UniPD - LM Informatica - 2014/2015

Academic Year 2014/15
Master Degree in Computer Science
University of Padova
Tullio Vardanega

Workload model /1

= Static set of tasks
— Ada: tasks declared at library level (outermost scope)
» Tasks issue jobs repeatedly
— Task cycle: activation, execution, suspension
= Single activation source per task
» Real-time attributes
— Release time

= Periodic: at every T time units

= Sporadic: at least T time units between any two subsequent
releases

— Execution

= Worst case execution time (WCET) assumed to be known
= Deadline: D time units after release

Workload model /2

= Task communication
— Shared variables with mutually exclusive access
= Ada: protected objects (PO) with procedures and functions
— No conditional synchronization
= Other than for sporadic task activation
= Ada: PO with a single entry
= Scheduling model
— Fixed-priority pre-emptive
= Ada: FIFO within priorities
= Access protocol for shared objects
— Ceiling priority protocol (base version)
= Ada: Ceiling_Locking policy

Protected objects /1

protected type Shared_Integer (Initial_Value : Integer) is
Read return Integer;
Write (Value : Integer);

private

The_Integer : Integer := Initial_Value;

Ge) SiEres] [JEgere protected body Shared_Integer is

4 Read return Integer is
begin

return The_lInteger;
~end Read;

Concurrent Read —I

Mutually-exclusive Write _l Write (Value : Integer) is

begin
The_Integer := Value;
‘end Write;

end Shared_lInteger;

UniPD - LM Informatica - 2014/2015

b i Y SR [¥

Protected objects /2

Buffer_Size : constant Positive = 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range O .. Buffer_Size;

type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
Get (ltem : out Any_Type); | Type)
Put (Item : in Any_Type);
private pointer
First : Index := Index"First; -- 0
Last : Index := Index"Last; -- 4 e from overflow
In_Buffer : Count := O; 5
Buffer : Buffer_T;
end Bounded_Buffer; | Type)
TWTeTT— DU TeT correr—oize is
begin -- Tfirst move pointer then write
Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;
end Put;
end Bounded_Buffer;

| oxcom vrom g urope 2oe o ametooon Sof6s
Protected objects /3
Buffer_Size : constant Positive = 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range O .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;
protected type Bo[protected body Bounded_Buffer 1
Get (lte| Get (ltem : out Any_Type)
Put (lIte |[when In Buffer > 0 is}
private begin -- first read then move pointer
First : Index Item := Buffer(First);
Last : Index First := First + 1; -- free from overflow
In_Buffer : Co| In_Buffer := In_Buffer - 1;
Buffer : Buffe end Get; Guards
end Bounded_Buffe| Put (ltem : in Any Type)
|when In Buffer < Buffer_Size IS F————————J
begin -- fTirst move pointer then write
Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;
end Put;
end Bounded_Buffer;
| oxcomt vrom g urope 2oe ot ametozoon Gof63

Language profile

= Enforced by means of a configuration pragma

pragma Profile (Ravenscar);

» Equivalent to a set of Ada restrictions plus three
additional configuration pragmas
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;

| oxcops o advopn 2ot vt e tozoon Tof63

Ravenscar restrictions

No_Abort_Statements,

No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,

No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,

No_Task_Hierarchy,

No_Task_Termination,

Simple_Barriers,

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,

No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Task_Attributes

oo o asvopn 2ot vt e tozoon Bof6s

UniPD - LM Informatica - 2014/2015

Restriction checking

= Almost all of the Ravenscar restrictions can be
checked at compile time

= A few can only be checked at run time

— Potentially blocking operations in protected operation
bodies

— Priority ceiling violation

— More than one call queued on a protected entry or a
suspension object

— Task termination

| oxcom rom adwurope soe o ametooon 9of63

Potentially blocking operations

= Protected entry call statement
= Delay until statement

= Call on a subprogram whose body contains a
potentially blocking operation

= Pragma Detect_Blocking requires detection of
potentially blocking operations
— Exception Program_Error must be raised if detected
at run-time
— Blocking need not be detected if it occurs in the
domain of a foreign language (e.g. C)

| oxcomt rom adwuopesoe o ametooon 10 of 63

Other run-time checks

= Priority ceiling violation
= More than one call waiting on a protected entry

or a suspension object
— Program_Error must be raised in both cases

= Task termination
— Program behavior must be documented
— Possible termination behaviors include
= Silent termination
= Holding the task in a pre-terminated state

