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7.a WCET analysis techniques

Credits to Enrico Mezzetti 
(emezzett@math.unipd.it)

Worst-case execution time (WCET)

 For any input data and all initial logical states
 So that all execution paths are covered

 For any hardware state
 So that worst-case execution conditions are in effect

 Measurement-based WCET analysis
 On the real HW or a cycle-accurate simulator
 The high-watermark value can be  WCET

 Static WCET analysis
 On an abstract model of the HW and of the program
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Computing the WCET /1

 Why not measure the WCET of a task on its real hardware?

 Triggering the WCET by test is very difficult
 Worst-case input covering all executions of a real program is 

intractable in practice
 Worst-case initial state is difficult to determine with modern HW

 Complex pipelines (out-of-order execution)
 Caches
 Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state
Logic analyser,
oscilloscope,

etc.
WCET ?
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Computing the WCET /2

 Exact WCET not generally computable (~ the halting problem)
 A WCET estimate or bound are key to predictability

 Must be safe to be an upper bound to all possible executions
 Must be tight to avoid costly over-dimensioning



2014/15 UniPD / T. Vardanega 26/05/2015

Real Time Systems 2

2014/15 UniPD / T. Vardanega Real-Time Systems 307 of  492

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the actual executable

 Execution time depends on control path and HW
 High-level analysis addresses the program behavior

 Control flow analysis builds a control flow graph (CFG)

 Low-level analysis determines the timing behavior of 
individual instructions
 Not constant for modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

Static WCET analysis /2
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Implicit path enumeration technique

 The program structure is 
mapped into flow graph 
constraints
 WCET computed with integer 

linear programming or constraint-
solving techniques

 ܶܧܥܹ ൌ ∑ ݔ ൈ ݐ
 Where ݔ is the execution 

frequency of CFG edge ݅
 And ݐ the execution time of 

CFG edge ݅
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CFG Flow constraints

 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 Basic block is the unit of that analysis 

 The longest sequence of program instructions with 
single entry and single exit (no branches, no loops)

 Challenges with path analysis
 Input-data dependency
 Infeasible paths
 Loop bounds (and recursion depth)
 Dynamic calls (through pointers)
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Static WCET analysis /3



2014/15 UniPD / T. Vardanega 26/05/2015

Real Time Systems 3

Static WCET analysis /4

 High-level analysis /2
 Several techniques are deployed to allow using IPET

 Control-flow analysis to construct the CFG
 First finding the basic blocks and then building the graph among them

 Data-flow analysis to find loop bounds
 Value analysis to resolve memory accesses

 Automatic information extraction is insufficient 
 User annotation of flow facts is needed

 To facilitate detection of infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and referenced memory addresses
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Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features 

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual timing
 All possible HW states should be accounted for

 Challenges with HW modeling
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update  function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature
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Understanding the hardware /1
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Instruction
cache

Data
cache

Caches

Courtesy of
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Understanding the hardware /2
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Courtesy of

Core
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Static WCET analysis: the big picture

 Open problems
 Can we always trust HW modeling?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation intrinsic in abstract state computation

 Weaknesses of user annotations
 Labor intensive and error prone

Analysis framework 
and 

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds
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Static WCET analysis /7

 Safeness is at risk
 When local worst case does not always lead to global worst case
 When timing anomalies occur

 Complex hardware architectures (e.g., out-of-order pipelines)
 Even improper design choices (e.g., cache replacement policies)
 Counter-intuitive timing behavior
 Faster execution of a single instruction causes long-term negative effects

 Both are very difficult to account for in static analysis
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Scheduling anomaly: example

 Some dependence between instructions
 Shared resources (e.g. pipeline stages) and opportunistic 

scheduling

 Faster execution of A leads to a worse case overall execution 
because of the order in which instructions are executed
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Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor
 On the final executable
 Knowing that safeness not guaranteed (!)

 Hybrid approaches exploit
 The measurement of basic blocks on the real HW 

 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)
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Hybrid analysis /2

 Approaches to collect timing information 
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation effects the timing behavior of the program (aka the 

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results contingent on the coverage of the 
executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement 
 Worst-case state dependence is gone if HW response time is randomized 
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Hybrid analysis: the big picture

 Open problems
 Can we trust the resulting estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May cause serious cost impact and inherent difficulty of exactness

Program 
executable

Opt. User annotations WCET
estimates

Target Hardware
(black box)

Execution 
traces

Path 
info
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Summary

 The challenge of computing the WCET
 Static analysis

 High-level analysis
 Low-level analysis

 Hybrid analysis (measurement-based)

7.b Schedulability analysis 
techniques

Credits to Marco Panunzio 
(panunzio@math.unipd.it)
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Feasibility region

