
2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 1

8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of
the the IEEE Real-Time Systems Symposium, WiP Session,
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) which
make a much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning is an allocation problem followed by single processor
scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2013/14 UniPD / T. Vardanega Real-Time Systems 347 of 423

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status
 There usually is a dispatcher / scheduler per processor

2013/14 UniPD / T. Vardanega Real-Time Systems 348 of 423

Understanding the hardware /2

2013/14 UniPD / T. Vardanega Real-Time Systems 349 of 423

Instruction
cache

Data
cache

Caches

Courtesy of

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 2

Hardware interference /1

 Parallel execution on a multiprocessor causes vast
opportunities of contention for hardware resources
that are shared among the cores

 This phenomenon increases the execution time of
running threads by causing them to use CPU cycles
without progressing (!)
 Not quite like software interference, which prevents a

ready thread from running

2013/14 UniPD / T. Vardanega Real-Time Systems 350 of 423

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of a simple
single-path program
running alone does not
stay the same when
other programs do
execute on other
CPUs

2013/14 UniPD / T. Vardanega Real-Time Systems 351 of 423

Courtesy of

State of the art

 Some task sets may be deemed unschedulable even though they
have low utilization
 Much less than the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time
complexity
 The known sufficient tests have polynomial time complexity but obviously

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time

complexity has been found yet

2013/14 UniPD / T. Vardanega Real-Time Systems 352 of 423

Software interference /1

 We know what is the interference ܫ௜ suffered by a
task ߬௜ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from
݉൅ 1 onward

 Multiprocessor interference can be computed as the
sum of all intervals when ݉ higher-priority tasks
execute in parallel on all ݉ processors

2013/14 UniPD / T. Vardanega Real-Time Systems 353 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 3

Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௞௠௔௫ ൌ ௞ܥ ൅
ଵ
௠
∑ ሺ ோೖ

೘ೌೣ

்ೕ
௝ܥ ൅ ሻఛೕ∈௛௣ሺ௞ሻ݆ܥ

 This naive bound can be improved, and has been,
but for great computational complexity and still
without becoming exact

2013/14 UniPD / T. Vardanega Real-Time Systems 354 of 423

Example (Dhall’s effect) – 1

 Under global scheduling, EDF and FPS would run tasks
a and b first on each of the 2 processors

 But this would leave no time for task c to complete
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

෍ ௜ܷ ൌ 1.67 ൏ 2
௜

2013/14 UniPD / T. Vardanega Real-Time Systems 355 of 423

Example – 2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

෍ ௜ܷ ൌ 2
௜

2013/14 UniPD / T. Vardanega Real-Time Systems 356 of 423

Global scheduling anomalies

 In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can

increase the interference on lower-priority tasks because of the
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in

the interference suffered by that task

2013/14 UniPD / T. Vardanega Real-Time Systems 357 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 4

Anomaly 1: decrease in ݄݌ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ௜ܷ ൌ 1.83௜ but
߬௖ is saturated because ܥ௖ ൅ ௖ܫ ൌ ௖ܦ
hence any increase in ܫ௖ would make it
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2013/14 UniPD / T. Vardanega Real-Time Systems 358 of 423

Anomaly 1 (cont’d)

 If we reduce ௔ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ௖ increases from 4 to 6 and ߬௖ misses its

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2013/14 UniPD / T. Vardanega Real-Time Systems 359 of 423

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬௖ with ܫ௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2013/14 UniPD / T. Vardanega Real-Time Systems 360 of 423

Anomaly 2 (cont’d)

 If we extend ௖ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ௖ increases from 3 to 5 (!) as it becomes

visible in the second job of ߬௖

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2013/14 UniPD / T. Vardanega Real-Time Systems 361 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 5

The defeat of greedy schedulers /1

 Greedy algorithms are easy to explain, study, and
implement
 They work very well on single processors
 EDF [1] and LLF [2] are optimal for single processors

 They collapse the urgency of a job into a single value
and use it to greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors
 EDF and LLF are no longer optimal

