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8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) which 
make a much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning is an allocation problem followed by single processor 
scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned
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Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor
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Understanding the hardware /2
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Hardware interference /1

 Parallel execution on a multiprocessor causes vast 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to use CPU cycles 
without progressing (!)
 Not quite like software interference, which prevents a 

ready thread from running
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Hardware interference /2

 The WCET of a simple 
single-path program 
running alone does not
stay the same when 
other programs do 
execute on other 
CPUs
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Courtesy of

State of the art

 Some task sets may be deemed unschedulable even though they 
have low utilization 
 Much less than the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time 
complexity
 The known sufficient tests have polynomial time complexity but obviously 

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet
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Software interference /1

 We know what is the interference ܫ௜ suffered by a 
task ߬௜ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from 
݉൅ 1 onward

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors
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Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௞௠௔௫ ൌ ௞ܥ ൅
ଵ
௠
∑ ሺ ோೖ

೘ೌೣ

்ೕ
௝ܥ ൅ ሻఛೕ∈௛௣ሺ௞ሻ݆ܥ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact
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Example (Dhall’s effect) – 1

 Under global scheduling, EDF and FPS would run tasks 
a and b first on each of the 2 processors

 But this would leave no time for task c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

෍ ௜ܷ ൌ 1.67 ൏ 2
௜
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Example – 2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use 
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

෍ ௜ܷ ൌ 2
௜
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Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task
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Anomaly 1: decrease in ݄݌ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ௜ܷ ൌ 1.83௜ but
߬௖ is saturated because ܥ௖ ൅ ௖ܫ ൌ ௖ܦ
hence any increase in ܫ௖ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1 (cont’d)

 If we reduce ௔ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ௖ increases from 4 to 6 and ߬௖ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4
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Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬௖ with ܫ௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2 (cont’d)

 If we extend ௖ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ௖ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬௖

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18
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The defeat of greedy schedulers /1

 Greedy algorithms are easy to explain, study, and 
implement 
 They work very well on single processors
 EDF [1] and LLF [2] are optimal for single processors

 They collapse the urgency of a job into a single value 
and use it to greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail 
when used on multiprocessors
 EDF and LLF are no longer optimal
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The defeat of greedy schedulers /2

 Does a feasible schedule exist on 2 processors for ܶ
(derivative of Example 2) where
 ܶ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬ଷ ൌ ሺ40,8ሻ , ܷሺܶሻ ൌ 2
 ߬ଵand ߬ଶ have laxity 1 in each period
 Hence they leave each processor idle for 1 unit of time and 

for 2 units in total every 10-unit period
 In the interval ሾ0,40ሻ ߬ଵand ߬ଶ leave the 2 processors idle for 

a total of 2 ൈ 4 ൌ 8 units of time in which fits ߬ଷ exactly

 The answer should thus be yes since also ߬ଷ should be 
able to meet its deadline
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The defeat of greedy schedulers /3

 Let us schedule ܶ with LLF

 ߬ଷ can execute only 1 unit of time in the interval ሾ0,10ሻ
 One of the two processors is idle for 1 unit of time

 ߬ଷ misses its deadline!

T1

T2

T3
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Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, then no feasible schedule can 
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?
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The defeat of greedy schedulers /4

 One schedule we want for ܶ is

 But at ݐ ൌ 8 ߬ଵand ߬ଶ have earlier deadline, lower laxity, 
greater total and remaining utilization than ߬ଷ

 Greedy schedulers lack knowledge to be wiser!

T1

T2

T3

2013/14 UniPD / T. Vardanega Real-Time Systems 366 of  423

The defeat of greedy schedulers /5

 Things work if we modify ܶ to
ܶ′ ൌ ߬ଵ ൌ 10,9 , ߬ଶ ൌ 10,9 , ߬′ଷ ൌ ሺ10,2ሻ

 At ݐ ൌ 8 we get a zero-laxity event for ߬′ଷ
 This is good for ܶ but surely not in general 

 The ultimate problem is to determine when (in time) 
and how (by what means) jobs should be able to hit 
their proportional rate quota

 In seeking proportionate fairness we do not want to incur 
large overhead with scheduling calculations and task 
migrations
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task ߬௜ is assigned resources in proportion to its weight