= Call of an application-defined termination handler defined
with the Ada.Task_Termination package (C.7.3)

| oxcopts o Asvopn 2ot vt e tozoon T of63

Other restrictions

= Some restrictions on the sequential part of the language
may be useful in conjunction with the Ravenscar profile
— No_Dispatch
— No_IO
— No_Recursion

No_Unchecked_Access

No_Allocators
— No_Local_Allocators

= See ISO/IEC TR 15942, Guide for the use of the Ada
Programming Language in High Integrity Systems, for
details

_ 12 of 63

UniPD - LM Informatica - 2014/2015

Execution-time measurement

= The CPU time consumed by tasks can be
monitored

= Per-task CPU clocks can be defined

— Set at 0 before task activation

— The clock value increases (notionally) as the
task executes

= Actual increments only occur at dispatching points
or by synchronous queries

= The latter is obviously silly

Ada.Execution_Time

with Ada.Task_ldentification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is
type CPU_Time is private;
CPU_Time_First : constant CPU_Time;
CPU_Time_Last : constant CPU_Time;
CPU_Time_Unit : constant := implementation-defined-real-number;
CPU_Tick : constant Time_Span;
function Clock
(T : Ada.Task_ldentification.Task_Id
:= Ada.Task_ldentification.Current_Task)
return CPU_Time;

end Ada.Execution_Time;

Execution-time timers

= A user-defined event can be fired when a
CPU clock reaches a specified value

— An event handler is automatically invoked by
the runtime

— The handler is an (access to) a protected
procedure

= Basic mechanism for execution-time
monitoring

Ada.Execution_Time.Timers /1

with System;
package Ada.Execution_Time.Timers is
type Timer (T : not null access constant
Ada.Task_ldentification.Task_Id) is
tagged limited private;
type Timer_Handler is
access protected procedure (TM : in out Timer);
Min_Handler_Ceiling : constant System_Any_Priority
:= implementation-defined;
procedure Set_Handler (TM : in out Timer;
In_Time : in Time_Span;
Handler : in Timer_Handler);
procedure Set_Handler (TM : in out Timer;
At_Time : in CPU_Time;
Handler : in Timer_Handler);

end Ada.Execution_Time.Timers;

UniPD - LM Informatica - 2014/2015

Ada.Execution_Time.Timers /2

= Builds on execution time clocks

» Needs an interval timer
— To update at every dispatching point
— To raise «zero events» that signify execution-
time overruns
» Handling sensibly those zero events
require other sophisticated features

Group budgets (spec)

with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

Min_Handler_Ceiling : constant System.Any_Priority
== implementation-defined;
procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_ldentification.Task_1d);

procedure Replenish (GB : in out Group_Budget;
To : in Time_Span);

procedure Add (GB : in out Group_Budget;
Interval : i@n Time_Span);

procedure Set_Handler (GB : in out Group_Budget;
Handler : in Group_Budget_Handler);

end Ada.Execution_Time.Group_Budgets;

| e i I s

Group budgets

= Groups of tasks with a global execution-
time budget can be defined
— Basic mechanism for server-based scheduling

— Can be used to provide temporal isolation
among groups of tasks

18 of 63

Lo o asvope 2ot vt e tozon 19 of 63

Timing events

» Lightweight mechanism for defining code
to be executed at a specified time
— Does not require an application-level task
— Analogous to interrupt handling