2013/14 UniPD / T. Vardanega Real-Time Systems 362 of 423

The defeat of greedy schedulers /2

 Does a feasible schedule exist on 2 processors for ܶ
(derivative of Example 2) where
 ܶ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬ଷ ൌ ሺ40,8ሻ , ܷሺܶሻ ൌ 2
 ߬ଵand ߬ଶ have laxity 1 in each period
 Hence they leave each processor idle for 1 unit of time and

for 2 units in total every 10-unit period
 In the interval ሾ0,40ሻ ߬ଵand ߬ଶ leave the 2 processors idle for

a total of 2 ൈ 4 ൌ 8 units of time in which fits ߬ଷ exactly

 The answer should thus be yes since also ߬ଷ should be
able to meet its deadline

July 2013 / T. Vardanega Real-Time Systems 363 of 306

The defeat of greedy schedulers /3

 Let us schedule ܶ with LLF

 ߬ଷ can execute only 1 unit of time in the interval ሾ0,10ሻ
 One of the two processors is idle for 1 unit of time

 ߬ଷ misses its deadline!

T1

T2

T3

2013/14 UniPD / T. Vardanega Real-Time Systems 364 of 423

Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to
the number of processors, then no feasible schedule can
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?

2013/14 UniPD / T. Vardanega Real-Time Systems 365 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 6

The defeat of greedy schedulers /4

 One schedule we want for ܶ is

 But at ݐ ൌ 8 ߬ଵand ߬ଶ have earlier deadline, lower laxity,
greater total and remaining utilization than ߬ଷ

 Greedy schedulers lack knowledge to be wiser!

T1

T2

T3

2013/14 UniPD / T. Vardanega Real-Time Systems 366 of 423

The defeat of greedy schedulers /5

 Things work if we modify ܶ to
ܶ′ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬′ଷ ൌ ሺ10,2ሻ

 At ݐ ൌ 8 we get a zero-laxity event for ߬′ଷ
 This is good for ܶ but surely not in general 

 The ultimate problem is to determine when (in time)
and how (by what means) jobs should be able to hit
their proportional rate quota

 In seeking proportionate fairness we do not want to incur
large overhead with scheduling calculations and task
migrations

2013/14 UniPD / T. Vardanega Real-Time Systems 367 of 423

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness
also known as P-fairness
 Each task ߬௜ is assigned resources in proportion to its weight

௜ܹ ൌ
஼೔

்೔ൗ hence it progresses proportionately
 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬௜ must have been scheduled either
௜ܹ ൈ ݐ or ௜ܹ ൈ ݐ time units

 Without loss of generality preemption is assumed to only
occur at integral time units

 The workload model is periodic

2013/14 UniPD / T. Vardanega Real-Time Systems 368 of 423

P-fair scheduling /2

 ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ is the difference between the total
resource allocations that task ߬௜ should have received
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is ahead iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൏ 0
 ߬௜ is behind iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൐ 0
 ߬௜ is punctual iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൌ 0

2013/14 UniPD / T. Vardanega Real-Time Systems 369 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 7

P-fair scheduling /3

 ,ሺ߬௜ࢻ ሻݐ is the characteristic substring of task ߬௜ at time ݐ
 Finite string over {-, 0, +} of ࢻ௧ାଵ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ ݔ

 Where ݐ′ ൌ ݉݅݊ ݅: ݅ ൐ :ݐ ሻݔ௜ሺࢻ ൌ 0
 ሻݔሺ࢚ࢻ ൌ ሺ࢔ࢍ࢏࢙ ௫ܹ ൈ ݐ ൅ 1 െ ௫ܹ ൈ ݐ െ 1ሻ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is is urgent iff ߬௜ is behind and ࢚ࢻ ߬௜ ് െ
 ߬௜ is is tnegru iff ߬௜ is ahead and ࢚ࢻ ߬௜ ് ൅
 ߬௜ is is contending otherwise

