2014/15 UniPD / T. Vardanega 02/06/2015

| Implementation experience /2
ggg [ p.l:_r';p : ! ! ! ! ] % 100 % P T L L S
: oo [ D% — S s [ SEF /
w500 oA 2 -
8.d A stint on RUN g 1R I | __
=300 2 40% - ¥
200 |- 5 / :
0o L 3 2o%f i L
0 oo endbeomad 5 ou P Sl S P S
4 45 5 55 6 65 7 15 8 4 45 5 55 6 65 7 15 8
Utilization cap Utilization cap
60 - : ; - r T r P-EDF - ! ' ! ! '
P-EDF ---=-- |
50 |-G-EDF — 30 Saon o
. . . RUN - —a0 J
Credits to E. Mezzetti and D. Compagnin I 2 )
(ECRTS 2014) [ . ]
e e e e aeaepd
U S T
P et St S St T o L L . " 1 L
4 45 5 55 6 65 7 15 8 4 45 5 85 6 65 7 75 @
Utilization cap Utllization cap offset 0, 0.5
(a) Average release overhead (b} Average schedule overhead.
2014/15 UniPD / T. Vardanega Real-Time Systems 415 of 492

| Implementation experience /1

Tok

T T T T T 70k -
60k [

;
P-EDF
WOk I EoF

w RUN
20k :fUN - 50k - Pfair
air - =

ool el : 8.e Global resource sharing

Sok | / 20k | e

5:“ L e 10k .

ok PR 0k PR SR S S =
5.5 65 7 75 8 4 45 5 55 6 65 7 75 8
Utilization cap Utilization cap

(a) Observed preemptions. (b) Observed migrations.

100 % —TT—T—T
90 %
280 %
B10%
260 %
550%
Z40%
$30% -G-EDF —— .
E20% [ RUN —»--

10% 9fal|r

IRBEE

TR R B TR |

$ 6§ 65 7 72747678 8
Utilization cap

" I I It L L

4 45 5 55 6 65 7 75 8

O-level =3 l-level 121213 2-level sonmd Utilization cap
(c) Tree levels per utilization. (d) Migration ratio.
2014/15 UniPD / T. Vardanega Real-Time Systems 414 of 492

DAAl Tivrva~s OuvvAatAarmAas A



2014/15 UniPD / T. Vardanega 02/06/2015

| Contention and blocking ‘ Multiprocessor PCP /2

m The premises on which single-runner solutions ? m A task may need local and global resources
were based fall apart o Local resources reside on the local processor of that task
o Suspending is no longer conducive to earlier release of o Global resources are used by tasks residing on different
shared resource € parallelism gets in the way processors
a Priority boosting the lock holder does not help too < m Resource access control needs actual locks for

per-CPU priorities may not have global meaning protection from true parallelism

o Having local and global resources causes suspending to a Lock-free algorithms then become attractive

become dangerous € local priority inversions may occur )
m SPs use M-PCP to control access to their global

resources

o Spinning protects against that hazard but wastes CPU
cycles

2014/15 UniPD / T. Vardanega Real-Time Systems 417 of 492 2014/15 UniPD / T. Vardanega Real-Time Systems 419 of 492

| Multiprocessor PCP /1 Multiprocessor PCP /3

m Partitioned FPS with resources bound to processors m The task that holds a global lock should not be
[Sha, Rajkumar, Lehoczky, 1988] preempted locally
o The processor that hosts a resource is called the o All global critical sections are executed at higher ceiling
synchronization processor (SP) for that resource priorities than local tasks on the SP and any other tasks
m It knows all the use requirements of all its resources in the system (this does not preserve independencel)
0 The critical sections of a resource execute on the m A task T that is denied access to a global shared

processor that hosts that resource resource pg suspends and waits in a priority-based

m  Jobs that use remote resources are “distributed transactions”
queue for that resource

0 The processor to which a task is assigned is the /oca/

processor for all of the jobs of that task o Tasks with lower-priority than Ty, on its local processor

may thus acquire global resources with higher ceiling

2014/15 UniPD / T. Vardanega Real-Time Systems 418 of 492 2014/15 UniPD / T. Vardanega Real-Time Systems 420 of 492

