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8. Multicore systems

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a 
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned
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Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor
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Understanding the hardware /3
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Hardware interference /1

 Parallel execution on a multiprocessor causes vast 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to hold the CPU 
without progressing (!)
 Unlike software interference, which prevents a ready 

thread from running
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With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of a simple 
single-path program 
running alone does not
stay the same when 
other programs happen 
to execute on other 
CPUs
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A big anomaly
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Single-core alone Multicore alone on CPU w/o SW interaction

ൈ 2.75

Courtesy of

State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they 
have low utilization 
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time 
complexity
 The known sufficient tests have polynomial time complexity but obviously 

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet
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Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks have no internal parallelism: they can run only on one CPU at any 

one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are built into WCET estimates 
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Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle 

while tasks eligible for execution are not able to execute on other 
processors
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The solution space for scheduling
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Global Partitioned

Clustered Hybrid (semi-partitioned)

Software interference /1

 We know what is the interference ܫ௜ suffered by a 
task ߬௜ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from 
݉൅ 1 onward

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors
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Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௞௠௔௫ ൌ ௞ܥ ൅
ଵ
௠
∑ ሺ ோೖ

೘ೌೣ

்ೕ
௝ܥ ൅ ሻఛೕ∈௛௣ሺ௞ሻ݆ܥ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact
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Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks 
a and b first on each of the 2 processors

 But this would leave no time for task c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

෍ ௜ܷ ൌ 1.67 ൏ 2
௜
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Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use 
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

෍ ௜ܷ ൌ 2
௜
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Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task
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Anomaly 1: decrease in ݄݌ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ௜ܷ ൌ 1.83௜ but
߬௖ is saturated because ܥ௖ ൅ ௖ܫ ൌ ௖ܦ
hence any increase in ܫ௖ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1 (cont’d)

 If we reduce ௔ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ௖ increases from 4 to 6 and ߬௖ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4
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Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬௖ with ܫ௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2 (cont’d)

 If we extend ௖ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ௖ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬௖

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18
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