» The code is defined as an event handler
— An (access to) a protected procedure

= Directly invoked by the runtime

| oxcops o asvope 2ot v e tozon 200763

UniPD - LM Informatica - 2014/2015

Ada.Real_Time.Timing events

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
type Timing_Event_Handler is
access protected procedure (Event : in out Timing_Event);
procedure Set_Handler (Event : In out Timing_Event;
At_Time : in Time;
Handler : in Timing_Event_Handler);

procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);

end Ada.Real_Time.Timing_Events;

Priority-band dispatching

= Mixed policies can coexist within a single
partition
— Priority specific dispatching policy can be set
by configuration

— Protected objects can be used for tasks to
communicate across different policies

— Tasks do not move across bands

T L Y filore:

Dispatching policies

= Additional dispatching policies
— Non preemptive (explicit yield)
= Run-to-completion semantics (per partition)
— Round robin
= Within specified priority band
= Dispatch on quantum expiry deferred until end of protected
action
— Earliest Deadline First
= Within specified priority band
= Relative and absolute “deadline”
= EDF ordered ready queues

= Guaranteed form of resource locking (preemption level +
deadline)

T L Y gie:

23 of 63

An object-oriented approach

= Real-time components are objects
— Instances of predefined classes
— Internal state + interfaces
= Based on well-defined code patterns
— Cyclic & sporadic tasks
— Protected data
— Passive data

Lot com asmcuope 2o vt teaws 240763

UniPD - LM In

formatica - 2014/2015

Enforce intentions

» Static WCET analysis and response-time
analysis can be used to assert correct
temporal behavior at design time

» Platform mechanisms can be used at
run time to ensure that temporal behavior
stays within the asserted boundaries
— Clocks, timers, timing events, ...

= Conveniently complementary approaches

| oot rom g uope 2oe rutora e e tozo0n 25 of 63

Run-time services

= The execution environment must be capable of
preserving properties asserted at model level
— Real-time clocks & timers
— Execution-time clocks & timers
— Predictable scheduling
= We assume an execution environment
implementing the Ravenscar model
— Ada 2005 with the Ravenscar profile
— Augmented with (restricted) execution-time timers

| oot rom g uope soe e e tozoon 26 of 63

Component structure

component

concurrency

thread
functionality
synchronization

PI /
\sqntrol agent operations

(OBCS) (OPCS)

ol

RI

+—C

27 of 63

Component taxonomy

= Cyclic component

= Sporadic component

= Protected data component
= Passive component

= Under inversion of control

28 of 63

UniPD - LM Informatica - 2014/2015

Cyclic component

= Clock-activated activity with fixed rate

= Attributes
— Period
— Deadline
— Worst-case execution time
= The most basic cyclic code pattern does not
need the synchronization agent
— The system clock delivers the activation event
— The component behavior is fixed and immutable

Cyclic thread (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive) is
pragma Priority(Thread_Priori H
end Cyclic_Thread;

cannot be Time_Span!

I Cyclic component (basic)

cyclic component

cyclic operation

thread j
RI

operations
(OPCS) [}"C

30 of 63

31 of 63

Cyclic thread (body)

task body Cyclic_Thread is

-—-+ higher in the system
-—-+ hierarchy
begin
loop
delay until Next_Time; -- so that all tasks start at T0O
OPCS.Cyclic Operation; -- fixed and parameterless
Next_Time := Next_Time + Milliseconds(Period);
end loop;
end Cyclic_Thread;

Next_Time : Time := <Start_Time>; -- taken at elaboration time

32 of 63

UniPD - LM Informatica - 2014/2015

Sporadic component

= Activated by a software-mediated event
— Signaled by software or hardware interrupts

= Attributes
— Minimum inter-arrival time
— Deadline
— Worst-case execution time

= The synchronization agent of the target
component is used to signal the activation event
— And to store-and-forward signal-related data (if any)

