The defeat of greedy schedulers

- Greedy algorithms are easy to explain, study, and implement
 - They work very well on single-core processors
 - EDF [1] and LLF [2] are optimal for single-core processors
- They collapse the urgency of a job into a single value and use it to greedily schedule jobs
- Unfortunately (and surprisingly) greedy algorithms fail when used on multiprocessors
 - EDF and LLF are no longer optimal

Why do greedy schedulers fail?

Theorem 1 (stating the obvious)

When the total utilization of a periodic task set is equal to the number of processors, then no feasible schedule can allow any processor to remain idle for any length of time

P-fair scheduling [Baruah et al. 1996]

- Proportional progress is a form of proportionate fairness also known as P-fairness
 - Each task τ_i is assigned resources in proportion to its weight $W_i = \frac{c_i}{\tau_i}$ so that it progresses proportionately
 - Useful e.g., for real-time multimedia applications
- At every time t task τ_i must have been scheduled either $[W_i \times t]$ or $[W_i \times t]$ time units
 - Without loss of generality, preemption is assumed to only occur at integral time units
 - The workload model is assumed to be periodic

P-fair scheduling /2

- $\text{lag}(S, \tau_i, t)$ is the difference between the total resource allocation that task τ_i should have received in $[0, t]$ and what it received under schedule S
 - For a P-fair schedule S at time t
 - τ_i is ahead iff $\text{lag}(S, \tau_i, t) < 0$
 - τ_i is behind iff $\text{lag}(S, \tau_i, t) > 0$
 - τ_i is punctual iff $\text{lag}(S, \tau_i, t) = 0$
P-fair scheduling /3

- $\alpha(x)$ is the characteristic (infinite) string of task τ_x over $\{-, 0, +\}$ for $t \in \mathbb{N}$ with
 - $\alpha_t(x) = \text{sign}(W_x \cdot (t + 1) - |W_x \cdot t| - 1)$
 - Distance from the integral approximation of fluid curve
 - $\alpha(x, t)$ is the characteristic substring
 $\alpha_{t+1}(x)\alpha_{t+2}(x)\ldots\alpha_t(x)$ of task τ_x at time t
 where $t' = \min \{ i : i > t : \alpha_t(x) = 0 \}$
- For a P-fair schedule S at time t, task τ_i is
 - Urgent iff τ_i is behind and $\alpha_t(\tau_i) \neq -$
 - Tungru iff τ_i is ahead and $\alpha_t(\tau_i) \neq +$
 - Contending otherwise

Properties of a P-fair schedule S

- For task τ_i ahead at time t under S
 - Tungru
 - If $\alpha_t(\tau_i) = -$ and τ_i not scheduled at t then τ_i is ahead at $t + 1$
 - If $\alpha_t(\tau_i) = 0$ and τ_i not scheduled at t then τ_i is punctual at $t + 1$
 - If $\alpha_t(\tau_i) = +$ and τ_i not scheduled at t then τ_i is behind at $t + 1$
 - For task τ_i behind at time t under S
 - Urgent
 - If $\alpha_t(\tau_i) = -$ and τ_i scheduled at t then τ_i is ahead at $t + 1$
 - If $\alpha_t(\tau_i) = 0$ and τ_i not scheduled at t then τ_i is behind at $t + 1$
 - If $\alpha_t(\tau_i) = +$ and τ_i scheduled at t then τ_i is punctual at $t + 1$

P-fair scheduling /4

- General principle of P-fairness
 - Every task urgent at time t must be scheduled at t to preserve P-fairness
 - No task tungru at time t can be scheduled at t without breaking P-fairness
- Problems with n_0 tungru, n_1 contending, n_2 urgent tasks at time t, with m resources and $n = n_0 + n_1 + n_2$
 - If $n_2 > m$ the scheduling algorithm cannot schedule all n_0 urgent tasks
 - If $n_0 > n - m$ the scheduling algorithm is forced to schedule some tungru tasks

P-fair scheduling /5

- The PF scheduling algorithm
 - Schedule all urgent tasks
 - Allocate the remaining resources to the highest-priority contending tasks according to the total order function \preceq with ties broken arbitrarily
 - $x \preceq y$ if $\alpha(x, t) \geq \alpha(y, t)$
 - The comparison between the characteristics substrings is resolved lexicographically with $-<0<+$
- With PF we have $\sum_{x \in \{0,1\}} W_x = m$
 - A dummy task may need to be added to the task set to top utilization up
- No problem situation can occur with the PF algorithm
Example (PF scheduling) /1

