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8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a 
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2014/15 UniPD / T. Vardanega Real-Time Systems 348 of  492

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor
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Understanding the hardware /3
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Hardware interference /1

 Parallel execution on a multiprocessor causes vast 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to hold the CPU 
without progressing (!)
 Unlike software interference, which prevents a ready 

thread from running
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Hardware interference /2

 The WCET of a simple 
single-path program 
running alone does not
stay the same when 
other programs happen 
to execute on other 
CPUs
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A big anomaly
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Single-core alone Multicore alone on CPU w/o SW interaction

ൈ 2.75

Courtesy of

State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they 
have low utilization 
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time 
complexity
 The known sufficient tests have polynomial time complexity but obviously 

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet
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Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks have no internal parallelism: they can run only on one CPU at any 

one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are built into WCET estimates 
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Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle 

while tasks eligible for execution are not able to execute on other 
processors
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The solution space for scheduling
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Global Partitioned

Clustered Hybrid (semi-partitioned)

Software interference /1

 We know what is the interference ܫ suffered by a 
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from 
݉ 1 onward

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors
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Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௫ ൌ ܥ 
ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
ܥ  ሻఛೕ∈ሺሻ݆ܥ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact
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Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks 
a and b first on each of the 2 processors

 But this would leave no time for task c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2
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Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use 
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2
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Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task
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Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ  ܫ ൌ ܦ
hence any increase in ܫ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4
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Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬

10 20
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P2 b

a a

c

c

11

b c

c
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b
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2014/15 UniPD / T. Vardanega Real-Time Systems 366 of  492


