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| The defeat of greedy schedulers

m Greedy algorithms ate easy to explain, study, and
implement
0 They work very well on single-core processors
o EDF [1] and LLF [2] are optimal for single-core processors

w They collapse the urgency of a job into a single value and use it to
greedily schedule jobs

m Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors

o EDF and LLF are no longer optimal
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‘ P-fair scheduling [Baruah et al. 1990]

w Proportional progress is a form of proportionate fairness
also known as P-fairness
o Each task 7; is assigned resources in proportion to its wezght
W; = % so that it progresses proportionately
o Useful e.g., for real-time multimedia applications
m At every time t task T; must have been scheduled cither
[W; X t] or [W; X t] time units
o Without loss of generality, preemption is assumed to only
occur at integral time units

0 The workload model is assumed to be periodic
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| Why do greedy schedulers fail?

When the total utilization of a periodic task set is equal to
the number of processors, then no feasible schedule can
allow any processor to remain idle for any length of time
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| P-fair scheduling /2

m lag(S,t;,t) is the difference between the total
resource allocation that task T; should have received
in [0, t) and what it received under schedule S

m For a P-fair schedule S at time ¢
a T; is abead iff lag (S, t;,t) <0
Q T; is bebind iff lag(S,t;,t) > 0
Q Tj is puncrual iff lag(S,t;, t) = 0
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| P-fair scheduling /3

m a(x) is the characteristic (infinite) string of task Ty
over {—,0,+} for t € N with
0 a(x) =sign(W, - (£ +1) — [Wy - t]| - 1)
m  Distance from the integral approximation of fluid curve
a a(x,t) is the characteristic substring
i (0) Ay 5 (X) ... ar, (x) of task T, at time t
where t' = mini:i > t:a;(x) =0
m For a P-fair schedule § at time ¢, task 7; is
Q Urgent iff T; is behind and ety (T;) # —
Q Tnegru iff T; is abead and oty (T;) # +
a Contending otherwise
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| P-fair scheduling /4

m General principle of P-fairness
0 Every task urgent at time t must be scheduled at t to preserve
P-fairness
0 No task #zegru at time t can be scheduled at t without breaking
P-fairness
m Problems with N #regru, Ny contending, Ny urgent tasks at
time £, with m resources and n = ng + ny +n,

o If n, > m the scheduling algorithm cannot schedule all #rgent
tasks

a If ng > n —m the scheduling algorithm is forced to schedule
some fnegru tasks
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| Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a,(t;) = — and 7; not scheduled at t then T; is abead at t + 1
e {D If oty (7;) = 0 and 7; not scheduled at t then T; is punctual at t + 1
o If a,(t;) = + and 7; not scheduled at t then T; is bebind at t + 1
o If a;(t;) = + and 7; scheduled at t then T; is abead at t + 1

m For task T; behind at time t under S
o If a,(t;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a;(t;) = — and 7; not scheduled at ¢ then T; is behind at t + 1
b If a;(t;) = 0 and 7; scheduled at t then T; is punctnalat t + 1
et {D If a;(t;) = + and 7; scheduled at t then T; is behind at t + 1
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P-fair scheduling /5

m The PF scheduling algorithm
0 Schedule all #rgent tasks
o Allocate the remaining resources to the highest-priotity contending
tasks according to the total order function = with ties broken
arbitrarily
n x 2 yiffa(xt) = a(y,t)
m  And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
= With PF we have Xy cpon We = m

o A dummy task may need to be added to the task set to top
utilization up

= No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1
m=3 . .
Task | C | T | W | o _, o 8.b A stint of Deadline-
v 1 3 0.333...| = 7;isadummy task used to top {41 q
system utilization up Par tltlonlng
w 2 4 0.5 m In general its period is set to the
X 5 7 0.714... system hyperperiod
8 | 11 | 0.727...| 2 Thistmewehavedi Credits to Greg Levin et al. (ECRTS 2010)
m  With PF we always have
z 335 | 462 3-U ny>mandnyg<n—m
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| Example (PF scheduling) /2 ‘ Greg Levin’s original presentation
Ii

These tasks are scheduled and they become ahead

[[ characteristic string [ urgent | dontending [tnegra

i e T w y z ' Lasks Lasks | tasks .
of = EES I FE ¥ X m From a different deck
_: :'- _ 0 - )
1 3 || =
o RN m The slide deck that follows proceeds from the past
<1 o exam of a student of this class
1) e - 1]