<table>
<thead>
<tr>
<th>Task</th>
<th>C</th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>1</td>
<td>3</td>
<td>0.333…</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td>5</td>
<td>7</td>
<td>0.714…</td>
</tr>
<tr>
<td>y</td>
<td>8</td>
<td>11</td>
<td>0.727…</td>
</tr>
<tr>
<td>z</td>
<td>335</td>
<td>462</td>
<td>3-U</td>
</tr>
</tbody>
</table>

- \(m = 3 \) processors
- \(n = 4 \) tasks
- \(\tau_z \) is a dummy task used to top system utilization up
- In general its period is set to the system hyperperiod
- This time we halved it
- With PF we always have \(n_2 > m \) and \(n_0 \leq n - m \)

Example (PF scheduling) /2

Greg Levin’s original presentation

- From a different deck
- The slide deck that follows proceeds from the past exam of a student of this class
DP-Fair motivation

- Focus on periodic, independent task set with implicit deadlines ($D_i = p_i$)
 - Scheduling overhead costs assumed in task requirements
 - $\sum_i u_i \leq m$ and $u_i \leq 1 \forall i$
 - Process migration allowed
- With unlimited context switches and migrations any task set meeting the above conditions will be feasible
 - This problem is easy
- What’s difficult is to find a valid schedule that minimizes context switches and migrations

Deadline partitioning

- Partition time into slices demarcated by the deadlines of all tasks in the system
 - All jobs are allocated a workload in each slice and these workload share the same deadline

Theorem 2 (Hong and Leung)

No optimal on-line scheduler can exist for a set of jobs with two or more distinct deadlines on any $m \times 1$ multiprocessor system, where $m > 1$

- Why is DP so effective?

DP-Correct /1

- The time slice scheduler will execute all jobs’ allocated workload within the end of the time slice whenever it is possible to do so
- Jobs are allocated workloads for each slice so that it is possible to complete this work within the slice
- Completion of these workloads causes all tasks’ actual deadlines to be met

DP-Correct /2

- $\tau = (T_1, T_2, T_3)$
 - $T_1 = (10, 3)$
 - $T_2 = (7, 2)$
 - $T_3 = (18, 5)$
Notation

- \(t_0 = 0, t_i : i > 0 \) denote distinct deadlines of all tasks in \(T \)
- \(\sigma_j \) is the \(j^{th} \) time slice in \([t_{j-1}, t_j)\)
- \(L_j = t_j - t_{j-1} \)
- **Local execution remaining** \(l_{i,k} \) is the amount of time that \(\tau_i \) must execute before the next slice boundary
- **Local utilization** \(r_{j,k} = l_{i,k} / (t_j - t) \)
- \(L_T = \sum_i l_i \) is the length of the whole task set
- \(R_T = \sum_i r_i \) is the load of the whole task set
- \(Slack (T) = m - U(T) \) and represents a dummy job
- \(a_{i,k} \) is the arrival time of the \(k^{th} \) job of \(\tau_i \)

DP-Fair rules for periodic tasks set

- **DP-Fair allocation**
 - All tasks hit their fluid rate curve at the end of each slice by assigning each task a workload proportional to its utilization
 - At every \(\sigma_j \) assign \(l_{i,k+1} = U_i \times L_j \) to \(\tau_i \)
- **DP-Fair scheduling for time slices**
 - A slice-scheduling algorithm is DP-Fair if it schedules jobs within a time slice \(\sigma_j \) according to the following rules:
 1. Always run a job with zero local laxity
 2. Never run a job with no remaining local work
 3. Do not allow more than \(S(t_j) \times L_j \) units of idle time to occur in \(\sigma_j \) before time \(t \)

DP-Fair optimality – Proof

Theorem 5

Any DP-Fair scheduling algorithm for periodic task sets with implicit deadlines is optimal

- **Lemma 3**
 - If tasks in \(T \) are scheduled within a time slice by DP-Fair scheduling and \(R_T \leq m \) at all times \(t \in \sigma_i \), then all tasks in \(T \) will meet their local deadline at the end of the slice
- **Lemma 4**
 - If a task set \(T \) of periodic tasks with implicit deadlines is scheduled in \(\sigma_i \) using DP-Fair algorithm, then \(R_T \leq m \) will hold at all times \(t \in \sigma_i \)

A DP-Fair algorithm: DP-Wrap /1

- Make blocks of length \(\delta_t \) for each \(\tau_i \) and line these blocks up along a number line (in any order), starting at zero
- Split this stack of blocks into chunks of length 1 at \(1, 2, \ldots, m - 1 \)
A DP-Fair algorithm: DP-Wrap /2

