
2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 1

2. Dependability issues

Credits to A. Burns and A. Wellings

2014/15 UniPD / T. Vardanega Real-Time Systems 52 of 492

Characteristics of a RTS

 Complex and multidisciplinary
 Concurrent control of separate system components
 Interaction with special-purpose hardware
 Predictability
 Domain-specific dependability
 Reliability, safety, …

 Efficiency of implementation
 In time, space, communication

2014/15 UniPD / T. Vardanega Real-Time Systems 53 of 492

Dependability: ramifications

Dependability

Availability Reliability Safety Confidentiality Integrity Maintainability

Readiness
for usage

Continuity
of service
delivery

Non-occurrence
of catastrophic
consequences

Non-occurrence
of unauthorized

disclosure of
information

Non-occurrence
of improper
alteration of
information

Aptitude to
undergo
repairs or
evolutions

2014/15 UniPD / T. Vardanega Real-Time Systems 54 of 492

Dependability: terminology

Failures

Dependability

Attributes

Means

Impairments

Availability

Confidentiality

Reliability
Safety

Integrity
Maintainability

Fault Prevention
Fault Tolerance
Fault Forecasting

Faults

Errors

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 2

2014/15 UniPD / T. Vardanega Real-Time Systems 55 of 492

Failure and faults – 1

 A failure is when the behavior of a system deviates from
what is specified for it

 Failures result from unexpected problems internal to the
system which eventually manifest themselves in the system's
external behavior

 These problems are called errors and their mechanical or
algorithmic or conceptual cause are termed faults
 Errors are states of the system
 Faults are what causes the error to exist

 Systems are composed of components which are
themselves systems: hierarchically therefore

Failure} {Fault Error Failure} {Fault

2014/15 UniPD / T. Vardanega Real-Time Systems 56 of 492

Failure and faults – 2

S1

Failure
(black-box view of S1)

S2

Fault
(the outer view of S1 in S2)

?

S3

2014/15 UniPD / T. Vardanega Real-Time Systems 57 of 492

Safety – 1

 General definition
 Safety : freedom from conditions that can cause death, injury,

occupational illness, damage to or loss of equipment or property, or
environmental harm

 Most systems which have an element of risk associated with
their use are therefore unsafe by definition!

 A mishap is an unplanned event or series of events that can
result in unacceptable effect

 Safety is expressed as the probability that conditions which
can lead to mishaps do not occur regardless of whether the
intended function is performed

 How does that relate to reliability?

2014/15 UniPD / T. Vardanega Real-Time Systems 58 of 492

Safety – 2

 A paradox
 Measures taken to increase the likelihood of a weapon firing when

required may increase the possibility of its accidental detonation
 Aiming at better reliability may decrease safety

 In many respects the only safe airplane is one that never
takes off
 Which however is not very reliable
 Aiming at greater safety may decrease reliability

 As with reliability, to ensure the safety requirements of an
embedded system, system safety analysis must be
performed throughout all stages of its development

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 3

2014/15 UniPD / T. Vardanega Real-Time Systems 59 of 492

Reliability

 The reliability of a system is a measure of the success with
which it conforms to the specified behavior (its continuity of
service)
 May vary with time

 Very solid metrics exist for hardware components
 Electronic components are observed to fail at a constant rate

 Reliability at time t for those components is modeled by
 R(t) = Ge-λt

where G is a component-specific constant and λ is the sum of the failure
rates of all its constituent components

 The mean time between failures (MTBF) is a commonly used
metric (time to failure + time to repair)
 For a system without redundancy MTBF = 1 / λ

2014/15 UniPD / T. Vardanega Real-Time Systems 60 of 492

Scope of discussion – 1

 We want to understand the impairment factors (faults) which
affect the reliability of a system and how they can be tolerated

 Topics in scope
 Reliability, failure and faults
 Failure modes
 Fault prevention and fault tolerance
 Software static redundancy (N-version programming)
 Software dynamic redundancy
 The recovery block approach to software fault tolerance