\D\ (1]
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DP-Fair motivation

- Focus on periodic, independent task set with implicit
deadlines (D; = py)
- Scheduling overhead costs assumed in task requirements
-2 Ui <mand U; < 1Vi
- Process migration allowed
- With unlimited context switches and migrations any task
set meeting the above conditions will be feasible
- This problem is easy
+ What’s difficult is to find a valid schedule that minimizes
context switches and migrations
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‘ DP-Correct /1

m The time slice scheduler will execute all jobs’
allocated workload within the end of the time slice
whenever it is possible to do so

m Jobs are allocated workloads for each slice so that it
is possible to complete this work within the slice

m Completion of these workloads causes all tasks’
actual deadlines to be met
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Deadline partitioning

m Partition time into slices demarcated by the deadlines of
all tasks in the system

o All jobs are allocated a workload in each slide and these
wotkload share the same deadline

No optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on any m multiprocessor
system, where m > 1

m Why is DP so effectiver?
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‘ DP-Correct /2

T . jHuw)L
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| Notation

m ty=0,¢t; : i > 0 denote distinct deadlines of all tasks in T

m 0j is the jt time slice in [tj_q, t})

m L=t -t

» Local execution remaining l; ; is the amount of time that T;
must execute before the next slice boundary

» Local utilization7j, = l;+/(t; — t)

m L =), 1;is the fer of the whole task set

m R =Y, 1;is the Ju of the whole task set

n Slack S(T) = m — U(T) and represents a dummy job

m q;p is the arrival time of the h" job of ;
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DP-Fair optimality — Proof

Any DP-Fair scheduling algorithm for periodic task sets
with implicit deadlines is optimal

m Lemma 3

m If tasks in T are scheduled within a time slice by DP-Fair
scheduling and Ry < m at all times t € 0j, then all tasks in T
will meet their local deadline at the end of the slice

m Lemma 4

m Ifa task set T of periodic tasks with implicit deadlines is
scheduled in 0; using DP-Fair algorithm, then Ry < m will hold
at all times t € o;
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DP-Fair rules for periodic tasks set

m DP-Fair allocation
o All tasks hit their fluid rate curve at the end of each slice by
assigning each task a workload proportional to its utilization

o At every g; assign li,t]-_l =U; X Lj to1;

s DP-Fair scheduling for time slices
0 A slice-scheduling algorithm is DP-Fair if it schedules jobs
within a time slice 0; according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work

3. Do not allow more than §(t) X L; units of idle time to occur in g;
before time t
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| A DP-Fair algorithm: DP-Wrap /1

m Make blocks of length §; for each 7; and line these
blocks up along a number line (in any order), starting at

ZEro
03 05 0.5

08 03 05 04 0.2

I o . N
| | I

2 m-1 m

] 1 M-
m Split this stack of blocks into chunks of length 1 at

12,..,m — 1

03 05 0.2 03 06 0.1

1 2
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| A DP-Fair algorithm: DP-Wrap /2

m Use deadline partitioning to divide time into slices

m Assign each chunk to its own processor and multiply each
chunk’s length (1) by the length of the segment (L;)

S
processar Toaws 0.5+ o.z-ui

o L ,, - . Time
| | m ' '
Presa R H H
| [ B | S S
L} . . .
o t 1= u Time
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Mirroring

m  For tasks that split across two slices

m If 7; and Ty are split and 7; executes at the beginning and Ty executes at the
end of the slice gj then revert the schedule in slice g}, so that Ty executes at
tRC beginning and 7; at the end

Not-mirrored schedule : ' .
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DP-Wrap features

m A very simple algorithm that satisfied all DP-Fair

rules

m Almost all calculations can be done in a
preprocessing step (with static task sets)

m No computational overhead at secondary events

m 1 — 1 context switches and m — 1 migrations per
slice with mirroring
m Heuristics may exist to improve performance

0 Less migration and context switches
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| Sporadic tasks and D; < p;

m DP-Fair algorithms are still optimal when A(T) < m
and §; < 1Vi

m Definitions
Q Freeing slack: unused capacity (@i p—1 + Dy q;,)
a Active: (ai‘h, a]-‘h + Dl)
o a;;(t), fi j(t) : amounts of time that task T; has been active
or freeing slack during slice gj as of time t
Q Local capacity: Cie; | = 0; X Ly = 8i(ayj + fij)
0 Freed slack in 0} as of time t: F;(t) = XL, (6; X f; (1))
a Slack: S(T) =m — A(T)