- Use deadline partitioning to divide time into slices
- Assign each chunk to its own processor and multiply each chunk's length (1) by the length of the segment (L_i)

DP-Wrap features

- A very simple algorithm that satisfied all DP-Fair rules
- Almost all calculations can be done in a preprocessing step (with static task sets)
- No computational overhead at secondary events
- $n - 1$ context switches and $m - 1$ migrations per slice with mirroring
- Heuristics may exist to improve performance
 - Less migration and context switches

Mirroring

- For tasks that split across two slices
- If τ_i and τ_k are split and τ_i executes at the beginning and τ_k executes at the end of the slice σ_j then revert the schedule in slice σ_{j+1} so that τ_k executes at the beginning and τ_i at the end

Sporadic tasks and $D_i \leq p_i$

- DP-Fair algorithms are still optimal when $\Delta(T) \leq m$ and $\delta_i \leq 1 \forall i$

Definitions

- Freeing slack: unused capacity ($a_{i,h-1} + D_{i,a_{ih}}$)
- Active ($a_{i,h} + D_i$)
- $a_{i,j}(t), f_{i,j}(t)$: amounts of time that task τ_i has been active or freeing slack during slice σ_j as of time t
- Local capacity: $a_{i,j-1} = \delta_j x L_i = \delta_i(a_{i,j} + f_{i,j})$
- Freed slack in σ_j as of time t: $F_{i,j}(t) = \sum_{t=x}^{m}(\delta_i x f_{i,j}(t))$
- Slack: $S(T) = m - \Delta(T)$
DP-Fair scheduling for time slices /1

- A slice-scheduling algorithm is DP-Fair if it schedules jobs within a time slice σ_i according to the following rules:
 1. Always run a job with zero local laxity
 2. Never run a job with no remaining local work
 3. Do not allow more than $S(T) \times L_j + F_j(t)$ units of idle time to occur in σ_i before time t
 4. Initialize l_{i,t_j+1} to 0. At the start time t' of any active time segment for τ_i in σ_j (either $t' = t_{j-1}$ or $a_{i,b}$) that ends at time $t'' = \min \{a_{i,b} + D_{i,a}\}$, increment $l_{i,t}$ by $\delta(t'' - t')$

DP-Fair scheduling for time slices /2

- Rules continued ...
 5. When a task τ_i arrives in a slice σ_j at time t and its deadline falls within σ_j
 - Split the remainder of σ_j after t into two secondary slices σ^1_j, σ^2_j so that the deadline of τ_i coincides with the end of σ^2_j
 - Divide the remaining local execution (and capacity) of all jobs in σ^1_j (as well as the slack allotment from RULE 5) proportionally to the lengths of σ^1_j, σ^2_j
 - This step may be invoked recursively for any τ_k within σ_j

DP-Fair scheduling for time slices /3

Correctness

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic task sets with constrained deadlines where $\Delta(T) \leq m$ and $\delta_j \leq 1 \forall j$

Proof
Lemma 7
A DP-Fair algorithm cannot cause more than $S(T') \times L_j + F_j(t)$ units of idle time in slice σ_j prior to time t

Lemma 8
If a set of sporadic tasks with constrained deadlines is scheduled in σ_j using a DP-Fair algorithm, then $R_j \leq m$ will hold at all times $t \in \sigma_j$
DP-Wrap modified

- If task τ_i issues a job at time t in slice σ_j and $t + D_i > t_j$ then allocate execution time $l_{i,t} = \delta_i(t_j - t)$ following RULE 4
- If instead $t + D_i < t_j$ then split the remainder of σ_j following RULE 5

Arbitrary deadlines /1

- Task set T below is not feasible on 2 processors
 - $m = 2, T = \{\tau_1 = (6,4), \tau_2 = \tau_3 = \tau_4 = \tau_5 = (3,1,6)\}$
 - $\Delta(T) = \frac{4}{6} + 4 \times \frac{1}{3} = 2$
 - 12 units of work to be completed by time 6

Arbitrary deadlines /2

- Is there a cure to this problem?
- If task τ_i has $D_i > p_i$ we simply impose an artificial deadline $D'_i = p_i$
- Density is not increased hence if D'_i is met, D_i will also be
- But this increases the number of context switches and migrations!