௜ܹ ൌ
஼೔

்೔ൗ hence it progresses proportionately
 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬௜ must have been scheduled either 
௜ܹ ൈ ݐ or ௜ܹ ൈ ݐ time units

 Without loss of generality preemption is assumed to only 
occur at integral time units

 The workload model is periodic

2013/14 UniPD / T. Vardanega Real-Time Systems 368 of  423

P-fair scheduling /2

 ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ is the difference between the total 
resource allocations that task ߬௜ should have received 
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is ahead iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൏ 0
 ߬௜ is behind iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൐ 0
 ߬௜ is punctual iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൌ 0
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P-fair scheduling /3

 ,ሺ߬௜ࢻ ሻݐ is the characteristic substring of task ߬௜ at time ݐ
 Finite string over {-, 0, +} of ࢻ௧ାଵ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ ݔ

 Where ݐ′ ൌ ݉݅݊ ݅: ݅ ൐ :ݐ ሻݔ௜ሺࢻ ൌ 0
 ሻݔሺ࢚ࢻ ൌ ሺ࢔ࢍ࢏࢙ ௫ܹ ൈ ݐ ൅ 1 െ ௫ܹ ൈ ݐ െ 1ሻ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is is urgent iff ߬௜ is behind and ࢚ࢻ ߬௜ ് െ
 ߬௜ is is tnegru iff ߬௜ is ahead and ࢚ࢻ ߬௜ ് ൅
 ߬௜ is is contending otherwise
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Properties of a P-fair schedule ܵ

 For task ߬௜	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ not scheduled at ݐ then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at t then ߬௜ is ahead at ݐ ൅ 1

 For task ߬௜	behind at time ݐ under ܵ
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ scheduled at ݐ	then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ scheduled at ݐ	then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1urgent

tnegru
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P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve 

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking 

P-fairness

 Problems with ݊଴ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at 
time ݐ with ݉ resources and ݊ ൌ ݊଴ ൅ ݊ଵ ൅ ݊ଶ
 If ݊ଶ ൐ ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊଴ ൐ ݊ െ݉ the scheduling algorithm is forced to schedule 

some tnegru tasks
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P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ൒ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ ൅

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ଴,௡ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

Task C T W

v 1 3 0.333…

w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top 

system utilization up
 In general its period is set to the 

system hyperperiod
 This time we halved it

 With PF we always have 
݊ଶ ൐ ݉ and ݊଴ ൑ ݊ െ݉
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Example (PF scheduling) /2
These tasks are scheduled and they become ahead
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Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle 

while tasks eligible for execution are not able to execute on other 
processors
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DP-Fair motivation

• Focus on periodic, independent task set with implicit 
deadlines (ܦ௜ ൌ (௜݌

• Scheduling overhead costs assumed in task requirements
• ∑ ௜ܷ௜ ൑ ݉	and ௜ܷ ൑ 1∀݅
• Process migration allowed

• With unlimited context switches and migrations any task 
set meeting the above conditions will be feasible

• This problem is easy

• What’s difficult is to find a valid schedule that minimizes 
context switches and migrations
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 Partition time into slices demarcated by the deadlines of 
all tasks in the system
 All jobs are allocated a workload in each slide and these 

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with 
two or more distinct deadlines on any ݉ multiprocessor 
system, where ݉	 ൐ 	1

Deadline partitioning
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DP-Correct /1

 The time slice scheduler will execute all jobs’ 
allocated workload within the end of the time slice 
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it 
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’ 
actual deadlines to be met
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DP-Correct /2

 

T1  10,3 
T2  7, 2 
T3  18, 5 

















T1
T2
T3

T1

T2

T3
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Notation

 ଴ݐ ൌ 0, ௜ݐ ∶ ݅ ൐ 0 denote distinct deadlines of all tasks in ܶ
 ௝ߪ is the ݆݄ݐ time slice in ሾݐ௝ିଵ, ௝ሻݐ
 ௝ܮ ൌ ௝ݐ െ ௝ିଵݐ
 Local execution remaining ݈௜,௧ is the amount of time that ߬௜

must execute before the next slice boundary
 Local utilization ௝,௧ݎ ൌ ݈௜,௧/ሺݐ௝ െ ሻݐ
 ்ܮ ൌ ∑ ݈௜௜ is the ler of the whole task set
 ்ܴ ൌ ∑ ௜௜ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ௜,௛ is the arrival time of the ݄݄ݐ job of ߬௜
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DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by 

assigning each task a workload proportional to its utilization
 At every ߪ௝ assign ݈௜,௧ೕషభ ൌ ௜ܷ ൈ ௝ܮ to ߬௜

