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The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and 
implement 
 They work very well on single-core processors
 EDF [1] and LLF [2] are optimal for single-core processors

 They collapse the urgency of a job into a single value and use it to 
greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail 
when used on multiprocessors
 EDF and LLF are no longer optimal
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Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, then no feasible schedule can 
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task ߬௜ is assigned resources in proportion to its weight

௜ܹ ൌ 		
஼೔
்೔

so that it progresses proportionately

 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬௜ must have been scheduled either 
௜ܹ ൈ ݐ or ௜ܹ ൈ ݐ time units

 Without loss of generality, preemption is assumed to only 
occur at integral time units

 The workload model is assumed to be periodic
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P-fair scheduling /2

 ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ is the difference between the total 
resource allocation that task ߬௜ should have received 
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is ahead iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൏ 0
 ߬௜ is behind iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൐ 0
 ߬௜ is punctual iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൌ 0
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P-fair scheduling /3

 ሻݔሺࢻ is the characteristic (infinite) string of task ߬௫
over ሼെ, 0, ൅ሽ for ݐ ∈ Գ with
 ௧ࢻ ݔ ൌ ࢔ࢍ࢏࢙ ௫ܹ · ݐ ൅ 1 െ ௫ܹ · ݐ െ 1

 Distance from the integral approximation of fluid curve
 ,ݔሺࢻ ሻݐ is the characteristic substring
௧ାଵࢻ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ… ݔ of task ߬௫ at time ݐ
where ݐ′ ൌ ݉݅݊ ݅: ݅ ൐ :ݐ ሻݔ௜ሺࢻ ൌ 0

 For a P-fair schedule ܵ	at time ݐ, task ߬௜ is
 Urgent iff ߬௜ is behind and ࢚ࢻ ߬௜ ് െ
 Tnegru iff ߬௜ is ahead and ࢚ࢻ ߬௜ ് ൅
 Contending otherwise
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Properties of a P-fair schedule ܵ

 For task ߬௜	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ not scheduled at ݐ then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at t then ߬௜ is ahead at ݐ ൅ 1

 For task ߬௜	behind at time ݐ under ܵ
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ scheduled at ݐ	then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ scheduled at ݐ	then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1urgent

tnegru
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P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve 

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking 

P-fairness

 Problems with ݊଴ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at 
time ݐ, with ݉ resources and ݊ ൌ ݊଴ ൅ ݊ଵ ൅ ݊ଶ
 If ݊ଶ ൐ ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊଴ ൐ ݊ െ݉ the scheduling algorithm is forced to schedule 

some tnegru tasks
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P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ൒ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ ൅

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ଴,௡ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

Task C T W

v 1 3 0.333…

w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top 

system utilization up
 In general its period is set to the 

system hyperperiod
 This time we halved it

 With PF we always have 
݊ଶ ൐ ݉ and ݊଴ ൑ ݊ െ݉
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Example (PF scheduling) /2
These tasks are scheduled and they become ahead
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8.b A stint of Deadline-
Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin’s original presentation

 From a different deck

 The slide deck that follows proceeds from the past
exam of a student of this class
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DP-Fair motivation

• Focus on periodic, independent task set with implicit 
deadlines (ܦ௜ ൌ (௜݌

• Scheduling overhead costs assumed in task requirements
• ∑ ௜ܷ௜ ൑ ݉	and ௜ܷ ൑ 1∀݅
• Process migration allowed

• With unlimited context switches and migrations any task 
set meeting the above conditions will be feasible

• This problem is easy

• What’s difficult is to find a valid schedule that minimizes 
context switches and migrations
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 Partition time into slices demarcated by the deadlines of 
all tasks in the system
 All jobs are allocated a workload in each slide and these 

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with 
two or more distinct deadlines on any ݉ multiprocessor 
system, where ݉	 ൐ 	1

Deadline partitioning
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DP-Correct /1

 The time slice scheduler will execute all jobs’ 
allocated workload within the end of the time slice 
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it 
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’ 
actual deadlines to be met
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DP-Correct /2
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Notation