 A comparison between N-version programming and recovery blocks
 Dynamic redundancy and exceptions

2014/15 UniPD / T. Vardanega Real-Time Systems 61 of 492

Scope of discussion – 2

 Four sources of faults that can result in system
failure
 Inadequate specification

 Not covered here

 Erroneous software design
 Covered in this segment

 Processor failure
 Not covered here, see B&W book

 Interference on the communication subsystem
 Not covered here, see B&W book

2014/15 UniPD / T. Vardanega Real-Time Systems 62 of 492

Dependability means – 1

 Fault prevention attempts to eliminate any possibility of
faults creeping into a system before it goes operational
 Fault avoidance
 Fault removal

 Fault tolerance enables a system to continue functioning
even in the presence of faults
 Hardware / software fault tolerance
 Static / dynamic fault tolerance

 Both approaches attempt to produces systems which have
well-defined failure modes

 Fault forecasting is of no consequence here

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 4

2014/15 UniPD / T. Vardanega Real-Time Systems 63 of 492

Dependability means – 2

 Fault prevention techniques base on
 Quality control
 Robust engineering of components
 However, cost penalty for engineering reliability into

components through reduced failure rate

 Fault tolerance techniques base on
 Use and management of redundant components
 Made possible by microprocessor technology as weight,

volume and power requirements associated with redundant
hardware decrease

2014/15 UniPD / T. Vardanega Real-Time Systems 64 of 492

Fault types

 Permanent faults remain in the system until they are repaired
 E.g., a broken wire or a software design error

 Transient faults start at a particular time, remain in the system
for some period and then disappear
 E.g., HW components with adverse reaction to radioactivity

 Only fails when exposed
 Many faults in communication systems are transient (e.g., congestion)

 Intermittent faults are transient faults that occur from time to
time
 E.g., a HW component that is heat sensitive, it works for a time, stops

working, cools down and then starts to work again

2014/15 UniPD / T. Vardanega Real-Time Systems 65 of 492

Software faults

 Colloquially called “bugs”
 Bohr-bugs: consistently reproducible and identifiable

 Pun on Bohr’s atom model
 E.g., a division by zero, an out-of-bound access to an array

 Heisen-bugs: extremely difficult or impossible to reproduce exactly
 Pun on Heisenberg’s uncertainty principle of quantum mechanics
 E.g., a race condition, …

 Software doesn’t deteriorate with age
 It is either correct or incorrect
 But its faults can remain dormant for long periods so that errors are

not activated

2014/15 UniPD / T. Vardanega Real-Time Systems 66 of 492

Failure modes
Failure mode

Value domain Timing domain Arbitrary
(fail uncontrolled)

Constraint
error

Value
error

Early Omission Late

Fail silent Fail stop Fail controlled

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 5

2014/15 UniPD / T. Vardanega Real-Time Systems 67 of 492

Fault prevention: fault avoidance

 Fault avoidance attempts to limit the introduction of faults
during system construction by
 Use of the most reliable components within the given cost and

performance constraints
 Use of thoroughly-refined techniques for interconnection of components

and assembly of subsystems
 Packaging the hardware to screen out expected forms of interference
 Rigorous, if not formal, specification of requirements
 Use of proven design methodologies
 Use of languages with facilities for data abstraction and modularity
 Use of software engineering environments to help manipulate software

components and thereby manage complexity

2014/15 UniPD / T. Vardanega Real-Time Systems 68 of 492

Fault prevention: fault removal

 In spite of fault avoidance, design faults may still inject errors in both
hardware and software components

 Fault removal uses procedures for finding errors and removing their causes
 E.g., design reviews, program verification, code inspection, system testing

 System testing can never be exhaustive and remove all potential faults
 A test can only be used to show the presence of faults, not their absence
 It is sometimes impossible to test under realistic conditions
 Most tests are done with the system in simulation mode and it is difficult

to guarantee that the simulation is accurate
 Errors introduced at the requirements stage of the system development

may not manifest themselves until the system goes operational

2014/15 UniPD / T. Vardanega Real-Time Systems 69 of 492

Limits of fault prevention

 In spite of all the testing and verification techniques,
hardware components will certainly decay and fail
 Even if all software design faults were removed

 The fault prevention approach will therefore be
unsuccessful when
 The frequency of failure or the duration of repair times are

unacceptable (too high, too long)
 The system is inaccessible for maintenance and repair activities

 An extreme example of such system is Voyager, the crewless
spacecraft currently 10 billions km from the sun!