Is DP-Fair scheduling sustainable? /1

- Consider model with sporadic tasks and arbitrary deadline
- Two cases may occur
 - The new value of the relaxed parameter is not used in the scheduling and allocation policies
 - The new value of the relaxed parameter becomes known a priori/at job arrival and it is used in the scheduling and allocation policies
Is DP-Fair scheduling sustainable? /2

- Shorter execution time
 - **Case 1 (shorter \(c \), same density)**
 - Task set \(T \) is schedulable and the system allocates \(\delta_i \times L_i \)
 workload per each task in each slice
 - If \(c' \leq c_i \) then task \(\tau_i \) uses part of assigned workload and surely
 completes before its deadline
 - **Case 2 (shorter \(c \), lesser density)**
 - As DP-Fair is optimal when \(\Delta(T) \leq m \) and \(\delta_i \leq 1 \) \(\forall i = 1,..,n \)
 a DF-Fair feasible schedule exists for \(T \)
 - A feasible schedule for \(T' \) exists as \(c'_i < c_i \Rightarrow \delta'_i < \delta_i \Rightarrow \Delta(T') < D(T) \)

Is DP-Fair scheduling sustainable? /3

- Longer inter-arrival time
 - **Case 1 (longer \(p \), same density)**
 - Simply a less demanding instance of sporadic task
 - The allocation and scheduling rules cover this case
 - **Case 2 (longer \(p \), lesser density)**
 - If \(p'_i > p_i \) and \(\delta'_i < \delta_i \) then \(\Delta(T') < \Delta(T) \) whereby \(T' \)
 is feasible if \(T \) was feasible

Related work: Boundary Fair /1

- Very similar to P-Fair
 - It still uses a function and a characteristic string to evaluate
 the fairness of tasks [4] with per-quantum task allocation
 - It uses deadline partitioning
 - It uses a less strict notion of fairness
 - At the end of every slice the absolute value of the allocation
 error for any task \(\tau_i \) is less than one time unit
 - Scheduling decisions made at the start of every slice
 - It reduces context switches packing two or more allocated
 time units of processor to the same task into consecutive units
Related work: Boundary Fair /2

- Not DP-Fair but DP-Correct

Related work: LLREF /1

- It uses deadline partitioning with DP-Wrap task allocation
- In each slice scheduling is made using the notion of T-L Plane
 - Each task T_j is represented by a token within a triangle and its position stands for the local remaining work of T_j at time t
 - The horizontal cathetus indicates the time
 - The length of the vertical cathetus is one processor’s execution capacity
 - The hypotenuse represents the no laxity line
 - Token can move in two directions. Horizontally if the task doesn’t execute, diagonally down if it does
 - When a token hits the horizontal cathetus or the hypotenuse (secondary events) a scheduling decision is made
 - Tasks are sorted and m tasks with the least laxity are executed

Useful DP-Fair bibliography

Related work: EKG [6]

- Tasks are divided into heavy and light
 - Each heavy task is assigned to a separate processor
 - Every light task is assigned to one group of K processors and it shares them with other light tasks
- Some light tasks are split into two processors and they are executed either before t_a or after t_b
- Light tasks that are not split are executed between t_a or and t_b and they are scheduled by EDF
- Heavy tasks start executing when they become ready
- EDF is not a DP-Fair allocation but the DP-Fair rules are satisfied

More theoretical results /1

- For the simplest workload model made of independent periodic and sporadic tasks
- A P-fair scheme can sustain $U = m$ for m processors but its run-time overheads are excessive
 - Tasks incur very many preemptions and are frequently required to migrate \Rightarrow horrendously costly disruption
- Partitioned FPS first-fit (on decreasing task utilization) can sustain $U \leq m(\sqrt{2} - 1)$
 - But this is a sufficient test only [Oh & Baker, 1998]

8.c More theoretical results

More theoretical results /2

- Partitioned EDF first-fit can sustain
 \[U \leq \frac{\beta m + 1}{\beta + 1} \]
 \[\beta = \frac{1}{U_{\text{max}}} \]
- For high U_{max} this bound gets rapidly lower than $0.6 \times m$, but can get close to m for some examples
 - Again this is a sufficient test only [Lopez et al., 2004]
More theoretical results /3

- *Global EDF* can sustain
 \[U \leq m - (m - 1)U_{\text{max}} \]

- For high \(U_{\text{max}} \) this bound can be as low as \(0.2 \times m \) but also close to \(m \) for other examples.
 - Again, only sufficient [Goossens et al., 2003]

More theoretical results /4

- Combinations
 - FPS (higher band) to those tasks with \(U_i > 0.5 \)
 - EDF for the rest
 \[U \leq \left(\frac{m+1}{2} \right) \]
 - Again, only sufficient [Baruah, 2004]