2013/14 UniPD / T. Vardanega Real-Time Systems 370 of 423

Properties of a P-fair schedule ܵ

 For task ߬௜	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ not scheduled at ݐ then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at t then ߬௜ is ahead at ݐ ൅ 1

 For task ߬௜	behind at time ݐ under ܵ
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ scheduled at ݐ	then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ scheduled at ݐ	then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1urgent

tnegru

2013/14 UniPD / T. Vardanega Real-Time Systems 371 of 423

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking

P-fairness

 Problems with ݊଴ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at
time ݐ with ݉ resources and ݊ ൌ ݊଴ ൅ ݊ଵ ൅ ݊ଶ
 If ݊ଶ ൐ ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊଴ ൐ ݊ െ݉ the scheduling algorithm is forced to schedule

some tnegru tasks
2013/14 UniPD / T. Vardanega Real-Time Systems 372 of 423

P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ൒ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved

lexicographically with െ൏ 0 ൏ ൅

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ଴,௡ሿ
 A dummy task may need to be added to the task set to top

utilization up
 No problem situation can occur with the PF algorithm

2013/14 UniPD / T. Vardanega Real-Time Systems 373 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 8

Example (PF scheduling) /1

Task C T W

v 1 3 0.333…

w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top

system utilization up
 In general its period is set to the

system hyperperiod
 This time we halved it

 With PF we always have
݊ଶ ൐ ݉ and ݊଴ ൑ ݊ െ݉

2013/14 UniPD / T. Vardanega Real-Time Systems 374 of 423

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

2013/14 UniPD / T. Vardanega Real-Time Systems 375 of 423

Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving1), preemptive, global (with
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle

while tasks eligible for execution are not able to execute on other
processors

2013/14 UniPD / T. Vardanega Real-Time Systems 376 of 423

DP-Fair motivation

• Focus on periodic, independent task set with implicit
deadlines (ܦ௜ ൌ (௜݌

• Scheduling overhead costs assumed in task requirements
• ∑ ௜ܷ௜ ൑ ݉	and ௜ܷ ൑ 1∀݅
• Process migration allowed

• With unlimited context switches and migrations any task
set meeting the above conditions will be feasible

• This problem is easy

• What’s difficult is to find a valid schedule that minimizes
context switches and migrations

2013/14 UniPD / T. Vardanega Real-Time Systems 377 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 9

 Partition time into slices demarcated by the deadlines of
all tasks in the system
 All jobs are allocated a workload in each slide and these

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on any ݉ multiprocessor
system, where ݉	 ൐ 	1

Deadline partitioning

2013/14 UniPD / T. Vardanega Real-Time Systems 378 of 423

DP-Correct /1

 The time slice scheduler will execute all jobs’
allocated workload within the end of the time slice
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’
actual deadlines to be met

2013/14 UniPD / T. Vardanega Real-Time Systems 379 of 423

DP-Correct /2

 

T1  10,3 
T2  7, 2 
T3  18, 5 

















T1
T2
T3

T1

T2

T3

2013/14 UniPD / T. Vardanega Real-Time Systems 380 of 423

Notation

 ଴ݐ ൌ 0, ௜ݐ ∶ ݅ ൐ 0 denote distinct deadlines of all tasks in ܶ
 ௝ߪ is the ݆݄ݐ time slice in ሾݐ௝ିଵ, ௝ሻݐ
 ௝ܮ ൌ ௝ݐ െ ௝ିଵݐ
 Local execution remaining ݈௜,௧ is the amount of time that ߬௜

must execute before the next slice boundary
 Local utilization ௝,௧ݎ ൌ ݈௜,௧/ሺݐ௝ െ ሻݐ
 ்ܮ ൌ ∑ ݈௜௜ is the ler of the whole task set
 ்ܴ ൌ ∑ ௜௜ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ௜,௛ is the arrival time of the ݄݄ݐ job of ߬௜

2013/14 UniPD / T. Vardanega Real-Time Systems 381 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 10

DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by

assigning each task a workload proportional to its utilization
 At every ߪ௝ assign ݈௜,௧ೕషభ ൌ ௜ܷ ൈ ௝ܮ to ߬௜

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs

within a time slice ߪ௜ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ௝ܮ units of idle time to occur in ߪ௜

before time ݐ

2013/14 UniPD / T. Vardanega Real-Time Systems 382 of 423

DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ ൑ ݉ at all times ݐ ∈ ௜ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is
scheduled in ߪ௜ using DP-Fair algorithm, then ்ܴ ൑ ݉ will hold
at all times ݐ ∈ ௜ߪ

Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets
with implicit deadlines is optimal

2013/14 UniPD / T. Vardanega Real-Time Systems 383 of 423

A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ௜ for each ߬௜ and line these
blocks up along a number line (in any order), starting at
zero

 Split this stack of blocks into chunks of length 1 at
1,2,...,m − 1

2013/14 UniPD / T. Vardanega Real-Time Systems 384 of 423

A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each

chunk’s length (1) by the length of the segment (ܮ௜)

Time

Time

Time

2013/14 UniPD / T. Vardanega Real-Time Systems 385 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 11

DP-Wrap features

 A very simple algorithm that satisfied all DP-Fair
rules

 Almost all calculations can be done in a
preprocessing step (with static task sets)

 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches

2013/14 UniPD / T. Vardanega Real-Time Systems 386 of 423

Mirroring

 For tasks that split across two slices
 If ߬௜ and ߬௞ are split and ߬௜ executes at the beginning and ߬௞ executes at the

end of the slice ߪ௝ then revert the schedule in slice ߪ௝ାଵ so that ߬௞ executes at
the beginning and ߬௜ at the end

߬௜

߬௞

Time

Time

Not-mirrored schedule

Mirrored schedule

2013/14 UniPD / T. Vardanega Real-Time Systems 387 of 423

Sporadic tasks and ܦ௜ ൑ ௜݌

 DP-Fair algorithms are still optimal when ∆ሺܶሻ ൑ ݉
and ߜ௜ ൑ 1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ௜,௛ିଵ ൅ ௜,௔೔,೓ሻܦ
 Active: ሺܽ௜,௛, ௝ܽ,௛ ൅ ௜ሻܦ
 ሻݐሻ, ௜݂,௝ሺݐ௜,௝ሺߙ : amounts of time that task ߬௜ has been active

or freeing slack during slice ߪ௝ as of time ݐ
 Local capacity: ܿ௜,௧ೕషభ ൌ ௜ߜ ൈ ௜ܮ ൌ ௜,௝ߙ௜ሺߜ ൅ ௜݂,௝ሻ
 Freed slack in ߪ௝ as of time ܨ :ݐ௝ሺݐሻ ൌ ∑ ሺߜ௜ ൈ ௜݂,௝ሺݐሻሻ௡

௜ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ

2013/14 UniPD / T. Vardanega Real-Time Systems 388 of 423

DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules
jobs within a time slice ߪ௜ according to the following
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time

to occur in ߪ௜ before time ݐ
4. Initialize ݈௜,௧ೕషభ to 0. At the start time ݐ′ of any active time

segment for ߬௜ in ߪ௝ (either ݐ′ ൌ ௝ିଵݐ or ܽ௜,௛) that ends at
time ݐ" ൌ ݉݅݊ ܽ௜,௛ ൅ ௜,௧ೕܦ , increment ݈௜,௧ by ߜ௜ሺݐ" െ ሻ′ݐ

2013/14 UniPD / T. Vardanega Real-Time Systems 389 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 12

DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬௜ arrives in a slice ߪ௝ at time ݐ and its

deadline falls within ߪ௝
 Split the remainder of ߪ௝ after ݐ into two secondary slices ߪ௝ଵ, ௝ଶߪ

so that the deadline of ߬௜ coincides with the end of ߪ௝ଶ

 Divide the remaining local execution (and capacity) of all jobs in
௝ଵߪ (as well as the slack allotment from RULE 3) proportionally
to the lengths of ߪ௝ଵ, ௝ଶߪ

