
2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 1

7.a WCET analysis techniques

Credits to Enrico Mezzetti
(emezzett@math.unipd.it)

Worst-case execution time (WCET)

 For any input data and all initial logical states
 So that all execution paths are covered

 For any hardware state
 So that worst-case conditions are in effect

 Measurement-based WCET analysis
 On the real HW or a cycle-accurate simulator
 The high-watermark value can be ൑ WCET

 Static WCET analysis
 On an abstract model of the HW and of the program

2013/14 UniPD / T. Vardanega Real-Time Systems 304 of 420

2013/14 UniPD / T. Vardanega Real-Time Systems 305 of 420

Computing the WCET /1

 Why not measure the WCET of a task on its real hardware?

 Triggering the WCET by test is very difficult
 Worst-case input covering all executions of a real program is

intractable in practice
 Worst-case initial state is difficult to determine with modern HW

 Complex pipelines (out-of-order execution)
 Caches
 Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state
Logic analyser,
oscilloscope,

etc.
WCET ?

2013/14 UniPD / T. Vardanega Real-Time Systems 306 of 420

Computing the WCET /2

 Exact WCET not generally computable (~ the halting problem)
 A WCET estimate or bound are key to predictability

 Must be safe to be an upper bound to all possible executions
 Must be tight to avoid costly over-dimensioning

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 2

2013/14 UniPD / T. Vardanega Real-Time Systems 307 of 420

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as of the actual executable

 Execution time depends on control path and HW
 High-level analysis addresses the program behavior

 Control flow analysis builds a control flow graph (CFG)

 Low-level analysis determines the timing behavior of
individual instructions
 Not constant for modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

Static WCET analysis /2

2013/14 UniPD / T. Vardanega Real-Time Systems 308 of 420

Implicit path enumeration technique

 The program structure is
mapped into flow graph
constraints
 WCET computed with integer

linear programming or constraint-
solving techniques

 ܶܧܥܹ ൌ ∑ ௜ݔ ൈ ௜௜ݐ
 Where ݔ௜ is the execution

frequency of CFG edge ݅
 And ݐ௜ the execution time of

CFG edge ݅

2013/14 UniPD / T. Vardanega Real-Time Systems 309 of 420

CFG Flow constraints

 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 Basic block is the unit of that analysis

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Challenges with path analysis
 Input-data dependency
 Infeasible paths
 Loop bounds (and recursion depth)
 Dynamic calls (through pointers)

2013/14 UniPD / T. Vardanega Real-Time Systems 310 of 420

Static WCET analysis /3

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 3

Static WCET analysis /4

 High-level analysis /2
 Several techniques are deployed to allow using IPET

 Control-flow analysis to construct the CFG
 First finding the basic blocks and then building the graph among them

 Data-flow analysis to find loop bounds
 Value analysis to resolve memory accesses

 Automatic information extraction is insufficient
 User annotation of flow facts is needed

 To facilitate detection of infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and referenced memory addresses

2013/14 UniPD / T. Vardanega Real-Time Systems 311 of 420

2013/14 UniPD / T. Vardanega Real-Time Systems 312 of 420

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual timing
 All possible HW states should be accounted for

 Challenges with HW modeling
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2013/14 UniPD / T. Vardanega Real-Time Systems 313 of 420

Understanding the hardware /1

2013/14 UniPD / T. Vardanega Real-Time Systems 314 of 420

Instruction
cache

Data
cache

Caches

Courtesy of

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 4

2013/14 UniPD / T. Vardanega Real-Time Systems 316 of 420

Static WCET analysis: the big picture

 Open problems
 Can we always trust HW modeling?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation intrinsic in abstract state computation

 Weaknesses of user annotations
 Labor intensive and error prone

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

2013/14 UniPD / T. Vardanega Real-Time Systems 317 of 420

Static WCET analysis /7

 Safeness is at risk
 When local worst case does not always lead to global worst case
 When timing anomalies occur

 Complex hardware architectures (e.g., out-of-order pipelines)
 Even improper design choices (e.g., cache replacement policies)
 Counter-intuitive timing behavior
 Faster execution of a single instruction causes long-term negative effects

 Both are very difficult to account for in static analysis

2013/14 UniPD / T. Vardanega Real-Time Systems 318 of 420

Scheduling anomaly: example

 Some dependence between instructions
 Shared resources (e.g. pipeline stages) and opportunistic

scheduling

 Faster execution of A leads to a worse case overall execution
because of the order in which instructions are executed

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 5

2013/14 UniPD / T. Vardanega Real-Time Systems 319 of 420

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor
 On the final executable
 Knowing that safeness not guaranteed (!)

 Hybrid approaches exploit
 The measurement of basic blocks on the real HW

 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2013/14 UniPD / T. Vardanega Real-Time Systems 320 of 420

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation effects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results contingent on the coverage of the
executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

2013/14 UniPD / T. Vardanega Real-Time Systems 321 of 420

Hybrid analysis: the big picture

 Open problems
 Can we trust the resulting estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May cause serious cost impact and inherent difficulty of exactness

Program
executable

Opt. User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

2013/14 UniPD / T. Vardanega Real-Time Systems 322 of 420

Summary

 The challenge of computing the WCET
 Static analysis

 High-level analysis
 Low-level analysis

 Hybrid analysis (measurement-based)

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 6

7.b Schedulability analysis
techniques

Credits to Marco Panunzio
(panunzio@math.unipd.it)

