

Preserving properties at run time		
Protecte	d objects /2	
type Index is mod subtype Count is N	<pre>stant Positive := 5; Buffer_Size; tipo modular Matural range 0 Buffer_Siz mray (Index) of Any_Type;</pre>	
entry Put (Item private First : Index :	<pre>n: out Any_Type); n: in Any_Type); = Index'First; 0 = Index'Last; 4 mnt := 0; c_T; ;</pre>	Type) pointer e from overflow ; Type)
	<pre>when in_Builter < Builter begin first move poin Last := Last + 1; f Buiffer(Last) := Item; In_Buffer := In_Buffer end Put; end Bounded_Buffer;</pre>	ter then write free from overflow
Excerpts from Ada-Europe 2008 Tuto	rial T4 – June 16, 2008	5 of 63

Preserving properties at run time	
Ravenscar restrictions	
No_Abort_Statements, No_Dynamic_Attachment, No_Dynamic_Priorities, No_Implicit_Heap_Allocations, No_Local_Protected_Objects, No_Protected_Type_Allocators, No_Requeue_Statements, No_Select_Statements, No_Select_Statements, No_Select_Statements, No_Task_Allocators, No_Task_Hierarchy, No_Task_Hierarchy, No_Task_Fermination, Simple_Barriers, Max_Entry_Oueue_Length => 1, Max_Task_Entries => 0, No_Dependence => Ada. Calendar,	
No_Dependence => Ada. Execution_Time.Group_Budget, No_Dependence => Ada.Execution_Time.Timers, No Dependence => Ada.Task Attributes	
Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008	8 of 63

eserving properties at run time

Restriction checking

- Almost all of the Ravenscar restrictions can be checked at compile time
- A few can only be checked at run time
 - Potentially blocking operations in protected operation bodies
 - Priority ceiling violation
 - More than one call queued on a protected entry or a suspension object
 - Task termination

Excerpts from Ada-Europe 2008 Tutorial T4 - June 16, 200

eserving properties at run time

Potentially blocking operations

- Protected entry call statement
- Delay until statement

rom Ada-Europe 2008 Tutorial T4 – June 16, 2008

- Call on a subprogram whose body contains a potentially blocking operation
- Pragma Detect_Blocking requires detection of potentially blocking operations
 - Exception Program_Error must be raised if detected at run-time
 - Blocking need not be detected if it occurs in the domain of a foreign language (e.g. C)

10 of 63

9 of 63

Preserving properties at run time

Other run-time checks

- Priority ceiling violation
- More than one call waiting on a protected entry or a suspension object
 - Program_Error must be raised in both cases
- Task termination
 - Program behavior must be documented
 - Possible termination behaviors include
 - Silent termination

ots from Ada-Europe 2008 Tutorial T4 – June 16, 2

- Holding the task in a pre-terminated state
- Call of an application-defined termination handler defined with the Ada.Task_Termination package (C.7.3)

11 of 63

12 of 63

Preserving properties at run time

Other restrictions

- Some restrictions on the sequential part of the language may be useful in conjunction with the Ravenscar profile
 - No_Dispatch
 - No_IO
 - No_Recursion
 - No_Unchecked_Access
 - No_Allocators
 - No_Local_Allocators

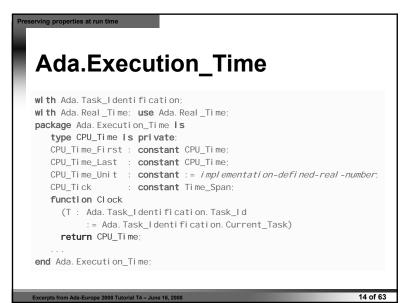
ts from Ada-Europe 2008 Tutorial T4 – June 16, 200

 See ISO/IEC TR 15942, Guide for the use of the Ada Programming Language in High Integrity Systems, for details reserving properties at run time

Execution-time measurement

- The CPU time consumed by tasks can be monitored
- Per-task CPU clocks can be defined
 - Set at 0 before task activation
 - The clock value increases (notionally) as the task executes
 - Actual increments only occur at dispatching points or by synchronous queries

