
2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 1

8.d A stint on RUN

Credits to E. Mezzetti and D. Compagnin
(ECRTS 2014)

Implementation experience /1

2014/15 UniPD / T. Vardanega Real-Time Systems 414 of 492

Implementation experience /2

2014/15 UniPD / T. Vardanega Real-Time Systems 415 of 492

8.e Global resource sharing

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 2

Contention and blocking

 The premises on which single-runner solutions
were based fall apart
 Suspending is no longer conducive to earlier release of

shared resource parallelism gets in the way
 Priority boosting the lock holder does not help too

per-CPU priorities may not have global meaning
 Having local and global resources causes suspending to

become dangerous local priority inversions may occur
 Spinning protects against that hazard but wastes CPU

cycles

2014/15 UniPD / T. Vardanega Real-Time Systems 417 of 492

Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is called the

synchronization processor (SP) for that resource
 It knows all the use requirements of all its resources

 The critical sections of a resource execute on the
processor that hosts that resource
 Jobs that use remote resources are “distributed transactions”

 The processor to which a task is assigned is the local
processor for all of the jobs of that task

2014/15 UniPD / T. Vardanega Real-Time Systems 418 of 492

Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Global resources are used by tasks residing on different

processors

 Resource access control needs actual locks for
protection from true parallelism
 Lock-free algorithms then become attractive

 SPs use M-PCP to control access to their global
resources

2014/15 UniPD / T. Vardanega Real-Time Systems 419 of 492

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections are executed at higher ceiling

priorities than local tasks on the SP and any other tasks
in the system (this does not preserve independence!)

 A task ߬ that is denied access to a global shared
resource ߩ suspends and waits in a priority-based
queue for that resource
 Tasks with lower-priority than ߬	on its local processor

may thus acquire global resources with higher ceiling
2014/15 UniPD / T. Vardanega Real-Time Systems 420 of 492

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 3

Multiprocessor PCP /4

 If the global resource being acquired by task ߬ with
priority lower than ߬ resides on the same SP as
then ߬	ߩ suffers an anomalous form of priority
inversion
 This obviously exposes resource nesting to the risk of

deadlock → M-PCP disallows resource nesting
 This is why other protocols want ߬ to spin

 With global resources hosted on 1 SPs, resource
nesting is not allowed as deadlock may occur

2014/15 UniPD / T. Vardanega Real-Time Systems 421 of 492

Blocking under M-PCP

 With M-PCP task ߬ is blocked by lower-priority tasks in 5 ways (!)
 Local blocking (once per release): when finding a local resource held by a

local lower-priority task that got running as a consequence of ߬’s
suspension on access to a remote resource

 Remote blocking (once per request): when finding a remote resource held by
a remote lower-priority task

 Local preemption: when global critical sections are executed on ߬’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

 Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where ߬’s global resource resides

 Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects

2014/15 UniPD / T. Vardanega Real-Time Systems 422 of 492

Multiprocessor SRP

 Partitioned EDF with resources bound to
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is busy are
placed in a FIFO queue on the SP and spin-lock on their
local processor
 When released by the lock holder, the global resource is assigned

to the request at the head of the queue

2014/15 UniPD / T. Vardanega Real-Time Systems 423 of 492

In general …

 With lock-based resource control protocols, locks can
use either suspension or spinning

 With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
 To bound blocking time, priority-inversion avoidance

algorithms have to be used

 With spinning, the task busy-waits
 To bound blocking time, the spinning task becomes

non-preemptable and its request is placed in FIFO queue

 The lock owner may run non-preemptively

2014/15 UniPD / T. Vardanega Real-Time Systems 424 of 492

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 4

ܱሺ݉ሻ locking protocols : G-sched

2014/15 UniPD / T. Vardanega Real-Time Systems 425 of 492

ܱሺ݉ሻ locking protocols : P-sched

2014/15 UniPD / T. Vardanega Real-Time Systems 426 of 492

Three sources of blocking!

 Priority boosting for earlier release of resource
 Everyone pays for it since contending tasks may be on

any CPU
 ௦௧ߚ ൌ ሺ߱ሻݔܽ݉

 FIFO queuing for the contending tasks
 ,ߚ ൌ ሺ݉ െ 1ሻ߱

 Contention token
 Round-robin across CPUs
 ௧ߚ ൌ ሺ݉ െ 1ሻ݉ܽݔሺ߱ሻ

2014/15 UniPD / T. Vardanega Real-Time Systems 427 of 492

ܱሺ݉ሻ independence preservation /1

2014/15 UniPD / T. Vardanega Real-Time Systems 428 of 492

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 5

ܱሺ݉ሻ independence preservation /2

 Clusters of size 1 ܿ ݉
 Suspension-based
 Head of per-cluster FIFO participates in global FIFO
 The per-cluster queue is FIFO+PRIO

 Independence preserved by intra-cluster migration
 Head of global FIFO (if pre-empted) can migrate to any

CPU along the global FIFO and inherit the priority of
the waiting task

 Blocking is per request: ߚ, ൌ ሺ2݉ െ 1ሻ߱

2014/15 UniPD / T. Vardanega Real-Time Systems 429 of 492

ܱሺ݉ሻ independence preservation /3

2014/15 UniPD / T. Vardanega Real-Time Systems 430 of 492

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (for cluster size ܿ ൏ ݉) it is

impossible for a resource access control protocol to
simultaneously:
 Prevent unbounded priority-inheritance (PI) blocking
 Be independence-preserving

 Tasks do not suffer PI-blocking from resources they do not use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration (!)

2014/15 UniPD / T. Vardanega Real-Time Systems 431 of 492

MrsP [Burns, Wellings, 2013] /1

 RTA for a partitioned multiprocessor should be
identical to the single-processor case
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 The property that once a task starts executing its

resources are available is intrinsic to RTA
 It should therefore be supported by global resource

control protocols
 Which speaks against suspension-based solutions!

2014/15 UniPD / T. Vardanega Real-Time Systems 432 of 492

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 6

MrsP [Burns, Wellings, 2013] /2

 Spinning non-preemptively may decrease feasibility
 More urgent tasks suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP at most one task per

processor may contend globally
 Access requests are served in FIFO order

 To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

 The lock-holder job migrates to the processor of a spinning task and
runs in its stead until it either completes or migrates again

2014/15 UniPD / T. Vardanega Real-Time Systems 433 of 492

MrsP [Burns, Wellings, 2013] /3

2014/15 UniPD / T. Vardanega Real-Time Systems 434 of 492

MrsP [Burns, Wellings, 2013] /4

 For partitioned scheduling (ܿ ൌ 1)
 Spinning-based
 Local wait spinning at local ceiling

 Allows using uniprocessor-style RTA
 Blocking is per resource, increased by parallelism
 ߚ ൌ ሺ߱ெ௦ሻݔܽ݉ ൌ ݔܽ݉ ݉߱ ൌ ݉ · ݔܽ݉ ߱

 Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in
the global FIFO is currently spinning

2014/15 UniPD / T. Vardanega Real-Time Systems 435 of 29

MrsP [Burns, Wellings, 2013] /5

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

2014/15 UniPD / T. Vardanega Real-Time Systems 436 of 492

2014/15 UniPD / T. Vardanega 02/06/2015

Real Time Systems 7

MrsP [Burns, Wellings, 2013] /6

2014/15 UniPD / T. Vardanega Real-Time Systems 437 of 492

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions: DP-Fair and RUN
 Incorporating global resource sharing

2014/15 UniPD / T. Vardanega Real-Time Systems 438 of 492