2013/14 UniPD / T. Vardanega Real-Time Systems 324 of 420

Feasibility region

 The topological space that represents the set of feasible
systems with respect to the workload model parameters
 N-dimensional space with N-parameter analysis
 Function of the timing parameters
 Specific to the scheduling policy in force

par2

Feasibility
region

t2t1

t1 is feasible
t2 is not feasible

par1

2)1(
1




N

i

iU

1

0.83

U1

RM

EDF

)12(1

1




N
N

i
i NU

1
1




N

i
iU

Real-Time Systems2013/14 UniPD / T. Vardanega 325 of 420

Advanced utilization tests

 Hyperbolic bound improves Liu & Layland utilization test
 For systems with periodic tasks under FPS and DMPO
 E. Bini and G. Buttazzo: “A Hyperbolic Bound for the Rate

Monotonic Algorithm”. Proceedings of the 13th ECRTS, 2001

2013/14 UniPD / T. Vardanega Real-Time Systems 326 of 420

Transactions /1

 Causal relations between activities
 They consider information relevant to analysis that is not

captured by classic workload models
 Dependences in the activation of jobs

 Originally introduced for the analysis of distributed systems
 Also useful for the analysis of “collaboration patterns” employed for

single-CPU systems

  





2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 7

2013/14 UniPD / T. Vardanega Real-Time Systems 327 of 420

Transactions /2

 Two main kinds of dependence
 Direct precedence relation (e.g., producer-consumer)

  cannot proceed until completes

 Indirect priority relation
  does not suffer interference from (under FPS and synchronous

release of and  for priorities increasing with values)

 

 p1=4

  p1=5 p2=3 p3=6

2013/14 UniPD / T. Vardanega Real-Time Systems 328 of 420

Example /1

 A “callback pattern” to permit in out interactions
between tasks in Ravenscar systems

2013/14 UniPD / T. Vardanega Real-Time Systems 329 of 420

Example /2

T1 (Producer)
[cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposit result

T1 T2 T3

End-to-end deadline
The feasibility of the end-to-end response time against this deadline is what matters (!)

2013/14 UniPD / T. Vardanega Real-Time Systems 330 of 420

Sensitivity analysis /1

 Investigates the changes in a given system that
 Improve the fit of an already feasible system
 Make feasible an infeasible system

C1

C2

Cmax
1

Cmax
2max

Cmax
1

Cmax
2

Position of the system in
the feasibility region



 Maximum feasible variation for the
WCET of t1 (negative in the example)

Maximum feasible variation for the
WCET of t2 (negative in the example)

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 8

2013/14 UniPD / T. Vardanega Real-Time Systems 331 of 420

Sensitivity analysis /2

 Major computation complexity
 Theory still under development

 Does not account for shared resources, multi-node systems,
partitioned systems

 High potential
 To explore solution space in the dimensioning phase of design

 Presently only applicable to period/MIAT and WCET

 To study the consequences of changes to timing parameters
 To allow for the inclusion of better functional value in the system
 To renegotiate timing (or functional) parameters

2013/14 UniPD / T. Vardanega Real-Time Systems 332 of 420

MAST

 Modeling and Analysis Suite for Real-Time Systems
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor
systems

 Under FPS or EDF

2013/14 UniPD / T. Vardanega Real-Time Systems 333 of 420

Classic workload model

T1 (Sporadic) MIAT=1.750 WCET=0.500

T2 (Cyclic) T=2.000 WCET=0.500

T3 (Cyclic) T=4.000 WCET=0.500

1 2 3 4 5 6

T1

T2

T3

Critical Instant for T3

Level 3 busy period

2013/14 UniPD / T. Vardanega Real-Time Systems 334 of 420

MAST: real-time model

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 9

2013/14 UniPD / T. Vardanega Real-Time Systems 335 of 420

MAST: transaction

 To model causal relations between activities
 Triggered by external events

 Periodic, sporadic, aperiodic, etc…

2013/14 UniPD / T. Vardanega Real-Time Systems 336 of 420

MAST: operations

 The real-time model includes the description of all
the operations in the system

Simple
operation BCET

ACET

WCET
Shared Resource

List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET

WCET
Shared Resource

List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size

2013/14 UniPD / T. Vardanega Real-Time Systems 337 of 420

MAST: creation of a transaction

Event
Handler

Event
Handler

External
event

Operation
en1

Activity

Operation
en2

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements

2013/14 UniPD / T. Vardanega Real-Time Systems 338 of 420

Example: Ravenscar callback

T1 (Producer)
[cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposits result

T1 T2 T3

End-to-end deadline

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 10

2013/14 UniPD / T. Vardanega Real-Time Systems 339 of 420

Example: shared resources in MAST

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET
WCET

Shared Resource
List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1

2013/14 UniPD / T. Vardanega Real-Time Systems 340 of 420

Example: modeling tasks in MAST

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40

2013/14 UniPD / T. Vardanega Real-Time Systems 341 of 420

Example: timing attributes

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2013/14 UniPD / T. Vardanega Real-Time Systems 342 of 420

Example: classic RTA results

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

This misses out completely that T3 is to be preceded by T2 and T1 (!)

2013/14 UniPD / T. Vardanega 28/02/2014

Real-Time Systems 11

2013/14 UniPD / T. Vardanega Real-Time Systems 343 of 420

Example: introducing transactions

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40
Event

Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler

2013/14 UniPD / T. Vardanega Real-Time Systems 344 of 420

Example: end-to-end analysis

Precedence and offset-based

R1 (Tr) = 12

R2 (Tr) = 20

R3 (Tr) = 27

Response time relative
to the beginning of the
transaction!

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2013/14 UniPD / T. Vardanega Real-Time Systems 345 of 420

Summary

 Feasibility region
 Advanced utilization tests
 Fine-grained response time analysis
 Transactions
 Sensitivity analysis
 Example tool (MAST)

