The defeat of greedy schedulers

- Greedy algorithms are easy to explain, study, and implement
 - □ They work very well on single-core processors
 - □ EDF [1] and LLF [2] are optimal for single-core processors
- They collapse the urgency of a job into a single value and use it to greedily schedule jobs
- Unfortunately (and surprisingly) greedy algorithms fail when used on multiprocessors
 - □ EDF and LLF are no longer optimal

2014/15 UniPD / T. Vardanega

Real-Time Systems

367 of 492

Why do greedy schedulers fail?

Theorem 1 (stating the obvious)

When the total utilization of a periodic task set is equal to the number of processors, then no feasible schedule can allow any processor to remain idle for any length of time

2014/15 UniPD / T. Vardanega

Real-Time Systems

368 of 492

P-fair scheduling [Baruah et al. 1996]

- *Proportional progress* is a form of proportionate fairness also known as *P-fairness*
 - \Box Each task τ_i is assigned resources in proportion to its *weight* $W_i = \frac{c_i}{\tau_i}$ so that it progresses proportionately
 - □ Useful e.g., for real-time multimedia applications
- At every time t task τ_i must have been scheduled either $|W_i \times t|$ or $[W_i \times t]$ time units
 - □ Without loss of generality, preemption is assumed to only occur at integral time units
 - ☐ The workload model is assumed to be periodic

2014/15 UniPD / T. Vardanega

Real-Time Systems

369 of 492

P-fair scheduling /2

- $lag(S, \tau_i, t)$ is the difference between the total resource allocation that task τ_i should have received in [0, t) and what it received under schedule S
- \blacksquare For a P-fair schedule S at time t
 - $\ \ \ \ \tau_i$ is ahead iff $lag(S, \tau_i, t) < 0$
 - $\Box \tau_i$ is behind iff $lag(S, \tau_i, t) > 0$
 - $\Box \tau_i$ is punctual iff $lag(S, \tau_i, t) = 0$

2014/15 UniPD / T. Vardanega

Real-Time Systems

370 of 492

P-fair scheduling /3

- $\alpha(x)$ is the *characteristic* (infinite) *string* of task τ_x over $\{-,0,+\}$ for $t \in \mathbb{N}$ with
 - $\alpha_t(x) = sign(W_x \cdot (t+1) [W_x \cdot t] 1)$
 - Distance from the integral approximation of fluid curve
 - $\alpha(x,t)$ is the *characteristic substring* $\alpha_{t+1}(x)\alpha_{t+2}(x)...\alpha_{t}(x)$ of task τ_x at time t where $t'=min\,i:i>t:\alpha_i(x)=0$
- For a P-fair schedule S at time t, task τ_i is
 - \Box Urgent iff τ_i is behind and $\alpha_t(\tau_i) \neq -$
 - \Box Tnegru iff τ_i is ahead and $\alpha_t(\tau_i) \neq +$
 - □ *Contending* otherwise

2014/15 UniPD / T. Vardanega

Real-Time Systems

371 of 492

Properties of a P-fair schedule S

• For task τ_i ahead at time t under S

In $\alpha_t(\tau_i) = -$ and τ_i not scheduled at t then τ_i is ahead at t+1.

If $\alpha_t(\tau_i) = 0$ and τ_i not scheduled at t then τ_i is punctual at t+1.

If $\alpha_t(\tau_i) = +$ and τ_i not scheduled at t then τ_i is behind at t+1.

- \Box If $\alpha_t(\tau_i) = +$ and τ_i scheduled at t then τ_i is ahead at t+1
- For task τ_i behind at time t under S
 - \Box If $\alpha_t(\tau_i) = -$ and τ_i scheduled at t then τ_i is ahead at t+1
 - \Box If $\pmb{lpha}_t(au_i) = -$ and $\pmb{ au}_i$ not scheduled at t then $\pmb{ au}_i$ is behind at t+1
- The argument $\alpha_t(\tau_i) = 0$ and τ_i scheduled at t then τ_i is punctual at t+1 in $\alpha_t(\tau_i) = +$ and τ_i scheduled at t then τ_i is behind at t+1

2014/15 UniPD / T. Vardanega

Real-Time Systems

372 of 492

P-fair scheduling /4

- General principle of P-fairness
 - Every task urgent at time t must be scheduled at t to preserve
 P-fairness
 - □ No task *tnegru* at time *t* can be scheduled at *t* without breaking P-fairness
- Problems with n_0 tnegru, n_1 contending, n_2 urgent tasks at time t, with m resources and $n = n_0 + n_1 + n_2$
 - $\ \square$ If $n_2 > m$ the scheduling algorithm cannot schedule all *urgent* tasks
 - \Box If $n_0 > n m$ the scheduling algorithm is forced to schedule some *tnegru* tasks

