
2014/15 UniPD / T. Vardanega 27/05/2015

Real Time Systems 1

8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of
the the IEEE Real-Time Systems Symposium, WiP Session,
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2014/15 UniPD / T. Vardanega Real-Time Systems 348 of 492

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status
 There usually is a dispatcher / scheduler per processor

2014/15 UniPD / T. Vardanega Real-Time Systems 349 of 492

Understanding the hardware /3

2014/15 UniPD / T. Vardanega Real-Time Systems 350 of 492

Instruction
cache

Data
cache

Caches

Courtesy of

2014/15 UniPD / T. Vardanega 27/05/2015

Real Time Systems 2

Hardware interference /1

 Parallel execution on a multiprocessor causes vast
opportunities of contention for hardware resources
that are shared among the cores

 This phenomenon increases the execution time of
running threads by causing them to hold the CPU
without progressing (!)
 Unlike software interference, which prevents a ready

thread from running

2014/15 UniPD / T. Vardanega Real-Time Systems 351 of 492

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of a simple
single-path program
running alone does not
stay the same when
other programs happen
to execute on other
CPUs

2014/15 UniPD / T. Vardanega Real-Time Systems 352 of 492

Courtesy of

A big anomaly

2014/15 UniPD / T. Vardanega Real-Time Systems 353 of 492

Single-core alone Multicore alone on CPU w/o SW interaction

ൈ 2.75

Courtesy of

State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they
have low utilization
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time
complexity
 The known sufficient tests have polynomial time complexity but obviously

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time

complexity has been found yet

2014/15 UniPD / T. Vardanega Real-Time Systems 354 of 492

2014/15 UniPD / T. Vardanega 27/05/2015

Real Time Systems 3

Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks have no internal parallelism: they can run only on one CPU at any

one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are built into WCET estimates

2014/15 UniPD / T. Vardanega Real-Time Systems 355 of 492

Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving1), preemptive, global (with
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle

while tasks eligible for execution are not able to execute on other
processors

2014/15 UniPD / T. Vardanega Real-Time Systems 356 of 492

The solution space for scheduling

2014/15 UniPD / T. Vardanega Real-Time Systems 357 of 492

Global Partitioned

Clustered Hybrid (semi-partitioned)

Software interference /1

 We know what is the interference ܫ suffered by a
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from
݉ 1 onward

 Multiprocessor interference can be computed as the
sum of all intervals when ݉ higher-priority tasks
execute in parallel on all ݉ processors

2014/15 UniPD / T. Vardanega Real-Time Systems 358 of 492

2014/15 UniPD / T. Vardanega 27/05/2015

Real Time Systems 4

Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௫ ൌ ܥ
ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
ܥ ሻఛೕ∈ሺሻ݆ܥ

 This naive bound can be improved, and has been,
but for great computational complexity and still
without becoming exact

2014/15 UniPD / T. Vardanega Real-Time Systems 359 of 492

Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks
a and b first on each of the 2 processors

 But this would leave no time for task c to complete
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2

2014/15 UniPD / T. Vardanega Real-Time Systems 360 of 492

Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2

2014/15 UniPD / T. Vardanega Real-Time Systems 361 of 492

Global scheduling anomalies

 In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can

increase the interference on lower-priority tasks because of the
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in

the interference suffered by that task

2014/15 UniPD / T. Vardanega Real-Time Systems 362 of 492

2014/15 UniPD / T. Vardanega 27/05/2015

Real Time Systems 5

Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ ܫ ൌ ܦ
hence any increase in ܫ would make it
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2014/15 UniPD / T. Vardanega Real-Time Systems 363 of 492

Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2014/15 UniPD / T. Vardanega Real-Time Systems 364 of 492

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2014/15 UniPD / T. Vardanega Real-Time Systems 365 of 492

Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes

visible in the second job of ߬

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2014/15 UniPD / T. Vardanega Real-Time Systems 366 of 492