 ଴ݐ ൌ 0, ௜ݐ ∶ ݅ ൐ 0 denote distinct deadlines of all tasks in ܶ
 ௝ߪ is the ݆݄ݐ time slice in ሾݐ௝ିଵ, ௝ሻݐ
 ௝ܮ ൌ ௝ݐ െ ௝ିଵݐ
 Local execution remaining ݈௜,௧ is the amount of time that ߬௜

must execute before the next slice boundary
 Local utilization ௝,௧ݎ ൌ ݈௜,௧/ሺݐ௝ െ ሻݐ
 ்ܮ ൌ ∑ ݈௜௜ is the ler of the whole task set
 ்ܴ ൌ ∑ ௜௜ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ௜,௛ is the arrival time of the ݄݄ݐ job of ߬௜
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DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by 

assigning each task a workload proportional to its utilization
 At every ߪ௝ assign ݈௜,௧ೕషభ ൌ ௜ܷ ൈ ௝ܮ to ߬௜

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs 

within a time slice ߪ௜ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ௝ܮ units of idle time to occur in ߪ௜

before time ݐ
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DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ ൑ ݉ at all times ݐ ∈ ௜ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is 
scheduled in ߪ௜ using DP-Fair algorithm, then ்ܴ ൑ ݉ will hold 
at all times ݐ ∈ ௜ߪ

Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets 
with implicit deadlines is optimal 
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A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ௜ for each ߬௜ and line these 
blocks up along a number line (in any order), starting at 
zero

 Split this stack of blocks into chunks of length 1 at 
1,2,...,m − 1
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A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each 

chunk’s length (1) by the length of the segment (ܮ௜)

Time

Time

Time
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DP-Wrap features

 A very simple algorithm that satisfied all DP-Fair 
rules

 Almost all calculations can be done in a 
preprocessing step (with static task sets)

 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per 

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches
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Mirroring

 For tasks that split across two slices
 If ߬௜ and ߬௞ are split and ߬௜ executes at the beginning and ߬௞ executes at the 

end of the slice ߪ௝ then revert the schedule in slice ߪ௝ାଵ so that ߬௞ executes at 
the beginning and ߬௜ at the end

߬௜

߬௞

Time

Time

Not-mirrored schedule

Mirrored schedule
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Sporadic tasks and ܦ௜ ൑ ௜݌

 DP-Fair algorithms are still optimal when ∆ሺܶሻ ൑ ݉
and ߜ௜ ൑ 1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ௜,௛ିଵ ൅ ௜,௔೔,೓ሻܦ
 Active: ሺܽ௜,௛, ௝ܽ,௛ ൅ ௜ሻܦ
 ሻݐሻ, ௜݂,௝ሺݐ௜,௝ሺߙ : amounts of time that task ߬௜ has been active 

or freeing slack during slice ߪ௝ as of time ݐ
 Local capacity: ܿ௜,௧ೕషభ ൌ ௜ߜ ൈ ௜ܮ ൌ ௜,௝ߙ௜ሺߜ ൅ ௜݂,௝ሻ
 Freed slack in ߪ௝ as of time ܨ :ݐ௝ሺݐሻ ൌ ∑ ሺߜ௜ ൈ ௜݂,௝ሺݐሻሻ௡

௜ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ
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DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules 
jobs within a time slice ߪ௜ according to the following 
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time 

to occur in ߪ௜ before time ݐ
4. Initialize ݈௜,௧ೕషభ to 0. At the start time ݐ′ of any active time 

segment for ߬௜ in ߪ௝ (either ݐ′ ൌ ௝ିଵݐ or ܽ௜,௛) that ends at 
time ݐ" ൌ ݉݅݊ ܽ௜,௛ ൅ ௜,௧ೕܦ , increment ݈௜,௧ by ߜ௜ሺݐ" െ ሻ′ݐ
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DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬௜ arrives in a slice ߪ௝ at time ݐ and its 

deadline falls within ߪ௝
 Split the remainder of ߪ௝ after ݐ into two secondary slices ߪ௝ଵ, ௝ଶߪ

so that the deadline of ߬௜ coincides with the end of ߪ௝ଶ

 Divide the remaining local execution (and capacity) of all jobs in 
௝ଵߪ (as well as the slack allotment from RULE 3) proportionally 
to the lengths of ߪ௝ଵ, ௝ଶߪ