Sporadic component

sporadic component
wait . .
sporadic operation
thread
P [signal control agent operations R
O—3 (OBCS) (OPCS) (] C
34 of 63

Sporadic component (spec)

task type Sporadic_Thread(Thread_Priority : Priority) is
pragma Priority(Thread_Priority);
end Sporadic_Thread;

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);

procedure Signal; A sporadic thread is activated by calling

entry Wait; the Signal operation
private

Occurred : Boolean := False;
end OBCS;

35 of 63

Sporadic thread (body)

task body Sporadic_Thread is
Next_Time : Time := <Start_Time>;
begin
delay until Next_Time; -- so that all tasks start at T0O
loop
OBCS.Wait;
OPCS. Sporadic _Operation;
-- may take parameters if they were delivered by Signal
--+ and retrieved by Wait
end loop;
end Sporadic_Thread;

36 of 63

UniPD - LM Informatica - 2014/2015

Sporadic control agent (body)

protected body OBCS is
procedure Signal is
begin
Occurred := True;
end Signal;
entry Wait when Occurred is
begin
Occurred := False;
end Wait;
end OBCS;

Temporal properties

= Basic patterns only guarantee periodic or
sporadic activation

» They can be augmented to guarantee
additional temporal properties at run time
— Minimum inter-arrival time for sporadic events
— Deadline for all types of thread
— WCET budgets for all types of thread

L excomt rom adwurope 2w ot -umetomon 37 of 63

Other components

= Protected component
— No thread, only synchronization and operations
— Straightforward direct implementation with protected
object
= Passive component
— Purely functional behavior, neither thread nor
synchronization
— Straightforward direct implementation with functional
package

| excomt rom g urope 2w ot -umetomon 3 of 63

| oxcoms o asvopn 2oe totori e e tozoon 390763

Minimum inter-arrival time /1

= Violations of the specified separation
interval may cause increased interference
on lower priority tasks

= Approach: prevent sporadic thread from
being activated earlier than stipulated

— Compute earliest (absolute) allowable
activation time

— Withhold activation (if triggered) until that time

_ 40 of 63

UniPD - LM In

formatica - 2014/2015

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive) is
pragma Priority(Thread_Priori ;
end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

I Sporadic thread (body)

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
loop
delay until Next_Release;
OBCS.Wait;
Release_Time := Clock;
OPCS. Sporadic Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

Still a single point of activation |

Critique

= May incur some temporal drift as the clock is
read after task release

— Preemption may hit just after the release but before
reading the clock

— Separation may become larger than required

= Better to read the clock at the place and time
the task is released
— Within the synchronization agent

— Which is protected and thus less exposed to general
interference

Minimum inter-arrival time /2

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
loop
delay untill Next_Release;
OBCS.Wait(Release_Time);
OPCS. Sporadic Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

UniPD - LM Informatica - 2014/2015

Recording release time /1

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait(Release_Time : out Time);
private
Occurred : Boolean := False;
end OBCS;

Deadline miss

= May result from
— Higher priority tasks executing more often
than expected
= Can be prevented with inter-arrival time
enforcement
— Overruns in the same or higher priority tasks
= Programming error in the functional code
= Inaccurate WCET analysis

45 of 63

Recording release time /2

protected body OBCS is
procedure Signal is
begin
Occurred := True;
end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin
Release_Time := Clock;
Occurred := False;
end Wait;
end OBCS;

Lo vom s e s e romon Wores

Deadline miss detection

= Can be done with the help of timing events

— A mechanism for requiring some application-level
action to be executed at a given time

— Under the Ravenscar Profile timing events can only
exist at library level

= Timing events are statically allocated
= Minor optimization possible for periodic tasks
— Which however breaks the symmetry of code patterns

_ 48 of 63

UniPD - LM Informatica - 2014/2015

Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive;
Deadline : Positive) is
pragma Priority(Thread_Prirokity);
end Cyclic_Thread;