2014/15 UniPD / T. Vardanega

Real-Time Systems

373 of 492

P-fair scheduling /5

- The **PF** scheduling algorithm
 - □ Schedule all *urgent* tasks
 - - $\mathbf{x} \supseteq y \text{ iff } \boldsymbol{\alpha}(x,t) \geq \boldsymbol{\alpha}(y,t)$
 - And the comparison between the characteristics substrings is resolved lexicographically with −< 0 < +
- With PF we have $\sum_{x \in [0,n]} W_x = m$
 - □ A dummy task may need to be added to the task set to top utilization up
- No problem situation can occur with the PF algorithm

2014/15 UniPD / T. Vardanega

Real-Time Systems

374 of 492

Poal Timo Systems

Example (PF scheduling) /1

Task	С	Т	W
v	1	3	0.333
w	2	4	0.5
X	5	7	0.714
y	8	11	0.727
z	335	462	3-U

- = m = 3 processors
- = n = 4 tasks
- τ_z is a dummy task used to top system utilization up
- In general its period is set to the system hyperperiod
 - □ This time we halved it
- With PF we always have $n_2 > m$ and $n_0 \le n m$

2014/15 UniPD / T. Vardanega

Real-Time Systems

375 of 492

8.b A stint of Deadline-Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin's original presentation

- From a different deck
- The slide deck that follows proceeds from the past exam of a student of this class

2014/15 UniPD / T. Vardanega

Real-Time Systems

378 of 442

DP-Fair motivation

- Focus on periodic, independent task set with implicit deadlines ($D_i = p_i$)
 - · Scheduling overhead costs assumed in task requirements
 - $\sum_i U_i \leq m$ and $U_i \leq 1 \forall i$
 - · Process migration allowed
- With unlimited context switches and migrations any task set meeting the above conditions will be feasible
 - · This problem is easy
- What's difficult is to find a valid schedule that minimizes context switches and migrations

2014/15 UniPD / T. Vardanega

Real-Time Systems

379 of 492

DP-Correct /1

- The time slice scheduler will execute all jobs' allocated workload within the end of the time slice whenever it is possible to do so
- Jobs are allocated workloads for each slice so that it is possible to complete this work within the slice
- Completion of these workloads causes all tasks' actual deadlines to be met

2014/15 UniPD / T. Vardanega

Real-Time Systems

381 of 492

Deadline partitioning

- Partition time into slices demarcated by the deadlines of all tasks in the system
 - □ All jobs are allocated a workload in each slide and these workload share the same deadline

Theorem 2 (Hong and Leung)

No optimal on-line scheduler can exist for a set of jobs with two or more distinct deadlines on any m multiprocessor system, where m>1

■ Why is DP so effective?

2014/15 UniPD / T. Vardanega

Real-Time Systems

380 of 492

Notation

- $t_0 = 0, t_i : i > 0$ denote distinct deadlines of all tasks in T
- \bullet σ_j is the j^{th} time slice in $[t_{j-1}, t_j)$
- $\blacksquare L_j = t_j t_{j-1}$
- *Local execution remaining* $l_{i,t}$ is the amount of time that τ_i must execute before the next slice boundary
- Local utilization $r_{j,t} = l_{i,t}/(t_j t)$
- $L_T = \sum_i l_i$ is the *ler* of the whole task set
- $R_T = \sum_i r_i$ is the *Iu* of the whole task set
- Slack S(T) = m U(T) and represents a dummy job
- $a_{i,h}$ is the arrival time of the h^{th} job of τ_i

2014/15 UniPD / T. Vardanega

Real-Time Systems

383 of 492

DP-Fair rules for periodic tasks set

■ DP-Fair allocation

- □ All tasks hit their *fluid rate curve* at the end of each slice by assigning each task a workload proportional to its utilization
- \Box At every σ_j assign $l_{i,t_{i-1}} = U_i \times L_j$ to τ_i

■ DP-Fair scheduling for time slices

- \Box A slice-scheduling algorithm is DP-Fair if it schedules jobs within a time slice σ_i according to the following rules:
 - 1. Always run a job with zero local laxity
 - 2. Never run a job with no remaining local work
 - 3. Do not allow more than $S(\tau) \times L_j$ units of idle time to occur in σ_i before time t

2014/15 UniPD / T. Vardanega

Real-Time Systems

384 of 492

DP-Fair optimality – Proof

Theorem 5

Any DP-Fair scheduling algorithm for periodic task sets with implicit deadlines is optimal