13 of 63


The latter is obviously silly

Excerpts from Ada-Europe 2008 Tutorial T4 - June 16, 2008

Preserving properties at run time

Execution-time timers

- A user-defined event can be fired when a CPU clock reaches a specified value
 - An event handler is automatically invoked by the runtime
 - The handler is an (access to) a protected procedure
- Basic mechanism for execution-time monitoring

Min_Handler_Ceiling : constant System. Any_Priority := implementation-defined; procedure Set_Handler (TM : in out Timer; In_Time : in Time_Span; Handler : in Timer_Handler); procedure Set_Handler (TM : in out Timer; At_Time : in CPU_Time; Handler : in Timer_Handler);

end Ada. Execution_Time. Timers;

pts from Ada-Europe 2008 Tutorial T4 – June 16, 200

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20

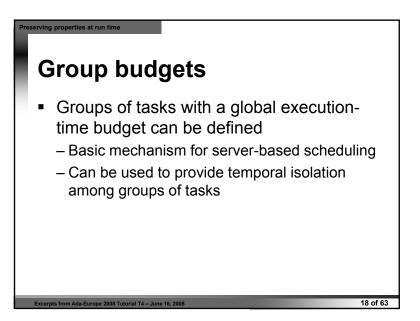
Preserving properties at run time

16 of 63

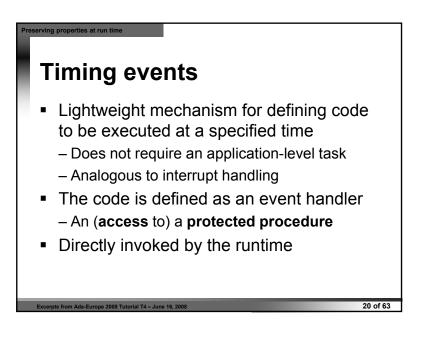
15 of 63

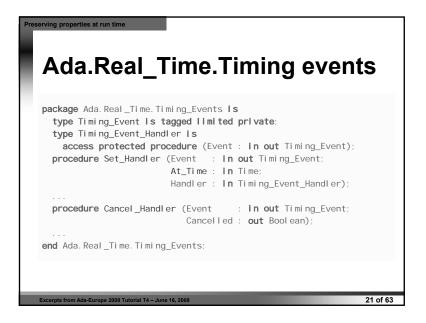
eserving properties at run time

Ada.Execution_Time.Timers /2


- Builds on execution time clocks
- Needs an interval timer

Excerpts from Ada-Europe 2008 Tutorial T4 - June 16, 2008


- To update at every dispatching point
- To raise «zero events» that signify executiontime overruns


17 of 63

 Handling sensibly those zero events require other sophisticated features

Preserving properties at run time Group budgets (spec) with System; package Ada. Execution_Time. Group_Budgets is type Group_Budget is tagged limited private; type Group_Budget_Handler is access protected procedure (GB : in out Group_Budget); Min_Handler_Ceiling : constant System. Any_Priority := implementation-defined; procedure Add_Task (GB : in out Group_Budget; T : in Ada. Task_Identification. Task_Id); procedure Replenish (GB : in out Group_Budget; To : **in** Time_Span); procedure Add (GB : in out Group_Budget; Interval : in Time_Span); procedure Set_Handler (GB : in out Group_Budget; Handler : in Group_Budget_Handler); end Ada. Execution_Time. Group_Budgets; Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20 19 of 63

22 of 63

Preserving properties at run time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20

Preserving properties at run time

An object-oriented approach

23 of 63

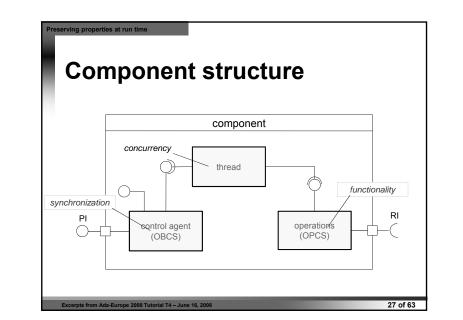
24 of 63

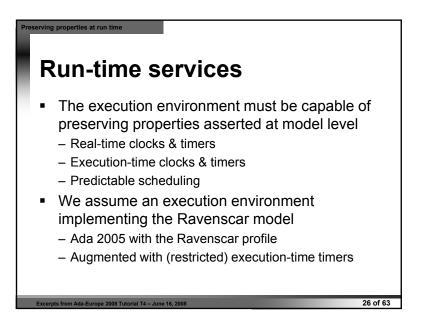
- Real-time components are objects
 - Instances of predefined classes
 - Internal state + interfaces
- Based on well-defined code patterns
 - Cyclic & sporadic tasks
 - Protected data