Thread body

Deadline_Overrun : Timing_Event; -- static, local per component
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;
begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,
Next_Time + Milliseconds(Deadline),
Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Thread body (streamlined)

Deadline_Overrun : Timing_Event; -- static, local per component
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; Watch out!
-) L - What about
Canceled : Boolean := False; F———
begin
loop o)

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun,
Next_Time + Milliseconds(Deadline),
Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Sporadic thread with deadline
miss detection (spec)

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive;
Deadline : Positive) is
pragma Priority(Thread_Priority);
end Sporadic_Thread;

UniPD - LM Informatica - 2014/2015

Thread body

Deadline_Overrun : Timing_Event; -- static, local per component
task body Sporadic_Thread is
Release_Time - Time;

Next_Release : Time := <Start Time>; Can’t streamline as the

Canceled : Boolean := False; deadline cannot be
begin computed until

loop returning from Wai

delay untill Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,
Release_Time + Milliseconds(Deadline),
Deadline_Overrun_Handler); -- application-specific

OPCS. Sporadic _Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive;
WCET_Budget : Positive) is
pragma Priority(Thread_Pri ty);
end Cyclic_Thread;

Execution-time overruns

= Tasks may execute for longer than stipulated
owing to
— Programming errors in the functional code
— Inaccurate WCET values used in feasibility analysis

= Optimistic vs. pessimistic

= WCET overruns can be detected at run time
with the help of execution-time timers
— Not included in Ravenscar
— Extended profile

Thread body

task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Id : aliased constant Task_ID := Current_Task;
WCET_Timer : Timer(ld"access);
begin
loop
delay untill Next_Time;
Set_Handler (WCET_Timer,
Milliseconds(WCET_Budget),

WCET_Overrun_Handler) ; -- application-specific
OPCS.Cyclic _Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

UniPD - LM Informatica - 2014/2015

Observation

= WCET overruns in sporadic tasks can be
detected similarly

= The timer should be set after the
activation

= No need for timer cancellation

Fault handling scheme

| timer expiration

o i
ET | -
. | wait
monitor

reflective
computing
o reset
9 system

57 of 63

Fault handling strategies

= Error logging

— Only for low-criticality tasks
= Second chance

— Use slack time and try to complete
» Mode change

— Switch to safe mode
= For fail safe or fail soft behavior

59 of 63

Multiple jobs per task

= Cyclic and sporadic objects may have
modifier operations
— For mode change, or occasional behavior
modifications
= Asynchronous Transfer of Control are not
allowed in Ravenscar

— Modifier requests are queued in the OBCS
= OBCS needed for cyclic components as well

| oxcomt vrom g urope 2oe ot ametozoon 5 of 63

oo o asvopn 2ot vt e tozoon 50 of63

UniPD - LM Informatica - 2014/2015

b i Y SR [¥

Cyclic thread with modifier

task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;
Request : Request_Type;
begin
loop
delay until Next_Release_Time;
OBCS.Get_Request(Request); -- may include operation parameters

case Request is
when NO_REQ => OPCS.Periodic Activity;
when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;
end case;
Next_Release_Time := Next_Release Time + Period;
end loop;
end Cyclic_Thread;

Synchronization agent /1

-- for cyclic thread
protected type OBCS (Ceiling: Priority) is
pragma Priority(Ceiling);
procedure Put_Request(Request : Request_Type);
procedure Get_Request(out Request : Request_Type);
private
Buffer : Request Buffer,; -- bounded queue
end OBCS;

62 of 63

Synchronization agent /2

-- for cyclic thread
protected body OBCS(Ceiling : Priority) is
procedure Put_Request(Request : Request_Type) is
begin
Buffer.Put(Request);
end Put_Request;
procedure Get_Request(out Request : Request_Type) is
begin
if Buffer.Empty then
Request := NO_REQ;
else
Buffer.Get(Request);
end if;
end Get_Request;
end OBCS;

63 of 63