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs 

within a time slice ߪ௜ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ௝ܮ units of idle time to occur in ߪ௜

before time ݐ
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DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ ൑ ݉ at all times ݐ ∈ ௜ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is 
scheduled in ߪ௜ using DP-Fair algorithm, then ்ܴ ൑ ݉ will hold 
at all times ݐ ∈ ௜ߪ

Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets 
with implicit deadlines is optimal 
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A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ௜ for each ߬௜ and line these 
blocks up along a number line (in any order), starting at 
zero

 Split this stack of blocks into chunks of length 1 at 
1,2,...,m − 1
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A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each 

chunk’s length (1) by the length of the segment (ܮ௜)

Time

Time

Time
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DP-Wrap features

 A very simple algorithm that satisfied all DP-Fair 
rules

 Almost all calculations can be done in a 
preprocessing step (with static task sets)

 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per 

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches
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Mirroring

 For tasks that split across two slices
 If ߬௜ and ߬௞ are split and ߬௜ executes at the beginning and ߬௞ executes at the 

end of the slice ߪ௝ then revert the schedule in slice ߪ௝ାଵ so that ߬௞ executes at 
the beginning and ߬௜ at the end

߬௜

߬௞

Time

Time

Not-mirrored schedule

Mirrored schedule
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Sporadic tasks and ܦ௜ ൑ ௜݌

 DP-Fair algorithms are still optimal when ∆ሺܶሻ ൑ ݉
and ߜ௜ ൑ 1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ௜,௛ିଵ ൅ ௜,௔೔,೓ሻܦ
 Active: ሺܽ௜,௛, ௝ܽ,௛ ൅ ௜ሻܦ
 ሻݐሻ, ௜݂,௝ሺݐ௜,௝ሺߙ : amounts of time that task ߬௜ has been active 

or freeing slack during slice ߪ௝ as of time ݐ
 Local capacity: ܿ௜,௧ೕషభ ൌ ௜ߜ ൈ ௜ܮ ൌ ௜,௝ߙ௜ሺߜ ൅ ௜݂,௝ሻ
 Freed slack in ߪ௝ as of time ܨ :ݐ௝ሺݐሻ ൌ ∑ ሺߜ௜ ൈ ௜݂,௝ሺݐሻሻ௡

௜ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ
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DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules 
jobs within a time slice ߪ௜ according to the following 
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time 

to occur in ߪ௜ before time ݐ
4. Initialize ݈௜,௧ೕషభ to 0. At the start time ݐ′ of any active time 

segment for ߬௜ in ߪ௝ (either ݐ′ ൌ ௝ିଵݐ or ܽ௜,௛) that ends at 
time ݐ" ൌ ݉݅݊ ܽ௜,௛ ൅ ௜,௧ೕܦ , increment ݈௜,௧ by ߜ௜ሺݐ" െ ሻ′ݐ
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DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬௜ arrives in a slice ߪ௝ at time ݐ and its 

deadline falls within ߪ௝
 Split the remainder of ߪ௝ after ݐ into two secondary slices ߪ௝ଵ, ௝ଶߪ

so that the deadline of ߬௜ coincides with the end of ߪ௝ଶ

 Divide the remaining local execution (and capacity) of all jobs in 
௝ଵߪ (as well as the slack allotment from RULE 3) proportionally 
to the lengths of ߪ௝ଵ, ௝ଶߪ

 This step may be invoked recursively for any ߬௞ within ߪ௝
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DP-Fair scheduling for time slices /3
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Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time in slice ߪ௝
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ௝ using a DP-Fair algorithm, 
then ܴ௧ ൑ ݉	will hold at all times ݐ ∈ ௝ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic 
task sets with constrained deadlines where ∆ሺܶሻ ൑ ݉ and 
௜ߜ ൑ 1	∀݅

Correctness
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DP-Wrap modified

 If task ߬௜ issues a job at time ݐ in slice ߪ௝ and 
ݐ ൅ ௜ܦ ൐ ௝ݐ then allocate execution time 
݈௜,௧ ൌ ௝ݐ௜ሺߜ െ ሻݐ following RULE 4

