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(a) Observed preemptions. (b) Observed migrations.
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| Contention and blocking ‘ Multiprocessor PCP /2

m The premises on which single-runner solutions ? m A task may need local and global resources
were based fall apart o Local resources reside on the local processor of that task
o Suspending is no longer conducive to earlier release of o Global resources are used by tasks residing on different
shared resource € parallelism gets in the way processors
a Priority boosting the lock holder does not help too < m Resource access control needs actual locks for

per-CPU priorities may not have global meaning protection from true parallelism

o Having local and global resources causes suspending to a Lock-free algorithms then become attractive

become dangerous € local priority inversions may occur )
m SPs use M-PCP to control access to their global

resources

o Spinning protects against that hazard but wastes CPU
cycles
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| Multiprocessor PCP /1 Multiprocessor PCP /3

m Partitioned FPS with resources bound to processors m The task that holds a global lock should not be
[Sha, Rajkumar, Lehoczky, 1988] preempted locally
o The processor that hosts a resource is called the o All global critical sections are executed at higher ceiling
synchronization processor (SP) for that resource priorities than local tasks on the SP and any other tasks
m It knows all the use requirements of all its resources in the system (this does not preserve independencel)
0 The critical sections of a resource execute on the m A task T that is denied access to a global shared

processor that hosts that resource resource pg suspends and waits in a priority-based

m  Jobs that use remote resources are “distributed transactions”
queue for that resource

0 The processor to which a task is assigned is the /oca/

processor for all of the jobs of that task o Tasks with lower-priority than Ty, on its local processor

may thus acquire global resources with higher ceiling
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| Multiprocessor PCP /4

m If the global resource being acquired by task 7; with
priority lower than Ty resides on the same SP as
Pg then Ty suffers an anomalous form of priority
inversion

o This obviously exposes resource nesting to the risk of
deadlock = M-PCP disallows resource nesting

0 This is why other protocols want Ty, to spin

m With global resources hosted on > 1 SPs, resoutrce
nesting is not allowed as deadlock may occur
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‘ Multiprocessor SRP

m Partitioned EDF with resources bound to

processors [Gai, Lipari, Di Natale, 2001]

o SRP is used for controlling access to local resources

o Tasks that lock a global resource cannot be preempted
m They become preemptable again when releasing the resource

o Tasks that request a global resource that is busy are
placed in a FIFO queue on the SP and spin-lock on their
local processor

m When released by the lock holder, the global resource is assigned
to the request at the head of the queue
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| Blocking under M-PCP

m With M-PCP task 7; is blocked by lower-priority tasks in 5 ways (1)

0 Local blocking (once per release): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;’s
suspension on access to a remote resource

0 Remote blocking (once per request): when finding a remote resource held by
a remote lower-priority task

0 Local preemption: when global critical sections are executed on T;’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

a  Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

Q  Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects
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In general ...

m With lock-based resource control protocols, locks can
use either suspension or spinning

m With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue

a To bound blocking time, ptiotity-invetsion avoidance
algorithms have to be used

= With spinning, the task busy-waits

o To bound blocking time, the spinning task becomes
non-preemptable and its request is placed in FIFO queue

m The lock owner may run non-preemptively
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| O (m) locking protocols : G-sched
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@ blocking suffered only by tasks using resources

e per-request blocking is b, = 2(m — 1)wy, w;. length of max critical
section for res;.

@ all resources are global resources
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| Three sources of blocking]

m Priority boosting for eatlier release of resource
o Everyone pays for it since contending tasks may be on
any CPU
a B = max, (wy)
m FIFO quening for the contending tasks
0 Bikx =(Mm—Dwy
w Contention token

o Round-robin across CPUs

token

i = (m — Dmaxy (wy)
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O (m) locking protocols : P-sched
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o limiting access to global resources: per-partition contention token.
Must be acquired before requesting any global resource (token +
PRIO queue shared for all global resources)

o releasing resources as soon as possible: priority boosting for tasks
queued in global resources (at most 1 per partition)
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| O (m) independence preservation /1
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0 (m) independence preservation /2

m Clusters of sizel1 < ¢ <m
n Suspension-based
o Head of per-cluster FIFO participates in global FIFO
o The per-cluster queue is FIFO+PRIO
m Independence preserved by intra-cluster migration
0 Head of global FIFO (if pre-empted) can migrate to any
CPU along the global FIFO and inherit the priotity of
the waiting task
» Blocking is per request: B, = (2m — 1) wy,
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| [Brandenburg, 2013]

m Theorem

o Under non-global scheduling (for cluster size ¢ < m) it is
impossible for a resource access control protocol to
simultaneously:

m  Prevent unbounded priority-inheritance (PI) blocking
m  Be independence-preserving
0 Tasks do not suffer PI-blocking from resources they do not use

= Avoid inter-cluster job migration

w Secking independence preservation and bounded PI-blocking
requires inter-cluster job migration (1)
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0 (m) independence preservation /3

O | = t 7 T

executing holding res busy wait release request res. completion

prio

clusters { g ! d
T3 E:::::h..........‘

clustery

e t = 3: task 7 suspends and task 7 resumes execution

o t = 4: task 73 migrates to cluster; and preempts task 71
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MrsP [Burns, Wellings, 2013] /1

m RTA for a partitioned multiprocessor should be
tdentical to the single-processor case
0 The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention
m The property that once a task starts executing its
resources are available is intrinsic to RTA

o It should therefore be supported by global resource
control protocols

m Which speaks against suspension-based solutions!
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| MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
o More urgent tasks suffer longer blocking
m Spinning at the /oca/ ceiling priority is better

o With all processots using PCP/SRP at most one task pet
processor may contend globally

0 Access requests are served in FIFO order

m To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

m  The lock-holder job migrates to the processor of a spinning task and
runs in its stead until it either completes or migrates again
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| MrsP [Burns, Wellings, 2013] /4

m For partitioned scheduling (¢ = 1)
w Spinning-based
o Local wait spinning at local ceiling
m Allows using uniprocessor-style RTA
m Blocking is per resource, increased by parallelism
o B; = maxg (wi™P) = max, (mwy) = m - maxy (wy)
m Earlier release obtained by migrating lock holder (if

preempted) to the CPU where the first contender in
the global FIFO is currently spinning
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| MrsP [Burns, Wellings, 2013] /3

r-partitiony - - - ——---------—
1
1
1

spinning at

e
own cellmg .

|—m—|

spinning at
own ceiling

.
\ \/_\
o

2014/15 UniPD / T. Vardanega Real-Time Systems 434 of 492

DAAl Tivrva~s OuvvAatAarmAas

| MrsP [Burns, Wellings, 2013] /5

m Resource nesting can be supported with either group
locking or static ordering of resources

o With static ordering, resource access is allowed only with
order number greater than any currently held resources

0 The implementation should provide an «out of order»
exception to prevent run-time errors
m The ordering solution is better than banning nesting
and has less penalty than group locking
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| MrsP [Burns, Wellings, 2013] /6

O | = t ? T

executing holding res. busy wait release request res. completion

prio

0 1 2 3 1 5 ] T 8 a9 m 11 12 13 14 time

o t = 3: task 7 start spinning at ceiling priority

o t = 4: task T3 migrates to P and executes in place of
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| Summary

Issues and state of the art

m Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing
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