 This step may be invoked recursively for any ߬௞ within ߪ௝
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DP-Fair scheduling for time slices /3
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Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time in slice ߪ௝
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ௝ using a DP-Fair algorithm, 
then ܴ௧ ൑ ݉	will hold at all times ݐ ∈ ௝ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic 
task sets with constrained deadlines where ∆ሺܶሻ ൑ ݉ and 
௜ߜ ൑ 1	∀݅

Correctness
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DP-Wrap modified

 If task ߬௜ issues a job at time ݐ in slice ߪ௝ and ݐ ൅
௜ܦ ൐ ௝ݐ then allocate execution time ݈௜,௧ ൌ ௝ݐ௜ሺߜ െ
ሻݐ following RULE 4

 If instead ݐ ൅ ௜ܦ ൏ ௝ݐ then split the remainder of ߪ௝
following RULE 5
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Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ
଺
൅ 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6
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Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬௜ has ܦ௜ ൐ ௜݌ we simply impose an artificial 

deadline ܦ′௜ ൌ ௜݌
 Density is not increased hence if ܦ′௜ is met, ܦ௜ will 

also be
 But this increases the number of context switches 

and migrations!
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Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and 
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in 

the scheduling and allocation policies
 The new value of the relaxed parameter becomes 

known a priori/at job arrival and it is used in the 
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ௜ ൈ ௝ܮ
workload per each task in each slice

 If ܿ′௜ ൑ ܿ௜ then task ߬௜ uses part of assigned workload and surely 
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ ൑ ݉ and ߜ௜ ൑ 1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′௜ ൏ ܿ௜ ⇒ ௜′ߜ ൏ ௜ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ
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Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer ݌, same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer ݌, lesser density)
 If ݌′௜ ൐ ௜′ߜ	݀݊ܽ	௜݌ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible
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Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀௜ ൏ ݀′௜
 Task ߬′௜ completes its workload at time t ൌ min	ሺ݀௜, ௜ሻ݌

 Case 2 (longer ݀, lesser density)
 If ݀′௜ ൐ ݀௜	ܽ݊݀	ߜ′௜ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair 
scheduling is sustainable
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Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate 

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation 
error for any task ߬௜ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated 

time units of processor to the same task into consecutive units
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Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct
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Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ௝ܶ is represented by a token within a triangle and its position 
stands for the local remaining work of ௃ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t 

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary 

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed
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Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work
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Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares 

them with other light tasks

 Some light tasks are split in two processors and they are executed 
either before ݐ௔ or after ݐ௕

 Light tasks that are not split are executed between ݐ௔ or and 
and they are scheduled by EDF	௕ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are 

satisfied
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8.c More theoretical results

More theoretical results /1

 For the simplest workload model made of 
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Tasks incur very many preemptions and are frequently 

required to migrate  horrendously costly disruption
 Partitioned FPS first-fit (on decreasing task utilization) 

can sustain ܷ ൑ ݉ሺ 2 െ 1ሻ
 But this is a sufficient test only [Oh & Baker, 1998]
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More theoretical results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௠௔௫ this bound gets rapidly lower than 
0.6 ൈ ݉, but can get close to ݉ for some examples
 Again this is a sufficient test only [Lopez et al., 2004]

Per task
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More theoretical results /3

 Global EDF can sustain

 For high ܷ௠௔௫ this bound can be as low as 
0.2 ൈ ݉ but also close to ݉ for other 
examples
 Again, only sufficient [Goossens et al., 2003]
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More theoretical results /4

 Combinations
 FPS (higher band) to those tasks with ௜ܷ ൐ 0.5
 EDF for the rest

 Again, only sufficient [Baruah, 2004]
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