given by

$$R_i = w_i^n + F_i$$

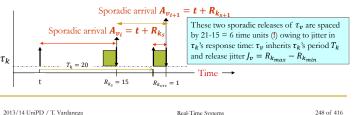
2013/14 UniPD / T. Vardanega

Real-Time Systems

247 of 416

Release jitter /1

- A serious problem for precedence-constrained tasks □ Especially under parallelism (hence in distributed systems and multi-cores)
- **Example:** a periodic task τ_k with period $T_k = 20$ releases a sporadic task τ_v at the end of every run of τ_k 's jobs
- What is the interval time between any two subsequent releases of jobs of τ_v ?



2013/14 UniPD / T. Vardanega

Real-Time Systems

Release jitter /2

- Sporadic task τ_s released at 0, T J, 2T J, 3T J
- Examination of the derivation of the RTA equation implies that task τ_i will suffer
 - \Box One interference from τ_s if $R_i \in [0, T-I)$
 - □ Two interferences if $R_i \in [T J, 2T J)$
 - □ Three interferences if $R_i \in [2T J, 3T J)$
- Release jitter in higher-priority tasks extends their interference potential: the response time equation captures that as

 $R_i = C_i + B_i + \sum_{j \in hp(i)} \left[\frac{R_i + J_j}{T_i} \right] C_j$

- Periodic tasks can only suffer release jitter if the clock is jittery
 - \Box In that case the response time of a jittery periodic task τ_n measured relative to the *real* release time becomes $R'_p = R_p + J_p$

2013/14 UniPD / T. Vardanega

Real-Time Systems

249 of 416

Arbitrary deadlines /1

■ The RTA equation must be modified to cater for situations where D > T in which multiple jobs of the same task compete for execution

$$\omega_i^{n+1}(q) = (q+1)C_i + \sum_{j \in hp(i)} \left[\frac{\omega_i^n(q)}{T_j}\right] C_j$$

- $\square R_i(q) = \omega_i^n(q) qT_i$
- The number q of additional releases to consider is bounded by the lowest value of $q: R_i(q) \le T_i$
 - $\omega_i(q)$ represents the level-i busy period, which extends as long as qT_i falls within it
- The worst-case response time is then $R_i = max_qR_i(q)$

2013/14 UniPD / T. Vardanega

Real-Time Systems

250 of 416

Arbitrary deadlines /3

- When the formulation of the RTA equation is combined with the effect of release jitter, two alterations must be made
 - ☐ First, the interference factor must be increased if any higher priority tasks suffers release jitter

$$w_i^{n+1}(q) = B_i + (q+1)C_i + \sum_{j \in hp(i)} \left[\frac{w_i^n(q) + J_j}{T_j} \right] C_j$$

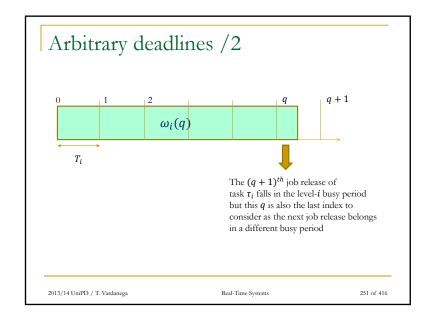
 Second, if the task under analysis can suffer release jitter then two consecutive windows could overlap if response time plus jitter is greater than period

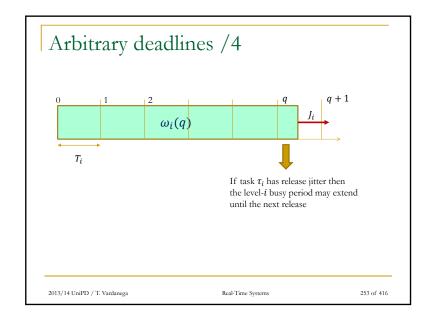
$$R_i(q) = w_i^n(q) - qT_i + J_i$$

2013/14 UniPD / T. Vardanega

Real-Time Systems

252 of 416





Offsets

• So far we assumed all tasks share a common release time (a.k.a. the critical instant)

Task	T	D	С	R	U=0.9	
a	8	5	4	4	D 11: . 1	
b	20	9	4	8	Deadline miss!	
С	20	10	4	(16))←——	

What if we allowed offsets?

Task	T	D	C	O	R
a	8	5	4	0	4
b	20	9	4	0	8
С	20	10	4	10	8

Note that arbitrary offsets are not tractable with criticalinstant analysis hence we cannot use the RTA equation for it!

2013/14 UniPD / T. Vardanega

Real-Time Systems

254 of 416

Notional task parameters

T

8

10

Non-optimal analysis /2

of which with offset)

Task

 τ_a

 τ_n

2013/14 UniPD / T. Vardanega

• This notional task τ_n has two important properties

□ If it is feasible (when sharing a critical instant with all other tasks) then the two real tasks that it represents will meet their deadlines when one is given the half-period \Box If all lower priority tasks are feasible when suffering interference from τ_n then they will stay schedulable when the notional task is replaced by the two real tasks (one

• These properties follow from the observation that τ_n always has no less CPU utilization than the two real tasks it subsumes

 \mathbf{D}

5

10

 $T_n = \frac{T_a}{2} = \frac{T_b}{2}$ Tasks τ_a and τ_b have the same period else we would use $Min(T_a, T_b)$ for greater pessimism

O

0

Real-Time Systems

R U=0.9

256 of 416

4

 $C_n = Max(C_a, C_b)$

 $D_n = Min(D_a, D_b)$

 $P_n = Max(P_a, P_b)$ Priority relations

This strategy can be extended to handle more than two tasks

2013/14 UniPD / T. Vardanega

Real-Time Systems

257 of 416

Non-optimal analysis /1

- Task periods are not arbitrary in reality: they are likely to have some relation to one another
 - ☐ In the previous example two tasks have a common period
 - \Box In this case we might give one of such tasks an offset O (e.g., tentatively set to $\frac{1}{2}$, so long that $0 + D \le T$) and then analyze the resulting system with a transformation that removes the offset so that critical-instant analysis continues to apply
- Doing so with the example, tasks τ_b , τ_c (τ_c with $O_c = 10$) are replaced by a single *notional* task with $T_n = T_b O_b = \frac{T_b}{2}$, $C_n = C_b = 4$, $D_n = T_n$ and no offset

- □ This technique aids in the determination of a "good" offset
- □ The RTA equation on slide 150 shows how to consider offsets, but determining the worst case with them is an intractable problem

2013/14 UniPD / T. Vardanega

Real-Time Systems

255 of 416

2013/14 UniPD / T. Vardanega

15/02/2014

Priority assignment (simulated annealing)

Theorem: If task p is assigned the lowest priority and is feasible then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task p assigned the lowest priority

2013/14 UniPD / T. Vardanega

Real-Time Systems

258 of 416

Sustainability [Baruah & Burns, 2006]

- Extends the notion of predictability for singlecore systems to wider range of relaxations of workload parameters
 - Shorter execution times
 - Longer periods
 - Less release jitter
 - Later deadlines
- Any such relaxation should preserve schedulability
 - □ Much like what predictability does for increase
- A sustainable scheduling algorithm does not suffer scheduling anomalies

2013/14 UniPD / T. Vardanega

Real-Time Systems

259 of 416

Summary

- Completing the survey and critique of resource access control protocols using some examples
- Relevant extensions to the simple workload model
- A simulated-annealing heuristic for the assignment of priorities

2013/14 UniPD / T. Vardanega

Real-Time Systems

260 of 416