rpts from Ada-Europe 2008 Tutorial T4 – June 16, 2004

- Passive data

eserving properties at run time


Enforce intentions

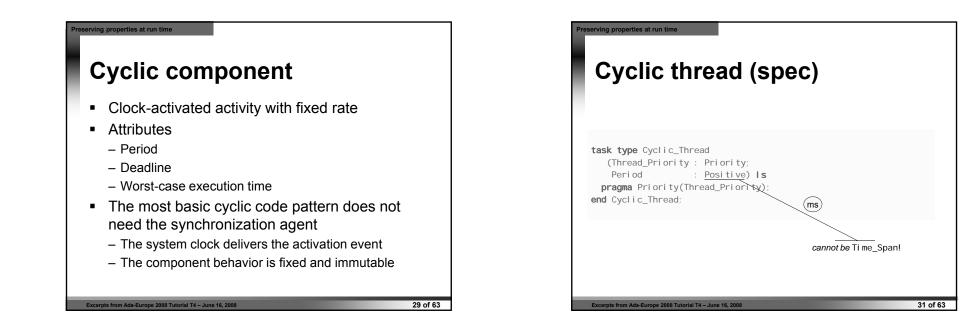

- Static WCET analysis and response-time analysis can be used to assert correct temporal behavior at design time
- Platform mechanisms can be used at run time to ensure that temporal behavior stays within the asserted boundaries
 - Clocks, timers, timing events, \ldots

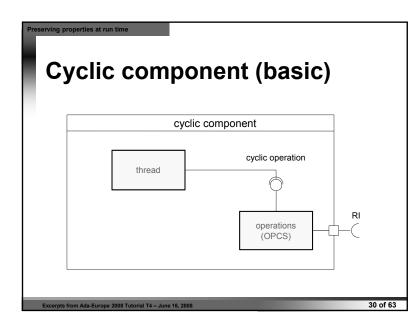
cerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20