 In those cases fault tolerance is the necessary complement

2014/15 UniPD / T. Vardanega Real-Time Systems 70 of 492

Levels of fault tolerance

 Full fault tolerance
 The system continues to operate in the presence of faults, albeit for a

limited period, with no significant loss of functionality or performance
 Graceful degradation (fail soft)

 The system continues to operate in the face of errors, accepting partial
degradation of functionality/performance during recovery or repair

 Fail safe
 The system maintains its integrity while accepting a temporary halt in

its operation (which must be fail silent or fail stop or fail controlled)
 The level of fault tolerance required will depend on the

domain of application
 Most safety-critical systems require full fault tolerance,

however in practice many settle for graceful degradation

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 6

2014/15 UniPD / T. Vardanega Real-Time Systems 71 of 492

Redundancy

 All fault tolerance techniques rely on extra elements
introduced into the system to detect errors and faults and to
recover from them

 Those extra elements are redundant as they are not required in
a perfect system
 Technique often called protective redundancy

 Minimize redundancy while maximizing reliability, subject to
the cost and size constraints of the system
 The added components increase the complexity of the system
 Can decrease reliability!

 The common practice is to separate out the fault-tolerant
components from the rest of the system

Hardware fault tolerance /1

 Static redundancy (error masking)
 Redundant components in a system are used to hide the

effects of faults
 E.g., Triple Modular Redundancy (TMR)

 3 identical subcomponents and majority voting circuits
 The outputs are compared and if one differs from the other two

that output is masked out

 Assumes the fault is not common (such as a design error)
but is either transient or due to component deterioration

 To mask faults from multiple components requires NMR

2014/15 UniPD / T. Vardanega Real-Time Systems 72 of 492

Hardware fault tolerance /2

 Dynamic redundancy (error detection)
 Error detection facility supplied inside a component

indicates that the output is in error
 Recovery must be provided by another component
 E.g., communication checksums and memory parity bits

2014/15 UniPD / T. Vardanega Real-Time Systems 73 of 492

2014/15 UniPD / T. Vardanega Real-Time Systems 74 of 492

Software fault tolerance

 Used for detecting errors that result from design
faults or environmental failures

 Static fault tolerance
 N-Version Programming
 Software equivalent to NMR

 Dynamic fault tolerance
 Detection and recovery
 Recovery blocks: backward error recovery
 Exceptions: forward error recovery

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 7

2014/15 UniPD / T. Vardanega Real-Time Systems 75 of 492

N-version programming – 1

 Design diversity
 The independent generation of N (N > 2) functionally

equivalent programs from the same initial specification
 No interactions between development groups
 The programs execute concurrently with the same inputs

and their results are compared by a driver process
 The results (assimilated to votes) should be identical
 If they are not the consensus result – assuming there is

one – is taken to be correct

2014/15 UniPD / T. Vardanega Real-Time Systems 76 of 492

N-version programming – 2

Version 2Version 1

Driver

vote

Invoke
Inquire status

Invoke
Inquire status

Invoke
Inquire status

Version 3

vote
vote

2014/15 UniPD / T. Vardanega Real-Time Systems 77 of 492

Vote comparison

 To what extent can votes be compared?
 Far from obvious

 Text or integer or Boolean arithmetic will produce
identical results
 Can vote on equality

 Real numbers will produce different values
 Need inexact voting techniques

 User defined types outside of numerics will need
their own equality
 E.g., limited types in Ada