 The topological space that represents the set of feasible 
systems with respect to the workload model parameters
 N-dimensional space with N-parameter analysis
 Function of the timing parameters
 Specific to the scheduling policy in force

par2

Feasibility
region

t2
t1

t1 is feasible
t2 is not feasible

par1

1

0.83

U1

RM

EDF
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Advanced utilization tests

 Hyperbolic bound improves Liu & Layland utilization test
 For systems with periodic tasks under FPS and DMPO
 E. Bini and G. Buttazzo: “A Hyperbolic Bound for the Rate 

Monotonic Algorithm”. Proceedings of the 13th ECRTS, 2001
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Transactions /1

 Causal relations between activities
 They consider information relevant to analysis that is not 

captured by classic workload models
 Dependences in the activation of jobs

 Originally introduced for the analysis of distributed systems
 Also useful for the analysis of “collaboration patterns” employed for 

single-CPU systems
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Transactions /2

 Two main kinds of dependence
 Direct precedence relation (e.g., producer-consumer)

  cannot proceed until completes

 Indirect priority relation
  does not suffer interference from (under FPS and synchronous 

release of and  for priorities increasing with values)

 

 p1=4

  p1=5 p2=3 p3=6
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Example /1

 A “callback pattern” to permit in out interactions 
between tasks in Ravenscar systems
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Example /2

T1 (Producer) 
[cyclic]

T2 (Consumer) 
[sporadic]

Q1

T3 (Callback) 
[sporadic]

Q2

fetches request

deposits request

fetches result
deposit result

T1 T2 T3

End-to-end deadline
The feasibility of  the end-to-end response time against this deadline is what matters (!)



2014/15 UniPD / T. Vardanega 26/05/2015

Real Time Systems 8

2014/15 UniPD / T. Vardanega Real-Time Systems 331 of  492

Sensitivity analysis /1

 Investigates the changes in a given system that
 Improve the fit of an already feasible system
 Make feasible an infeasible system

C1

C2

Position of  the system in 
the feasibility region
Maximum feasible variation for the 
WCET of  t1 (negative in the example)

Maximum feasible variation for the 
WCET of  t2 (negative in the example)

2014/15 UniPD / T. Vardanega Real-Time Systems 332 of  492

Sensitivity analysis /2

 Major computation complexity
 Theory still under development

 Does not account for shared resources, multi-node systems, 
partitioned systems

 High potential
 To explore solution space in the dimensioning phase of design

 Presently only applicable to period/MIAT and WCET

 To study the consequences of changes to timing parameters
 To allow for the inclusion of better functional value in the system
 To renegotiate timing (or functional) parameters
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MAST

 Modeling and Analysis Suite for Real-Time Systems 
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor 
systems

 Under FPS or EDF
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Classic workload model

T1 (Sporadic)  MIAT=1.750    WCET=0.500

T2 (Cyclic)       T=2.000          WCET=0.500

T3 (Cyclic)       T=4.000          WCET=0.500

1 2 3 4 5 6

T1

T2

T3

Critical Instant for T3

Level 3 busy period
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MAST: real-time model

2014/15 UniPD / T. Vardanega Real-Time Systems 336 of  492

MAST: transaction

 To model causal relations between activities
 Triggered by external events

 Periodic, sporadic, aperiodic, etc…
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MAST: operations

 The real-time model includes the description of all 
the operations in the system

Simple
operation BCET

ACET

WCET
Shared Resource

List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET

WCET
Shared Resource

List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size
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MAST: creation of a transaction

Event
Handler

Event 
Handler

External
event

Operation
en1

Activity

Operation
en2

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements
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Example: Ravenscar callback

T1 (Producer) 
[cyclic]

T2 (Consumer) 
[sporadic]

Q1

T3 (Callback) 
[sporadic]

Q2

fetches request

deposits request

fetches result
deposits result

T1 T2 T3

End-to-end deadline
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Example: shared resources in MAST

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET
WCET

Shared Resource
List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1
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Example: modeling tasks in MAST

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS 

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40
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Example: timing attributes

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S)  T2=40 C2=10 p2=2

Callback [3] (S)  T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5
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Example: classic RTA results

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S)  T2=40 C2=10 p2=2

Callback [3] (S)  T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

This misses out completely that T3 is to be preceded by T2 and T1 (!)
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Example: introducing transactions

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40
Event

Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler
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Example: end-to-end analysis

Precedence and offset-based

R1 (Tr) = 12

R2 (Tr) = 20

R3 (Tr) = 27

Response time relative
to the beginning of  the 
transaction!

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S)  T2=40 C2=10 p2=2

Callback [3] (S)  T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5
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Summary

 Feasibility region
 Advanced utilization tests
 Fine-grained response time analysis
 Transactions
 Sensitivity analysis
 Example tool (MAST)