Conveniently complementary approaches

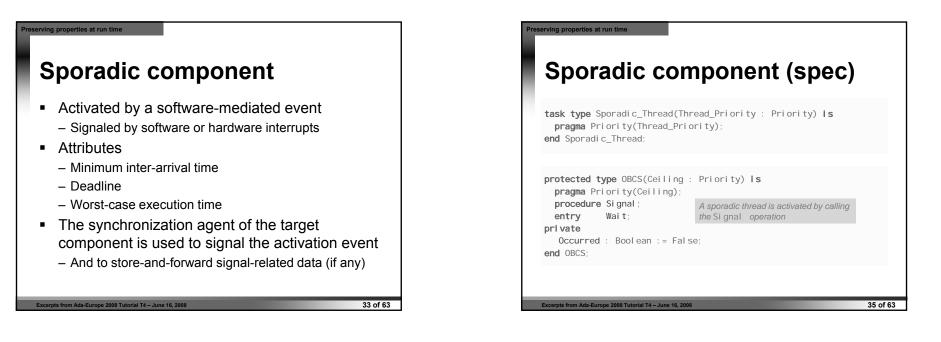
25 of 63

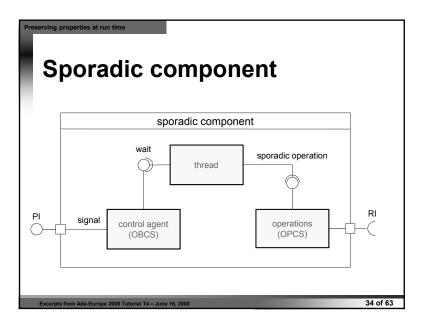
eserving properties at run time

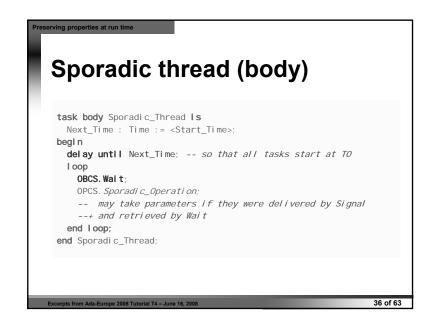

Component taxonomy

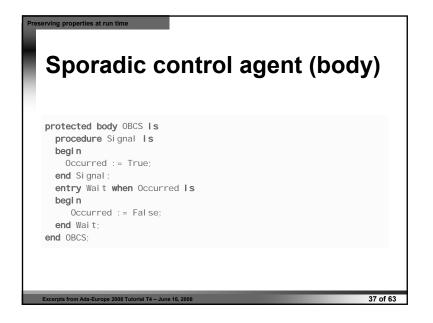

- Cyclic component
- Sporadic component
- Protected data component
- Passive component

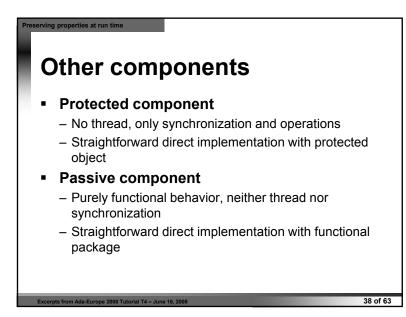
ots from Ada-Europe 2008 Tutorial T4 - June 16, 200


Under inversion of control


28 of 63






Cyclic thread	(body)
5	
task body Cyclic_Thread is	
Next_Time : Time := <start_t< td=""><td><pre>ime>; taken at elaboration time</pre></td></start_t<>	<pre>ime>; taken at elaboration time</pre>
pegi n	
delay until Next_Time; OPCS. <i>Cyclic_Operation;</i>	so that all tasks start at TO fixed and parameterless
Next_Time := Next_Time + N	lilliseconds(Period);
end loop; end Cyclic_Thread;	

Preserving properties at run time

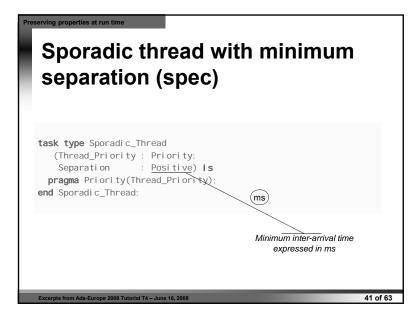
Temporal properties

- Basic patterns only guarantee periodic or sporadic activation
- They can be augmented to guarantee additional temporal properties at run time
 - Minimum inter-arrival time for sporadic events

39 of 63

40 of 63

- Deadline for all types of thread
- WCET budgets for all types of thread


Preserving properties at run time

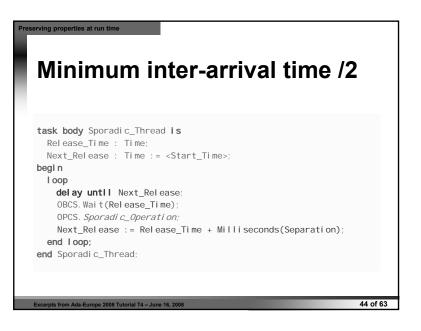
Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20

pts from Ada-Europe 2008 Tutorial T4 – June 16, 200

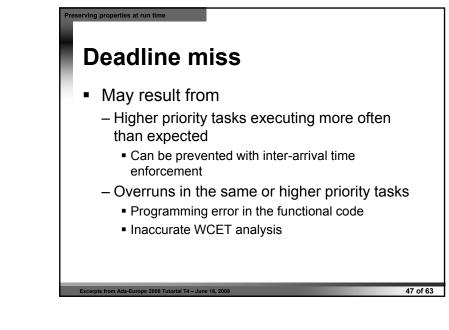
Minimum inter-arrival time /1

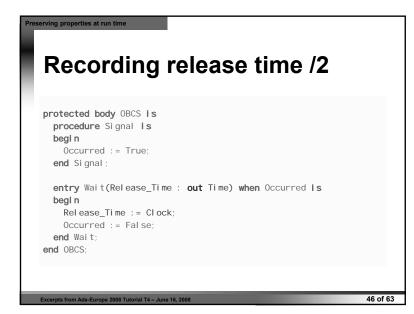
- Violations of the specified separation interval may cause increased interference on lower priority tasks
- Approach: prevent sporadic thread from being activated earlier than stipulated
 - Compute earliest (absolute) allowable activation time
 - Withhold activation (if triggered) until that time