- Lemma 3
- If tasks in T are scheduled within a time slice by DP-Fair scheduling and $R_T \le m$ at all times $t \in \sigma_t$, then all tasks in T will meet their local deadline at the end of the slice
- Lemma 4
- If a task set T of periodic tasks with implicit deadlines is scheduled in σ_i using DP-Fair algorithm, then $R_T \leq m$ will hold at all times $t \in \sigma_i$

2014/15 UniPD / T. Vardanega

Real-Time Systems

385 of 492

| A DP-Fair algorithm: DP-Wrap /1

■ Make blocks of length δ_i for each τ_i and line these blocks up along a number line (in any order), starting at zero

■ Split this stack of blocks into chunks of length 1 at 1,2,...,m − 1

2014/15 UniPD / T. Vardanega

Real-Time Systems

386 of 492

A DP-Fair algorithm: DP-Wrap /2

- Use deadline partitioning to divide time into slices
- Assign each chunk to its own processor and multiply each chunk's length (1) by the length of the segment (*L*_i)

DP-Wrap features

- A very simple algorithm that satisfied all DP-Fair rules
- Almost all calculations can be done in a preprocessing step (with static task sets)
- No computational overhead at secondary events
- n-1 context switches and m-1 migrations per slice with *mirroring*
- Heuristics may exist to improve performance
 Less migration and context switches

2014/15 UniPD / T. Vardanega

Real-Time Systems

388 of 492

Mirroring

- For tasks that split across two slices
- If τ_i and τ_k are split and τ_i executes at the beginning and τ_k executes at the end of the slice σ_j then revert the schedule in slice σ_{j+1} so that τ_k executes at the beginning and τ_i at the end

| Sporadic tasks and $D_i \leq p_i$

- DP-Fair algorithms are still optimal when $\Delta(T) \leq m$ and $\delta_i \leq 1 \ \forall i$
- Definitions
 - \Box Freeing slack: unused capacity $(a_{i,h-1} + D_{i,a_{i,h}})$
 - \Box Active: $(a_{i,h}, a_{j,h} + D_i)$
 - $\alpha_{i,j}(t), f_{i,j}(t)$: amounts of time that task τ_i has been active or freeing slack during slice σ_i as of time t
 - \Box Local capacity: $c_{i,t_{j-1}} = \delta_i \times L_i = \delta_i(\alpha_{i,j} + f_{i,j})$
 - \Box Freed slack in σ_i as of time t: $F_i(t) = \sum_{i=1}^n (\delta_i \times f_{i,j}(t))$
 - $\square Slack: S(T) = m \Delta(T)$

2014/15 UniPD / T. Vardanega

Real-Time Systems

390 of 492

DP-Fair scheduling for time slices /1

- A slice-scheduling algorithm is DP-Fair if it schedules jobs within a time slice σ_i according to the following rules:
 - 1. Always run a job with zero local laxity
 - 2. Never run a job with no remaining local work
 - 3. Do not allow more than $S(T) \times L_j + F_j(t)$ units of idle time to occur in σ_i before time t
 - 4. Initialize $l_{i,t_{j-1}}$ to 0. At the start time t' of any active time segment for τ_i in σ_j (either $t'=t_{j-1}$ or $a_{i,h}$) that ends at time $t''=min\left\{a_{i,h}+D_{i,t_j}\right\}$, increment $l_{i,t}$ by $\delta_i(t''-t')$

2014/15 UniPD / T. Vardanega

Real-Time Systems

391 of 492

DP-Fair scheduling for time slices /2

- Rules continued ...
 - 5. When a task τ_i arrives in a slice σ_j at time t and its deadline falls within σ_i
 - Split the remainder of σ_j after t into two secondary slices σ_j^1 , σ_j^2 so that the deadline of τ_i coincides with the end of σ_j^2
 - Divide the remaining local execution (and capacity) of all jobs in σ_j^1 (as well as the slack allotment from RULE 3) proportionally to the lengths of σ_i^1 , σ_i^2
 - This step may be invoked recursively for any τ_k within σ_i

2014/15 UniPD / T. Vardanega

Real-Time Systems

392 of 492

Correctness

Theorem 9

Any DP-Fair scheduling algorithm is optimal for sporadic task sets with constrained deadlines where $\Delta(T) \leq m$ and $\delta_i \leq 1 \ \forall i$

Proof

Lemma 7

A DP-Fair algorithm cannot cause more than $S(T) \times L_j + F_j(t)$ units of idle time in slice σ_j prior to time t