2014/15 UniPD / T. Vardanega Real-Time Systems 390 of 492

02/06/2015



2014/15 UniPD / T. Vardanega

DP-Fair scheduling for time slices /1

m A slice-scheduling algorithm is DP-Fair if it schedules
jobs within a time slice 0; according to the following
rules:

1. Always run a job with zero local laxity

2. Never run a job with no remaining local work

3. Do not allow more than S(T) X L;j + F;(t) units of idle time
to occur in 0; before time t

4. Initialize li.tj_1 to 0. At the start time ¢’ of any active time
segment for T; in 0; (either t' = tj_1 or a; ) that ends at

time t" = min {ai,h + Di,tj}, increment l; ; by §;(t" — t')
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@1,h, @zh, asn <ty
@1,h41, 82,041, 83,he1 > Tt

DP-Fair scheduling for time slices /3
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DP-Fair scheduling for time slices /2

m Rules continued ...

5. When a task T; atrives in a slice 0j at time t and its
deadline falls within g;

m  Split the remainder of 0; after t into two secondary slices crjl, ajz
so that the deadline of 7; coincides with the end of (sz

= Divide the remaining local execution (and capacity) of all jobs in
ajl (as well as the slack allotment from RULE 3) proportionally

12
to the lengths of a7, o}

= This step may be invoked recursively for any Ty within o}
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Correctness

Any DP-Fair scheduling algorithm is optimal for sporadic
task sets with constrained deadlines where A(T) < m and
8 <1Vi

Proof

Lemma 7

A DP-Fair algorithm cannot canse more than S(T) X Lj + F;(t) units of idle time in slice o}
prior to time t

Lemma 8

IfasetT of sporadic tasks with constrained deadlines is scheduled in 0} nsing a DP-Fair algorithm,
then Ry < m will hold at all times t € oj
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| DP-Wrap modified

m If task 7; issues a job at time t in slice g and ¢ +
D; > t; then allocate execution time l; + = §;(t; —
t) following RULE 4

m [finstead t + D; < t; then split the remainder of d;
following RULE 5
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| Arbitrary deadlines /2

m [s there a cure to this problem?

m If task 7; has D; > p; we simply impose an artificial
deadline D,i = Dbi

m Density is not increased hence if D'; is met, D; will
also be

m But this increases the number of context switches
and migrations!
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| Arbitrary deadlines /1

m Task set T below is not feasible on 2 processors
am=2T={t; =(64),7, =173 =174 =75 = (3,1,6)}
0 AT) =2+4x5=2
0 12 units of work to be completed by time 6

o v !

2 T2 T3 ‘ T2 | T3 ‘ T4 T5

1 T4 T5 Tl

0 1 2 3 4 5 ¢ 7 8
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Is DP-Fair scheduling sustainable? /1

m Consider model with sporadic tasks and
arbitrary deadline

m T'wo cases may occur

0 The new value of the relaxed parameter is not used in
the scheduling and allocation policies

0 The new value of the relaxed parameter becomes
known a prioti/at job arrival and it is used in the
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

m Shorter execution time

a Case 1 (shorter ¢, same density)

m Task set T is schedulable and the system allocates §; X L;
workload per each task in each slice

m If¢’; < ¢ then task T; uses part of assigned workload and surely
completes before its deadline
a Case 2 (shorter €, lesser density)
m  As DP-Fair is optimal when A(T) < mand §; <1Vi=1,..n
a DF-Fair feasible schedule exists for T
m A feasible schedule for T' existsas ¢'; < ¢; = 6'; < §; =
A(T") < D(T)
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Is DP-Fair scheduling sustainable? /4

m Longer deadline
Q Case 1 (longer d, same density)
] di < d,i
m Task 7'; completes its workload at time t = min(d;, p;)