2014/15 UniPD / T. Vardanega Real-Time Systems 78 of 492

Consistent comparison problem

> T

Temperature (A/D) reading

> TTrue

P1

V1

> TTrue

> P

V2 V3

Each version
will produce a
different result,
but correct within
finite-precision
arithmetic

Even using
inexact voting,
the problem occurs
when the values
are close to the
decision threshold

T1 T3T2

> P

P2

True False

False

Pressure (A/D) reading

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 8

2014/15 UniPD / T. Vardanega Real-Time Systems 79 of 492

N-version programming – 3

 Initial specification
 The majority of software faults stem from inadequate specification
 A specification error will manifest itself in all N versions of the implementation

 Independence of effort
 Experiments produce conflicting results
 A complex part of a specification leads to lack of understanding of the

requirements
 If poorly specified requirements also refer to rarely occurring input data, common

design errors may not be caught during system testing
 Adequate budget

 The predominant cost in some real-time embedded systems is software
 A 3-version system will triple the budget requirement and complicate maintenance
 Would a more reliable system be produced if the resources potentially available for

constructing an N-versions were instead used to produce a better single version?

2014/15 UniPD / T. Vardanega Real-Time Systems 80 of 492

Software dynamic redundancy

 Error detection
 No fault tolerance scheme can be utilized until the associated error is

detected
 Damage confinement and assessment

 To what extent has the system been corrupted?
 The delay between fault occurrence and error detection means that

erroneous information could have spread throughout the system
 Error recovery

 ER techniques should aim to transform the corrupted system into a
state from which it can continue its normal operation (perhaps with
degraded functionality)

 Fault treatment and continued service
 An error is a symptom/manifestation of a fault
 Although the damage is repaired the fault may still exist

2014/15 UniPD / T. Vardanega Real-Time Systems 81 of 492

Error detection

 Environmental detection
 Hardware

 E.g., illegal instruction
 OS / run-time support

 E.g., null pointer, out of bound address
 Application detection

 Replication checks
 Timing checks
 Reversal checks
 Coding checks
 Reasonableness checks
 Structural checks
 Dynamic reasonableness check

2014/15 UniPD / T. Vardanega Real-Time Systems 82 of 492

Damage confinement and assessment

 Damage assessment is closely related to damage confinement
techniques used

 Damage confinement is concerned with structuring the system
so as to minimize the damage caused by a faulty component
(a.k.a. firewalling)

 Modular decomposition provides static damage confinement
 Allows data to flow through well-defined pathways

 This needs a strongly typed language
 Atomic actions provides dynamic damage confinement

 They are used to progress the system from one consistent
state to another

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 9

2014/15 UniPD / T. Vardanega Real-Time Systems 83 of 492

Forward error recovery

 FER continues on from an erroneous state by making
selective corrections to the system state

 This includes making safe the controlled environment after
it may have become hazardous or damaged because of the
activation of the error

 It is system specific and depends on accurate predictions of
the location (where to look), cause of errors (how to tell)
and damage assessment

 Examples
 Redundant pointers in data structures
 Use of self-correcting codes such as Hamming Codes

2014/15 UniPD / T. Vardanega Real-Time Systems 84 of 492

Backward error recovery

 BER relies on restoring the system to a previous safe state and
executing an alternative section of the program
 This has the same functionality but uses a different algorithm and

therefore no same fault
 As in N-Version Programming

 The point to which a process is restored is called a recovery
point and the act of establishing it is termed check-pointing
 The recovery point contains a trustworthy system state
 The erroneous state is cleared and no attempt is made at finding the

location or cause of the fault
 Can therefore be used to recover from unanticipated faults including

design errors
 But it cannot undo errors in the environment!