Lemma 8

If a set T of sporadic tasks with constrained deadlines is scheduled in σ_j using a DP-Fair algorithm, then $R_t \leq m$ will hold at all times $t \in \sigma_i$

2014/15 UniPD / T. Vardanega

Real-Time Systems

394 of 492

DP-Wrap modified

- If task τ_i issues a job at time t in slice σ_j and $t + D_i > t_j$ then allocate execution time $l_{i,t} = \delta_i(t_j t)$ following RULE 4
- If instead $t + D_i < t_j$ then split the remainder of σ_j following RULE 5

2014/15 UniPD / T. Vardanega

Real-Time Systems

395 of 492

396 of 492

Arbitrary deadlines /2

- Is there a cure to this problem?
- If task τ_i has $D_i > p_i$ we simply impose an artificial deadline $D'_i = p_i$
- Density is not increased hence if D'_i is met, D_i will also be
- But this increases the number of context switches and migrations!

2014/15 UniPD / T. Vardanega

Real-Time Systems

397 of 492

Arbitrary deadlines /1

■ Task set T below is <u>not</u> feasible on 2 processors

$$\Delta(T) = \frac{4}{6} + 4 \times \frac{1}{3} = 2$$

□ 12 units of work to be completed by time 6

2014/15 UniPD / T. Vardanega

Real-Time Systems

Is DP-Fair scheduling sustainable? /1

- Consider model with sporadic tasks and arbitrary deadline
- Two cases may occur
 - □ The new value of the relaxed parameter is not used in the scheduling and allocation policies
 - □ The new value of the relaxed parameter becomes known a priori/at job arrival and it is used in the scheduling and allocation policies

2014/15 UniPD / T. Vardanega

Real-Time Systems

398 of 492

| Is DP-Fair scheduling sustainable? /2

- Shorter execution time
 - □ Case 1 (shorter c, same density)
 - Task set T is schedulable and the system allocates $\delta_i \times L_j$ workload per each task in each slice
 - If $c'_i \le c_i$ then task τ_i uses part of assigned workload and surely completes before its deadline
 - □ Case 2 (shorter c, lesser density)
 - As DP-Fair is optimal when $\Delta(T) \le m$ and $\delta_i \le 1 \ \forall i = 1,...n$ a DF-Fair feasible schedule exists for T
 - A feasible schedule for T' exists as $c'_i < c_i \Rightarrow \delta'_i < \delta_i \Rightarrow \Delta(T') < D(T)$

2014/15 UniPD / T. Vardanega

Real-Time Systems

399 of 492

| Is DP-Fair scheduling sustainable? /3

- Longer inter-arrival time
 - □ Case 1 (longer p, same density)
 - Simply a less demanding instance of sporadic task
 - The allocation and scheduling rules cover this case
 - □ Case 2 (longer p, lesser density)
 - If $p'_i > p_i$ and $\delta'_i < \delta_i$ then $\Delta(T') < \Delta(T)$ whereby T' is feasible if T was feasible

2014/15 UniPD / T. Vardanega

Real-Time Systems

400 of 492

| Is DP-Fair scheduling sustainable? /4

- Longer deadline
 - □ Case 1 (longer d, same density)
 - $d_i < d'_i$
 - Task τ'_i completes its workload at time $t = \min(d_i, p_i)$
 - \square Case 2 (longer d, lesser density)
 - If $d'_i > d_i$ and $\delta'_i < \delta_i$ then $\Delta(T') < \Delta(T)$ whereby T' is feasible if T was feasible
- We may therefore conclude that DP-Fair scheduling is sustainable

2014/15 UniPD / T. Vardanega

Real-Time Systems

401 of 492

| Related work: Boundary Fair /1

- Very similar to P-Fair
 - □ It still uses a function and a characteristic string to evaluate the fairness of tasks [4] with per-quantum task allocation
- It uses deadline partitioning
- It uses a less strict notion of fairness
 - \Box At the end of every slice the absolute value of the allocation error for any task τ_i is less than one time unit
- Scheduling decisions made at the start of every slice
 - □ It reduces context switches packing two or more allocated time units of processor to the same task into consecutive units

2014/15 UniPD / T. Vardanega

Real-Time Systems

402 of 492

Related work: LLREF [5] /1

- It uses deadline partitioning with DP-Wrap task allocation
- In each slice scheduling is made using the notion of T-L Plane
 - \Box Each task T_j is represented by a token within a triangle and its position stands for the local remaining work of T_I at time i
 - □ The horizontal cathetus indicates the time
 - □ The length of the vertical cathetus is one processor's execution capacity
 - □ The hypotenuse represents the-no laxity line
 - Token can move in two directions. Horizontally if the task doesn't execute, diagonally down if it does
 - When a token hits the horizontal cathetus or the hypotenuse (secondary events) a scheduling decision is made
 - Tasks are sorted and m tasks with the least laxity are executed