 This step may be invoked recursively for any ߬௞ within ߪ௝

2013/14 UniPD / T. Vardanega Real-Time Systems 390 of 423

DP-Fair scheduling for time slices /3

2013/14 UniPD / T. Vardanega Real-Time Systems 391 of 423

Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time in slice ߪ௝
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ௝ using a DP-Fair algorithm,
then ܴ௧ ൑ ݉	will hold at all times ݐ ∈ ௝ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic
task sets with constrained deadlines where ∆ሺܶሻ ൑ ݉ and
௜ߜ ൑ 1	∀݅

Correctness

2013/14 UniPD / T. Vardanega Real-Time Systems 392 of 423

DP-Wrap modified

 If task ߬௜ issues a job at time ݐ in slice ߪ௝ and
ݐ ൅ ௜ܦ ൐ ௝ݐ then allocate execution time
݈௜,௧ ൌ ௝ݐ௜ሺߜ െ ሻݐ following RULE 4

 If instead ݐ ൅ ௜ܦ ൏ ௝ݐ then split the remainder of ߪ௝
following RULE 5

2013/14 UniPD / T. Vardanega Real-Time Systems 393 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 13

Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ
଺
൅ 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6

2013/14 UniPD / T. Vardanega Real-Time Systems 394 of 423

Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬௜ has ܦ௜ ൐ ௜݌ we simply impose an artificial

deadline ܦ′௜ ൌ ௜݌
 Density is not increased hence if ܦ′௜ is met, ܦ௜ will

also be
 But this increases the number of context switches

and migrations!

2013/14 UniPD / T. Vardanega Real-Time Systems 395 of 423

Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation
error for any task ߬௜ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated

time units of processor to the same task into consecutive units

2013/14 UniPD / T. Vardanega Real-Time Systems 396 of 423

Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct

2013/14 UniPD / T. Vardanega Real-Time Systems 397 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 14

Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ௝ܶ is represented by a token within a triangle and its position
stands for the local remaining work of ௃ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed

2013/14 UniPD / T. Vardanega Real-Time Systems 398 of 423

Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work

2013/14 UniPD / T. Vardanega Real-Time Systems 399 of 423

Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares

them with other light tasks

 Some light tasks are split in two processors and they are executed
either before ݐ௔ or after ݐ௕

 Light tasks that are not split are executed between ݐ௔ or and
and they are scheduled by EDF	௕ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are

satisfied

2013/14 UniPD / T. Vardanega Real-Time Systems 400 of 423

Comparisons with DP-Wrap /1

 DP-Wrap causes about 1/3 as many context switches
and migrations as LLREF

 LLREF has some inefficiencies ([7],[8])
 Inefficiencies stem from the non working-conservative

propriety
 BF and EKG should show improvements comparable to DP-

Wrap

 EKG with appropriately tuned k parameter should
outperform DP-Wrap and BF on task set with
ܷሺܶሻ ൏ ݉

2013/14 UniPD / T. Vardanega Real-Time Systems 401 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 15

Comparisons with DP-Wrap /2

 Algorithmic complexity
 DP-Wrap is the best. O(n) work at the beginning and

then each event just requires a constant time lookup
 LLREF is O(n2)
 EKG is O(n log n) but is more efficient in practice
 BF is O(n) per slice

2013/14 UniPD / T. Vardanega Real-Time Systems 402 of 423

Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in

the scheduling and allocation policies
 The new value of the relaxed parameter becomes

known a priori/at job arrival and it is used in the
scheduling and allocation policies

2013/14 UniPD / T. Vardanega Real-Time Systems 403 of 423

Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ௜ ൈ ௝ܮ
workload per each task in each slice

 If ܿ′௜ ൑ ܿ௜ then task ߬௜ uses part of assigned workload and surely
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ ൑ ݉ and ߜ௜ ൑ 1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′௜ ൏ ܿ௜ ⇒ ௜′ߜ ൏ ௜ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ

2013/14 UniPD / T. Vardanega Real-Time Systems 404 of 423

Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer ݌, same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer ݌, lesser density)
 If ݌′௜ ൐ ௜′ߜ	݀݊ܽ	௜݌ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is

feasible if ܶ was feasible

2013/14 UniPD / T. Vardanega Real-Time Systems 405 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 16

Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀௜ ൏ ݀′௜
 Task ߬′௜ completes its workload at time t ൌ min	ሺ݀௜, ௜ሻ݌

 Case 2 (longer ݀, lesser density)
 If ݀′௜ ൐ ݀௜	ܽ݊݀	ߜ′௜ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair
scheduling is sustainable

2013/14 UniPD / T. Vardanega Real-Time Systems 406 of 423

Useful DP-Fair bibliography

1. C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Environment”, Journal of the ACM (JACM), 20(1):46–61, 1973

2. A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time
environment”, Technical report, Massachusetts Institute of Technology, 1983

3. S. K. Cho, S. Lee, A. Han, and K.-J. Lin, “Efficient Real- Time Scheduling Algorithms for
Multiprocessor Systems”, IEICE Transactions on Communications, E85-B(12):2859– 2867,
2002

4. D. Zhu, D. Mossé ́ and R. Melhem, “Multiple-Resource Periodic Scheduling Problem: how much
fairness is necessary?”, IEEE Real-Time Systems Symposium (RTSS), 2003

5. H. Cho, B. Ravindran and E. Jensen, “An Optimal Real-Time Scheduling Algorithm for
Multiprocessors”, IEEE Real-Time Systems Symposium (RTSS), 2006

6. B. Andersson and, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, IEEE
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2006

7. K. Funaoka, S. Kato and N. Yamasaki, “Work-Conserving Optimal Real-Time Scheduling on
Multiprocessors” Euromicro Conference on Real-Time Systems (ECRTS), 2008

8. S. Funk and V. Nadadur “LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task
Sets”, Conference on Real-Time and Networked Systems (RTNS), 2009

2013/14 UniPD / T. Vardanega Real-Time Systems 407 of 423

Other results /1

 For the simplest workload model made of
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Especially because tasks incur very many preemptions

and are frequently required to migrate across processors

 Partitioned FPS first-fit (on decreasing task utilization)
can sustain ܷ ൑ ݉ሺ 2 െ 1ሻ
 But this is a sufficient test only [Oh & Baker, 1998]

2013/14 UniPD / T. Vardanega Real-Time Systems 408 of 423

Other results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௠௔௫ this bound gets rapidly lower than
0.6 ൈ ݉, but can get close to ݉ for some examples
 Again this is a sufficient test only [Lopez et al., 2004]

1
1






mU











max

1
U



Per task

2013/14 UniPD / T. Vardanega Real-Time Systems 409 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 17

Other results /3

 Global EDF can sustain

 For high ܷ௠௔௫ this bound can be as low as
0.2 ൈ ݉ but also close to ݉ for other
examples
 Again, only sufficient [Goossens et al., 2003]

max)1(UmmU 

2013/14 UniPD / T. Vardanega Real-Time Systems 410 of 423

Other results /4

 Combinations
 FPS (higher band) to those tasks with ௜ܷ ൐ 0.5
 EDF for the rest

 Again, only sufficient [Baruah, 2004]







 


2
1mU

2013/14 UniPD / T. Vardanega Real-Time Systems 411 of 423

Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is called the

synchronization processor (SP) for that resource
 It knows all the use requirements of all its resources

 The critical sections of a resource execute on the
processor that hosts that resource
 Jobs that use remote resources are “distributed transactions”

 The processor to which a task is assigned is the local
processor for all of the jobs of that task

2013/14 UniPD / T. Vardanega Real-Time Systems 412 of 423

Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Global resources are used by tasks residing on different

processors

 Resource access control needs actual locks for
protection from true parallelism
 Lock-free algorithms then become attractive

 SP use M-PCP to control access to their global
resources

2013/14 UniPD / T. Vardanega Real-Time Systems 413 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 18