2014/15 UniPD / T. Vardanega Real-Time Systems 85 of 492

The domino effect

 With cooperative concurrent processes Backward
Error Recovery becomes harder

R11

R21

P1

P2

R12

R21

R13

IPC1 IPC2 IPC3 IPC4

Error detection

Time

P1 rolls back to R13
with no adverse effect on P2

If P2 rolls back to R21
IPC4 must be undone

but then we have a domino effect

2014/15 UniPD / T. Vardanega Real-Time Systems 86 of 492

Fault treatment and continued service

 Error recovery returns the system to an error-free state
 The error may however recur
 The final phase of fault tolerance thus is to eradicate the fault from the system
 The automatic treatment of faults is difficult and system specific
 Some systems assume all faults are transient; others that error recovery

techniques can cope with staying faults
 Fault treatment can be divided into 2 stages

 Fault location and diagnosis
 System repair

 Error detection techniques can help trace the fault to a component
 The hardware component can be replaced
 A software fault can be removed in a new version of the code

 But non-stop applications shall then modify the program while executing!

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 10

2014/15 UniPD / T. Vardanega Real-Time Systems 87 of 492

Recovery blocks – 1

 Language support for backward error recovery
 At the entrance to a block is an automatic recovery point and at the exit

an acceptance test
 The acceptance test is used to test that the system is in an acceptable state

after the block’s execution
 Primary module

 If the acceptance test fails, the program is restored to the recovery point at
the beginning of the block and an alternative module is executed

 If the alternative module also fails the acceptance test, the program is
restored to the recovery point and yet another module is executed
 And so forth

 If all modules fail then the block fails and recovery must take place at a
higher level

2014/15 UniPD / T. Vardanega Real-Time Systems 88 of 492

Recovery blocks – 2

 Recovery blocks can be
nested

 If all alternatives in a
nested recovery block fail
the acceptance test, the
outer level recovery point
will be restored and an
alternative module to that
block will be executed

ensure <acceptance test> by
<primary module>

else by
<alternative module>

else by
<alternative module>

...
else by

<alternative module>
else error

2014/15 UniPD / T. Vardanega Real-Time Systems 89 of 492

Recovery blocks – 3

Establish
Recovery

Point
Alternatives?

Execute
Next

Alternative

T

Fail
Recovery

Block

F

Acceptance
Test

Restore
Recovery

Point

F

Discard
Recovery

Point

T

Continue ...Return to enclosing region ...

2014/15 UniPD / T. Vardanega Real-Time Systems 90 of 492

The acceptance test

 The acceptance test provides the error detection mechanism which enables
the redundancy in the system to be exploited

 The design of the acceptance test is crucial to the efficacy of the Recovery
Block scheme

 There is a trade-off between providing comprehensive acceptance tests
and keeping overhead to a minimum, so that fault-free execution is not
affected

 Note that the term used is acceptance, not correctness
 This allows a component to provide a degraded service

 All the previously discussed error detection techniques can be used to
form the acceptance tests

 However, care must be taken as a faulty acceptance test may lead to
residual errors going undetected

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 11

2014/15 UniPD / T. Vardanega Real-Time Systems 91 of 492

NVP vs. RB

 Type of redundancy
 NVP is static, RB is dynamic (in time)

 Design overheads
 Both require alternative algorithms

 NVP requires driver, RB requires acceptance test
 Run-time overheads

 NVP requires resources
 RB requires establishing recovery points

 Diversity of design
 Both are susceptible to errors in requirements

 Error detection
 Vote comparison (NVP) vs. acceptance test (RB)

 Atomicity
 NVP vote before it outputs to the environment
 RB must be structured to only output after passing an acceptance test

2014/15 UniPD / T. Vardanega Real-Time Systems 92 of 492

Dynamic redundancy and exceptions

 An exception can be defined as the occurrence of an error
 Bringing an exception to the attention of the invoker of the

operation which caused the exception, is called raising
(signaling, throwing) the exception

 The invoker's response is called handling (catching) the
exception

 Exception handling is a FER mechanism as there is no
rollback to a previous state
 Control is passed to the handler for it initiate the recovery procedures

 However, the exception handling facility can also be used as
an element of backward error recovery
 Technically possible but awkward without language support

2014/15 UniPD / T. Vardanega Real-Time Systems 93 of 492

Exceptions – 1

 Exception handling can be used to
 Cope with abnormal conditions arising in the

environment
 The original motivation

 Enable program design faults to be tolerated
 Not the original intent with exceptions!