2014/15 UniPD / T. Vardanega Real-Time Systems 404 of 492

Related work: LLREF /2 local laxity of T, token no local laxity diagonal fluid schedule path fluid schedule path oction hitting event DP-Fair algorithm but does unnecessary work 2014/15 UniPD / T. Vardanga Real-Time Systems 405 of 492

Useful DP-Fair bibliography

- C. Liu and J. Layland, "Scheduling Algorithms for Multi-programming in a Hard-Real-Time Environment", Journal of the ACM (JACM), 20(1):46–61, 1973
- A. K. Mok, "Fundamental design problems of distributed systems for the hard-real-time environment", Technical report, Massachusetts Institute of Technology, 1983
- S. K. Cho, S. Lee, A. Han, and K.-J. Lin, "Efficient Real-Time Scheduling Algorithms for Multiprocessor Systems", IEICE Transactions on Communications, E85-B(12):2859–2867, 2002
- D. Zhu, D. Mossé and R. Melhem, "Multiple-Resource Periodic Scheduling Problem: how much fairness is necessary?", IEEE Real-Time Systems Symposium (RTSS), 2003
- H. Cho, B. Ravindran and E. Jensen, "An Optimal Real-Time Scheduling Algorithm for Multiprocessors", IEEE Real-Time Systems Symposium (RTSS), 2006
- B. Andersson and, E. Tovar, "Multiprocessor Scheduling with Few Preemptions", IEEE Embedded and Real-Time Computing Systems and Applications (RTCSA), 2006
- K. Funaoka, S. Kato and N. Yamasaki, "Work-Conserving Optimal Real-Time Scheduling on Multiprocessors" Euromicro Conference on Real-Time Systems (ECRTS), 2008
- S. Funk and V. Nadadur "LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task Sets", Conference on Real-Time and Networked Systems (RTNS), 2009

2014/15 UniPD / T. Vardanega Real-Time Systems 406 of 492

Related work: EKG [6]

- Tasks are divided into heavy and light
 - □ Each heavy task is assigned to a dedicate processor
 - \Box Every light task is assigned to one group of K processors and it shares them with other light tasks
- Some light tasks are split in two processors and they are executed either before t_a or after t_b
- Light tasks that are not split are executed between t_a or and t_b and they are scheduled by EDF
- Heavy tasks start executing when they become ready
- EDF is not a DP-Fair allocation but the DP-Fair rules are satisfied

2014/15 UniPD / T. Vardanega

Real-Time Systems

407 of 492

8.c More theoretical results

More theoretical results /1

- For the simplest workload model made of independent periodic and sporadic tasks
- A *P-fair* scheme can sustain U = m for m processors but its run-time overheads are excessive
 - □ Tasks incur very many preemptions and are frequently required to migrate → horrendously costly disruption
- Partitioned FPS first-fit (on decreasing task utilization) can sustain $U \le m(\sqrt{2} 1)$
 - □ But this is a sufficient test only [Oh & Baker, 1998]

2014/15 UniPD / T. Vardanega

Real-Time Systems

409 of 492

More theoretical results /2

■ Partitioned EDF first-fit can sustain

$$U \le \frac{\beta m + 1}{\beta + 1}$$
 Per task
$$\beta = \left\lfloor \frac{1}{U_{\text{max}}} \right\rfloor$$

- For high U_{max} this bound gets rapidly lower than $0.6 \times m$, but can get close to m for some examples
 - □ Again this is a sufficient test only [Lopez et al., 2004]

2014/15 UniPD / T. Vardanega

Real-Time Systems

410 of 492

More theoretical results /3

■ Global EDF can sustain

$$U \leq m - (m-1)U_{\text{max}}$$

- For high U_{max} this bound can be as low as $0.2 \times m$ but also close to m for other examples
 - □ Again, only sufficient [Goossens et al., 2003]

2014/15 UniPD / T. Vardanega

Real-Time Systems

411 of 492

More theoretical results /4

- Combinations
 - FPS (higher band) to those tasks with $U_i > 0.5$
 - EDF for the rest

$$U \le \left(\frac{m+1}{2}\right)$$

□ Again, only sufficient [Baruah, 2004]

2014/15 UniPD / T. Vardanega

Real-Time Systems

412 of 492

Dool Time Systems

40