DAAl Tivrva~s OuvvAatAarmAas n)



2014/15 UniPD / T. Vardanega

| Multiprocessor PCP /4

m If the global resource being acquired by task 7; with
priority lower than Ty resides on the same SP as
Pg then Ty suffers an anomalous form of priority
inversion

o This obviously exposes resource nesting to the risk of
deadlock = M-PCP disallows resource nesting

0 This is why other protocols want Ty, to spin

m With global resources hosted on > 1 SPs, resoutrce
nesting is not allowed as deadlock may occur

2014/15 UniPD / T. Vardanega Real-Time Systems 421 of 492

‘ Multiprocessor SRP

m Partitioned EDF with resources bound to

processors [Gai, Lipari, Di Natale, 2001]

o SRP is used for controlling access to local resources

o Tasks that lock a global resource cannot be preempted
m They become preemptable again when releasing the resource

o Tasks that request a global resource that is busy are
placed in a FIFO queue on the SP and spin-lock on their
local processor

m When released by the lock holder, the global resource is assigned
to the request at the head of the queue

2014/15 UniPD / T. Vardanega Real-Time Systems 423 of 492

| Blocking under M-PCP

m With M-PCP task 7; is blocked by lower-priority tasks in 5 ways (1)

0 Local blocking (once per release): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;’s
suspension on access to a remote resource

0 Remote blocking (once per request): when finding a remote resource held by
a remote lower-priority task

0 Local preemption: when global critical sections are executed on T;’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

a  Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

Q  Deferred interference as local higher-priority tasks suspend on access to
remote resources because of blocking effects

2014/15 UniPD / T. Vardanega Real-Time Systems 422 of 492

DAAl Tivrva~s OuvvAatAarmAas

In general ...

m With lock-based resource control protocols, locks can
use either suspension or spinning

m With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue

a To bound blocking time, ptiotity-invetsion avoidance
algorithms have to be used

= With spinning, the task busy-waits

o To bound blocking time, the spinning task becomes
non-preemptable and its request is placed in FIFO queue

m The lock owner may run non-preemptively

2014/15 UniPD / T. Vardanega Real-Time Systems 424 of 492

02/06/2015



2014/15 UniPD / T. Vardanega

| O (m) locking protocols : G-sched

r—taskset- —
suspend| .

Fom o

1
:
1
resy <rro PRIO [T i
1
1
1
1
+

@ blocking suffered only by tasks using resources

e per-request blocking is b, = 2(m — 1)wy, w;. length of max critical
section for res;.

@ all resources are global resources

2014/15 UniPD / T. Vardanega Real-Time Systems 425 of 492

—

| Three sources of blocking]

m Priority boosting for eatlier release of resource
o Everyone pays for it since contending tasks may be on
any CPU
a B = max, (wy)
m FIFO quening for the contending tasks
0 Bikx =(Mm—Dwy
w Contention token

o Round-robin across CPUs

token

i = (m — Dmaxy (wy)

2014/15 UniPD / T. Vardanega Real-Time Systems 427 of 492

O (m) locking protocols : P-sched

r=paftition] - == === === —— - —mmmm——— -
! -
,»'.’
[ N
= m - / " ___________________________
resy.

r=panitiony - ====c=cccccc e — ==
binary semaphore :

\
\
'
and prio boosting \ ] -
“{ tokengPRIO_]
suspend)

/N
Isuspend

o limiting access to global resources: per-partition contention token.
Must be acquired before requesting any global resource (token +
PRIO queue shared for all global resources)

o releasing resources as soon as possible: priority boosting for tasks
queued in global resources (at most 1 per partition)