 If instead ݐ ൅ ௜ܦ ൏ ௝ݐ then split the remainder of ߪ௝
following RULE 5
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Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ
଺
൅ 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6

2013/14 UniPD / T. Vardanega Real-Time Systems 394 of  423

Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬௜ has ܦ௜ ൐ ௜݌ we simply impose an artificial 

deadline ܦ′௜ ൌ ௜݌
 Density is not increased hence if ܦ′௜ is met, ܦ௜ will 

also be
 But this increases the number of context switches 

and migrations!
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Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate 

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation 
error for any task ߬௜ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated 

time units of processor to the same task into consecutive units
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Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct
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Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ௝ܶ is represented by a token within a triangle and its position 
stands for the local remaining work of ௃ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t 

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary 

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed
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Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work
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Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares 

them with other light tasks

 Some light tasks are split in two processors and they are executed 
either before ݐ௔ or after ݐ௕

 Light tasks that are not split are executed between ݐ௔ or and 
and they are scheduled by EDF	௕ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are 

satisfied

2013/14 UniPD / T. Vardanega Real-Time Systems 400 of  423

Comparisons with DP-Wrap /1

 DP-Wrap causes about 1/3 as many context switches 
and migrations as LLREF

 LLREF has some inefficiencies ([7],[8])
 Inefficiencies stem from the non working-conservative 

propriety
 BF and EKG should show improvements comparable to DP-

Wrap

 EKG with appropriately tuned k parameter should 
outperform DP-Wrap and BF on task set with 
ܷሺܶሻ ൏ ݉
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Comparisons with DP-Wrap /2

 Algorithmic complexity
 DP-Wrap is the best. O(n) work at the beginning and 

then each event just requires a constant time lookup
 LLREF is O(n2)
 EKG is O(n log n) but is more efficient in practice
 BF is O(n) per slice
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Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and 
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in 

the scheduling and allocation policies
 The new value of the relaxed parameter becomes 

known a priori/at job arrival and it is used in the 
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ௜ ൈ ௝ܮ
workload per each task in each slice

 If ܿ′௜ ൑ ܿ௜ then task ߬௜ uses part of assigned workload and surely 
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ ൑ ݉ and ߜ௜ ൑ 1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′௜ ൏ ܿ௜ ⇒ ௜′ߜ ൏ ௜ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ
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Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer ݌, same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer ݌, lesser density)
 If ݌′௜ ൐ ௜′ߜ	݀݊ܽ	௜݌ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible
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Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀௜ ൏ ݀′௜
 Task ߬′௜ completes its workload at time t ൌ min	ሺ݀௜, ௜ሻ݌

 Case 2 (longer ݀, lesser density)
 If ݀′௜ ൐ ݀௜	ܽ݊݀	ߜ′௜ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair 
scheduling is sustainable
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Other results /1

 For the simplest workload model made of 
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Especially because tasks incur very many preemptions 

and are frequently required to migrate across processors

 Partitioned FPS first-fit (on decreasing task utilization) 
can sustain ܷ ൑ ݉ሺ 2 െ 1ሻ
 But this is a sufficient test only [Oh & Baker, 1998]
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Other results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௠௔௫ this bound gets rapidly lower than 
0.6 ൈ ݉, but can get close to ݉ for some examples
 Again this is a sufficient test only [Lopez et al., 2004]
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Other results /3

 Global EDF can sustain

 For high ܷ௠௔௫ this bound can be as low as 
0.2 ൈ ݉ but also close to ݉ for other 
examples
 Again, only sufficient [Goossens et al., 2003]

max)1( UmmU 
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Other results /4

 Combinations
 FPS (higher band) to those tasks with ௜ܷ ൐ 0.5
 EDF for the rest

 Again, only sufficient [Baruah, 2004]
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Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors 
[Sha, Rajkumar, Lehoczky, 1988] 
 The processor that hosts a resource is called the 

synchronization processor (SP) for that resource
 It knows all the use requirements of all its resources

 The critical sections of a resource execute on the 
processor that hosts that resource
 Jobs that use remote resources are “distributed transactions”

 The processor to which a task is assigned is the local 
processor for all of the jobs of that task