Critique May incur some temporal drift as the clock is read *after* task release Preemption may hit just after the release but before reading the clock Separation may become *larger* than required Better to read the clock at the place and time

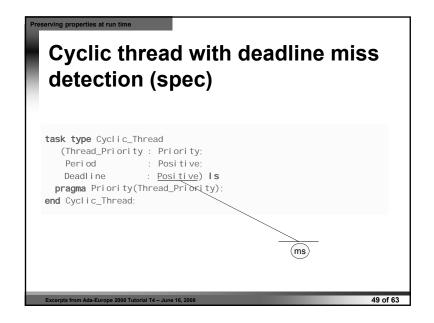

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 20

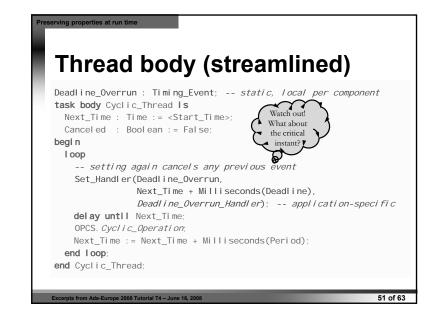

Preserving properties at run time

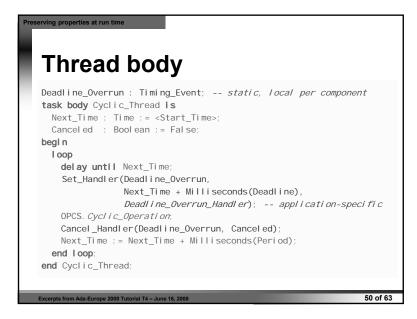

- Better to read the clock at the place and time the task is released
 - Within the synchronization agent
 - Which is protected and thus less exposed to general interference

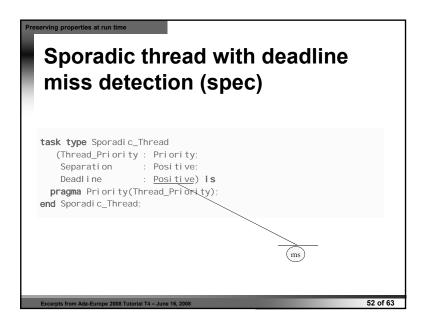

43 of 63

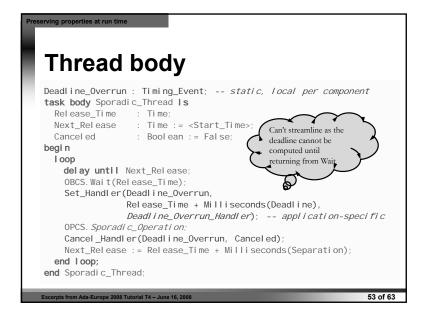
eserving properties at run time Sporadic thread (body) task body Sporadic_Thread is Release Time : Time: Next_Release : Time := <Start_Time>; begi n l oop delay until Next_Release; OBCS.Wait; Release_Time := Clock; OPCS. Sporadi c_Operati on; Next_Release := Release_Time + Milliseconds(Separation); end loop; end Sporadi c_Thread; Still a single point of activation 42 of 63 ope 2008 Tutorial T4 – June 16, 200