Q Case 2 (longer d, lesser density)
n If d,i > di and 6,i < 61' then A(T’) < A(T) WhCl‘Cb_V T'is
feasible if T was feasible

m We may therefore conclude that DP-Fair
scheduling is sustainable
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Is DP-Fair scheduling sustainabler /3

m Longer inter-arrival time

a Case 1 (longer p, same density)
= Simply a less demanding instance of sporadic task
m  The allocation and scheduling rules cover this case
a Case 2 (longer p, lesser density)
m Ifp'; > p;and §'; < §; then A(T") < A(T) whereby T' is
feasible if T was feasible
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Related work: Boundary Fair /1

Very similar to P-Fair

a It still uses a function and a characteristic string to evaluate
the fairness of tasks [4] with per-quantum task allocation

m It uses deadline partitioning

It uses a less strict notion of fairness

0 At the end of every slice the absolute value of the allocation
error for any task 7; is less than one time unit

Scheduling decisions made at the start of every slice

o It reduces context switches packing two or more allocated
time units of processor to the same task into consecutive units
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| Related work: Boundary Fair /2

'
||'a'1[3[4|1|4‘1]2‘5'(1:'1|3|'5|1|4‘lis'aé|'4[1[2|5|4‘|1‘|‘3's'

— : — - '| - - — —
|5 5 2|5|o|5|s s|3 65 2;5|4|6|5|5 HE 6:5[5 5|3|e|5|z|5 46

0 56 12 15 18

i v

a. A proportional fair schedule

20 24 25 30

| '|2I3|4|1|1.2I3‘45'_2i1|3|4| 1‘2}3_415 1|2|3|5| 1‘2_3[4.

0 5 6 12 15 18

m Not DP-Fair but DP-Correct

- T T T T H | | H T —
|4 5 |6|5| 5 |64 5[5 |6|4| 5 |5/6/4] 5 |5|4| 5 6]

20 24 25 3n

b. A boundary fair schedule
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| Related work: LLREF /2

local laxity of T,
token

no local laxity diagonal
—

j— fluid schedule path

T I

" ceiling hiting event
otiom hitting event

m DP-Fair algorithm but does unnecessary work
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| Related work: LLREF [5] /1

| Useful DP-Fair bibliography

m It uses deadline partitioning with DP-Wrap task allocation

m In each slice scheduling is made using the notion of T-L Plane

o Each task Tj is represented by a token within a triangle and its position
stands for the local remaining work of Tj at time i

The horizontal cathetus indicates the time

The hypotenuse represents the-no laxity line

0O 0o o o

Token can move in two directions. Horizontally if the task doesn’t
execute, diagonally down if it does

0 When a token hits the horizontal cathetus or the hypotenuse (secondary

events) a scheduling decision is made

m  Tasks are sorted and m tasks with the least laxity are executed

The length of the vertical cathetus is one processot’s execution capacity
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| Related work: EKG [6] ‘ More theoretical results /1

m Tasks are divided into heavy and light m For the simplest workload model made of

o Each heavy task is assigned to a dedicate processor 1ndependent pCI‘lOdlC and sporadlc tasks - e 75

o Every light task is assigned to one group of K processors and it shares
them with other light tasks m A P-fair scheme can sustain U = m for m

m Some light tasks are split in two processors and they are executed processors but its run-time overheads are excessive

ither before t, fter t . .
clrherbetore tq oratter tp o Tasks incur very many preemptions and are frequently

m Light tasks that are not split are executed between tg or and required to migrate = horrendously costly disruption
tp and they are scheduled by EDF

= Heavy tasks start exceuting when they become ready w Partitioned FPS first-fit (on decreasing task utilization)

m EDF is not a DP-Fair allocation but the DP-Fair rules are can sustain U < Tn’(\/E - 1)
satisfied 0 But this is a sufficient test only [Oh & Baker, 1998]
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‘ More theoretical results /2

8.c More theoretical results w Partitioned EDF first-fit can sustain
Pm+1
U<
ﬁ + l Per}task
1 p
s
m For high Uy, 4y this bound gets rapidly lower than

0.6 X m, but can get close to m for some examples
o Again this is a sufficient test only [Lopez ez al., 2004]
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| More theoretical results /3

m Global EDF can sustain

Usm—-(m-1)U

max

m For high Uy, g this bound can be as low as
0.2 X m but also close to m for other
examples

o Again, only sufficient [Goossens ¢f al., 2003]
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| More theoretical results /4

o Combinations
m EPS (higher band) to those tasks with U; > 0.5
m EDF for the rest

U< m+1]
B 2

0 Again, only sufficient [Baruah, 2004]
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