2013/14 UniPD / T. Vardanega Real-Time Systems 412 of  423

Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Global resources are used by tasks residing on different 

processors

 Resource access control needs actual locks for 
protection from true parallelism 
 Lock-free algorithms then become attractive

 SP use M-PCP to control access to their global 
resources

2013/14 UniPD / T. Vardanega Real-Time Systems 413 of  423



2013/14 UniPD / T. Vardanega 08/03/2014

Real-Time Systems 18

Multiprocessor PCP /3

 The task that holds a global lock should not be 
preempted locally
 All global critical sections are executed at higher ceiling 

priorities than local tasks on the SP and any other tasks 
in the system

 A task ߬௛ that is denied access to a global shared 
resource ߩ௚ suspends and waits in a priority-based 
queue for that resource
 Tasks with lower-priority than ߬௛	on its local processor 

may thus acquire global resources with higher ceiling
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Multiprocessor PCP /4

 If the global resource being acquired by task ߬௟ with 
priority lower than ߬௛ resides on the same SP as 
then ߬௛	௚ߩ suffers an anomalous form of priority 
inversion
 This obviously exposes resource nesting to the risk of 

deadlock → M-PCP disallows resource nesting
 This is the reason why other protocols want ߬௛ to spin

 With global resources hosted on ൐ 1 SP resource 
nesting is not allowed as deadlock may occur
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Blocking under M-PCP

 With M-PCP task ߬௜ is blocked by lower-priority tasks in 5 ways (!)
 Local blocking (once per execution): when finding a local resource held by a 

local lower-priority task that got running as a consequence of ߬௜
suspension on access to a remote resource

 Remote blocking (once per access): when finding a remote resource held by 
remote lower-priority tasks

 Local preemption: when global critical sections are executed on ߬௜’s 
processor by remote tasks of any priority (multiple times) and by local 
tasks of lower priority (once)

 Remote preemption (once per access): when higher-ceiling global critical 
section execute on the remote processors where ߬௜ needs a global resource

 Deferred interference as local higher-priority tasks suspend on access to 
remote resources because of blocking effects
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Multiprocessor SRP

 Partitioned EDF with resources bound to 
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is busy are 
placed in a FIFO queue on the synchronization 
processor and spin-lock on their local processor
 On release from the task that held it the global resource is 

assigned to the task (request) at the head of the queue
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MrsP [Burns, Wellings, 2013] /1

 With lock-based resource control protocols locks can 
use either suspension or spinning

 With suspension the calling task that cannot acquire the 
lock is placed in a priority-ordered queue
 To bound blocking time priority-inversion avoidance 

algorithms are used

 With spinning the task busy-waits
 To bound blocking time the spinning task becomes non-

preemptable and its request is placed in FIFO queue

 The lock owner may run non-preemptively
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MrsP [Burns, Wellings, 2013] /2

 RTA for a partitioned multiprocessor should be 
identical to the single-processor case 
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 The property that once a task starts executing its 

resources are available is intrinsic to RTA 
 It should therefore be supported by global resource 

control protocols
 Which speaks against suspension-based solutions!
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MrsP [Burns, Wellings, 2013] /3

 Spinning non-preemptively may decrease feasibility
 More urgent tasks suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP at most one task per 

processor may contend globally
 Access requests are served in FIFO order

 To bound blocking from preemption of the lock-holder 
task, spinning tasks should “donate” their cycles to it

 The lock-holder job migrates to the processor of a spinning task and 
runs in its stead until it either completes or migrates again
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MrsP [Burns, Wellings, 2013] /4

 Resource nesting can be supported with either group 
locking or static ordering of resources
 With static ordering, resource access is allowed only with 

order number greater than any currently held resources
 The implementation should provide an «out of order» 

exception to prevent run-time errors

 The ordering solution is better than banning nesting 
and has less penalty than group locking
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OMIP [Brandenburg, 2013]

 Theorem
 Under non-global scheduling (for clusters of size ܿ ൏ ݉) 

it is impossible for a resource access control protocol to 
simultaneously:
 Prevent unbounded priority-inheritance blocking
 Be independence-preserving

 Tasks do not suffer PI-blocking from resources they do not use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded 
PI-blocking requires inter-cluster job migration (!)
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Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions [2010]: DP-Fair
 Incorporating global resource sharing
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