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections are executed at higher ceiling

priorities than local tasks on the SP and any other tasks
in the system

 A task ߬௛ that is denied access to a global shared
resource ߩ௚ suspends and waits in a priority-based
queue for that resource
 Tasks with lower-priority than ߬௛	on its local processor

may thus acquire global resources with higher ceiling
2013/14 UniPD / T. Vardanega Real-Time Systems 414 of 423

Multiprocessor PCP /4

 If the global resource being acquired by task ߬௟ with
priority lower than ߬௛ resides on the same SP as
then ߬௛	௚ߩ suffers an anomalous form of priority
inversion
 This obviously exposes resource nesting to the risk of

deadlock → M-PCP disallows resource nesting
 This is the reason why other protocols want ߬௛ to spin

 With global resources hosted on ൐ 1 SP resource
nesting is not allowed as deadlock may occur

2013/14 UniPD / T. Vardanega Real-Time Systems 415 of 423

Blocking under M-PCP

 With M-PCP task ߬௜ is blocked by lower-priority tasks in 5 ways (!)
 Local blocking (once per execution): when finding a local resource held by a

local lower-priority task that got running as a consequence of ߬௜
suspension on access to a remote resource

 Remote blocking (once per access): when finding a remote resource held by
remote lower-priority tasks

 Local preemption: when global critical sections are executed on ߬௜’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

 Remote preemption (once per access): when higher-ceiling global critical
section execute on the remote processors where ߬௜ needs a global resource

 Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects

2013/14 UniPD / T. Vardanega Real-Time Systems 416 of 423

Multiprocessor SRP

 Partitioned EDF with resources bound to
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is busy are
placed in a FIFO queue on the synchronization
processor and spin-lock on their local processor
 On release from the task that held it the global resource is

assigned to the task (request) at the head of the queue

2013/14 UniPD / T. Vardanega Real-Time Systems 417 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 19

MrsP [Burns, Wellings, 2013] /1

 With lock-based resource control protocols locks can
use either suspension or spinning

 With suspension the calling task that cannot acquire the
lock is placed in a priority-ordered queue
 To bound blocking time priority-inversion avoidance

algorithms are used

 With spinning the task busy-waits
 To bound blocking time the spinning task becomes non-

preemptable and its request is placed in FIFO queue

 The lock owner may run non-preemptively

2013/14 UniPD / T. Vardanega Real-Time Systems 418 of 423

MrsP [Burns, Wellings, 2013] /2

 RTA for a partitioned multiprocessor should be
identical to the single-processor case
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 The property that once a task starts executing its

resources are available is intrinsic to RTA
 It should therefore be supported by global resource

control protocols
 Which speaks against suspension-based solutions!

2013/14 UniPD / T. Vardanega Real-Time Systems 419 of 423

MrsP [Burns, Wellings, 2013] /3

 Spinning non-preemptively may decrease feasibility
 More urgent tasks suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP at most one task per

processor may contend globally
 Access requests are served in FIFO order

 To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

 The lock-holder job migrates to the processor of a spinning task and
runs in its stead until it either completes or migrates again

2013/14 UniPD / T. Vardanega Real-Time Systems 420 of 423

MrsP [Burns, Wellings, 2013] /4

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

2013/14 UniPD / T. Vardanega Real-Time Systems 421 of 423

2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 20

OMIP [Brandenburg, 2013]

 Theorem
 Under non-global scheduling (for clusters of size ܿ ൏ ݉)

it is impossible for a resource access control protocol to
simultaneously:
 Prevent unbounded priority-inheritance blocking
 Be independence-preserving

 Tasks do not suffer PI-blocking from resources they do not use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded
PI-blocking requires inter-cluster job migration (!)

2013/14 UniPD / T. Vardanega Real-Time Systems 422 of 423

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions [2010]: DP-Fair
 Incorporating global resource sharing

2013/14 UniPD / T. Vardanega Real-Time Systems 423 of 423