2014/15 UniPD / T. Vardanega Real-Time Systems 426 of 492

| O (m) independence preservation /1

PoClusSter) — - = - - e e e e — o

Ve o 2

copy head | A
pac= G

/suspend

reclustery = = = = s s ccm e m e — -
[
1
1
I
= c-

\ !
S §
copy head 1

2014/15 UniPD / T. Vardanega Real-Time Systems 428 of 492

DAAl Tivrva~s OuvvAatAarmAas

02/06/2015



2014/15 UniPD / T. Vardanega

0 (m) independence preservation /2

m Clusters of sizel1 < ¢ <m
n Suspension-based
o Head of per-cluster FIFO participates in global FIFO
o The per-cluster queue is FIFO+PRIO
m Independence preserved by intra-cluster migration
0 Head of global FIFO (if pre-empted) can migrate to any
CPU along the global FIFO and inherit the priotity of
the waiting task
» Blocking is per request: B, = (2m — 1) wy,
2014/15 UniPD / T. Vardanea Real Time Sysems 290 492

| [Brandenburg, 2013]

m Theorem

o Under non-global scheduling (for cluster size ¢ < m) it is
impossible for a resource access control protocol to
simultaneously:

m  Prevent unbounded priority-inheritance (PI) blocking
m  Be independence-preserving
0 Tasks do not suffer PI-blocking from resources they do not use

= Avoid inter-cluster job migration

w Secking independence preservation and bounded PI-blocking
requires inter-cluster job migration (1)

2014/15 UniPD / T. Vardanega Real-Time Systems 431 of 492

0 (m) independence preservation /3

O | = t 7 T

executing holding res busy wait release request res. completion

prio

clusters { g ! d
T3 E:::::h..........‘

clustery

e t = 3: task 7 suspends and task 7 resumes execution

o t = 4: task 73 migrates to cluster; and preempts task 71

2014/15 UniPD / T. Vardanega Real-Time Systems 430 of 492

DAAl Tivrva~s OuvvAatAarmAas

MrsP [Burns, Wellings, 2013] /1

m RTA for a partitioned multiprocessor should be
tdentical to the single-processor case
0 The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention
m The property that once a task starts executing its
resources are available is intrinsic to RTA

o It should therefore be supported by global resource
control protocols

m Which speaks against suspension-based solutions!

2014/15 UniPD / T. Vardanega Real-Time Systems 432 of 492

02/06/2015



2014/15 UniPD / T. Vardanega

| MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
o More urgent tasks suffer longer blocking
m Spinning at the /oca/ ceiling priority is better

o With all processots using PCP/SRP at most one task pet
processor may contend globally

0 Access requests are served in FIFO order

m To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

m  The lock-holder job migrates to the processor of a spinning task and
runs in its stead until it either completes or migrates again

2014/15 UniPD / T. Vardanega Real-Time Systems 433 of 492

| MrsP [Burns, Wellings, 2013] /4

m For partitioned scheduling (¢ = 1)
w Spinning-based
o Local wait spinning at local ceiling
m Allows using uniprocessor-style RTA
m Blocking is per resource, increased by parallelism
o B; = maxg (wi™P) = max, (mwy) = m - maxy (wy)
m Earlier release obtained by migrating lock holder (if

preempted) to the CPU where the first contender in
the global FIFO is currently spinning

2014/15 UniPD / T. Vardanega Real-Time Systems 435 of 29

| MrsP [Burns, Wellings, 2013] /3

r-partitiony - - - ——---------—
1
1
1

spinning at

e
own cellmg .

|—m—|

spinning at
own ceiling

.
\ \/_\
o

2014/15 UniPD / T. Vardanega Real-Time Systems 434 of 492

DAAl Tivrva~s OuvvAatAarmAas

| MrsP [Burns, Wellings, 2013] /5

m Resource nesting can be supported with either group
locking or static ordering of resources

o With static ordering, resource access is allowed only with
order number greater than any currently held resources

0 The implementation should provide an «out of order»
exception to prevent run-time errors
m The ordering solution is better than banning nesting
and has less penalty than group locking

2014/15 UniPD / T. Vardanega Real-Time Systems 436 of 492

02/06/2015



2014/15 UniPD / T. Vardanega 02/06/2015

| MrsP [Burns, Wellings, 2013] /6

O | = t ? T

executing holding res. busy wait release request res. completion

prio

0 1 2 3 1 5 ] T 8 a9 m 11 12 13 14 time

o t = 3: task 7 start spinning at ceiling priority

o t = 4: task T3 migrates to P and executes in place of

2014/15 UniPD / T. Vardanega Real-Time Systems 437 of 492

| Summary

Issues and state of the art

m Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing

2014/15 UniPD / T. Vardanega Real-Time Systems 438 of 492

DAAl Tivrva~s OuvvAatAarmAas 4