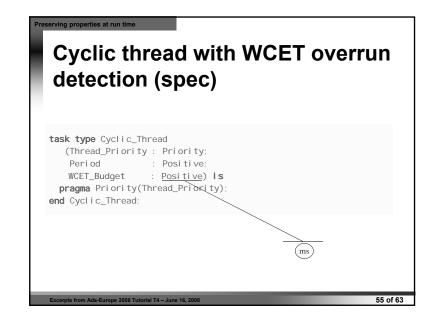


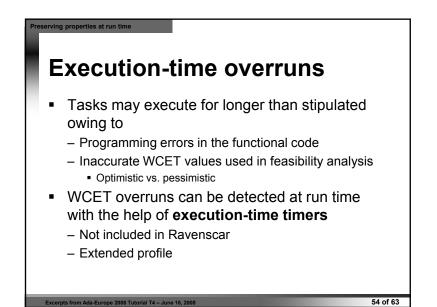


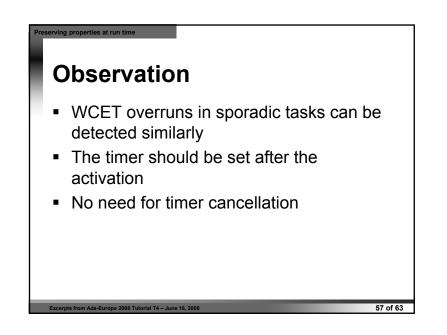


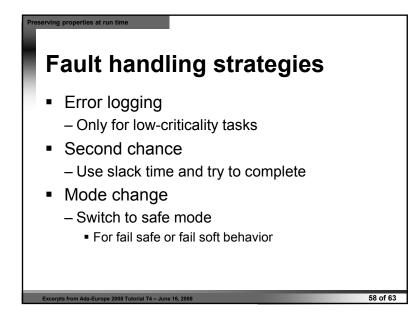


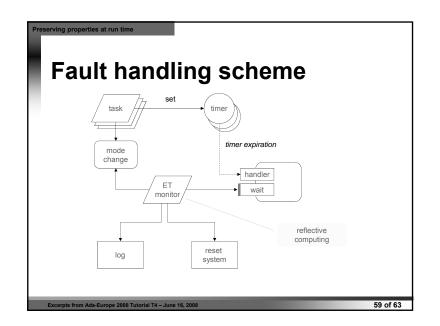

<page-header><section-header><list-item><list-item><list-item><list-item><list-item>

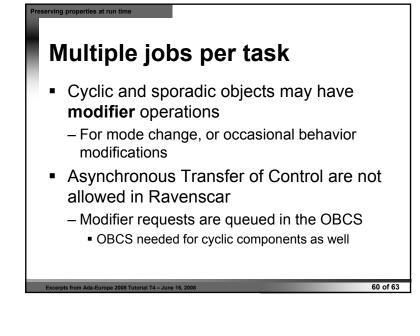




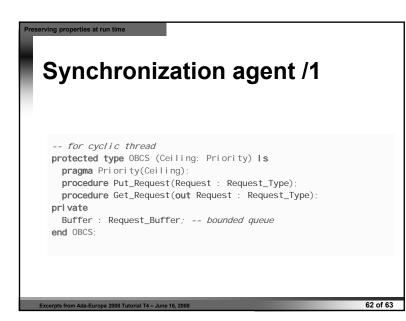





	ead body
task bo	dy Cyclic_Thread is
Next_	Fime : Time := <start_time>;</start_time>
Id :	allased constant Task_ID := Current_Task;
WCET_	Fimer : Timer(Id' access);
begi n	
l oop	
del	ay until Next_Time;
Set	_Handler(WCET_Timer,
	Milliseconds(WCET_Budget),
	WCET_Overrun_Handler); application-specific
OPC	S. Cyclic_Operation;
Nex	t_Time := Next_Time + Milliseconds(Period);
end I	oop;
end Cvc	ic_Thread;


T \/ordonogo)

1 /



Cyclic thread with modifier
Cyclic thread with modifier
<pre>task body Cyclic_Thread is Next_Release_Time : Time := <start_time>; Request : Request_Type;</start_time></pre>
begi n
Гоор
delay until Next_Release_Time;
OBCS.Get_Request(Request); may include operation parameters
case Request is
<pre>when NO_REQ => OPCS. Periodic_Activity;</pre>
<pre>when ATC_REQ => may take parameters</pre>
OPCS. Modi fier_Operation;
end case;
Next_Release_Time := Next_Release_Time + Period;
end loop;
end Cyclic_Thread;
Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008 61 of 63

```
Synchronization agent /2
 -- for cyclic thread
 protected body OBCS(Ceiling : Priority) is
  procedure Put_Request(Request : Request_Type) is
  begi n
   Buffer.Put(Request);
  end Put_Request;
  procedure Get_Request(out Request : Request_Type) is
  begi n
    if Buffer. Empty then
      Request := NO_REQ;
    el se
      Buffer.Get(Request);
    end if;
  end Get_Request;
 end OBCS;
```

Preserving properties at run time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

63 of 63