 Provide a general-purpose error detection and
recovery facility

Exceptions – 2

 Requirements for an exception handling facility
 Must be simple to understand and to use
 Should allow uniform treatment for exceptions detected

by the environment and by the program
 Should allow recovery actions to be programmed
 The handler code should not obscure understanding of

the program's nominal operation
 Run-time overheads from it should be incurred only

when handling an exception

2014/15 UniPD / T. Vardanega Real-Time Systems 94 of 492

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 12

2014/15 UniPD / T. Vardanega Real-Time Systems 95 of 492

Exceptions – 3

 Two sources of detection
 Environmental detection
 Application error detection

 A synchronous exception is raised as an immediate
result of a process attempting an inappropriate
operation

 An asynchronous exception is raised some time after the
operation causing the error
 May be raised in the process which executed the operation or

in another process (and need a callback mechanism)
 Often called asynchronous notifications or signals

2014/15 UniPD / T. Vardanega Real-Time Systems 96 of 492

Exceptions – 4

 Detected by the environment and raised synchronously
 E.g. array bounds error or divide-by-zero

 Detected by the application and raised synchronously
 E.g. the failure of a program-defined assertion check

 Detected by the environment and raised asynchronously
 E.g. an exception raised due to the failure of some health

monitoring mechanism
 Detected by the application and raised asynchronously

 E.g. one process may recognise that an error condition has
occurred which can effect another process
 Causing it to miss its deadline or to not terminate correctly

2014/15 UniPD / T. Vardanega Real-Time Systems 97 of 492

Exceptions – 5

 Within a program, there may be several handlers for
a particular exception

 Associated with each handler is a domain which
specifies the region of computation during which, if
an exception occurs, the handler will be activated
 A block in Ada, a try block in Java

 The accuracy with which a domain can be specified
will determine how precisely the source of the
exception can be located

2014/15 UniPD / T. Vardanega Real-Time Systems 98 of 492

Exceptions – 6

 If no handler is associated with the block or procedure
 May regard it as a programmer error to be reported at compile time
 An exception raised in a procedure and not handled in it can only be

handled within the context the procedure was called from
 E.g., an exception raised in a procedure as a result of a failed assertion

involving the parameters

 CHILL requires that a procedure specifies which exceptions it
may raise (that it does not handle locally)
 The compiler can then check the calling context for the presence of an

appropriate handler
 Java allows a function to define which exceptions it can raise

 However, unlike CHILL, it does not require a handler to be available in
the calling context

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 13

2014/15 UniPD / T. Vardanega Real-Time Systems 99 of 492

Exceptions – 7

 Otherwise look for handlers up the chain of invokers
 This is called propagating the exception
 The Ada and Java approach

 A problem occurs where exceptions have scope
 An exception may thus be propagated outside its scope
 This makes it impossible for a handler to be found

 Most languages provide a catch-all exception handler
 An unhandled exception causes a sequential program to be

aborted
 If the program contains more than one process (thread) and a

particular process does not handle an exception it has raised,
then usually that process (thread) is aborted
 However, it is not clear whether the exception should be propagated to

the parent process

2014/15 UniPD / T. Vardanega Real-Time Systems 100 of 492

Exceptions – 8

 Should the invoker of the exception continue its execution after
the exception has been handled?

 If the invoker can continue then it may be possible for the
handler to cure the problem that caused the exception to be
raised and for the invoker to resume as if nothing had happened
 This is referred to as the resumption or notify model

 Instead the model where control is not returned to the invoker is
called termination or escape

 Clearly it is possible to have a model in which the handler can
decide whether to resume the operation which caused the
exception, or to terminate the operation
 This is called the hybrid model

2014/15 UniPD / T. Vardanega Real-Time Systems 101 of 492

The resumption model – 1

H(r)

P

Q

R

1. P invokes Q

2. Q invokes R

3. R raises r

4. H(r) raises q
5. H(q) resumes H(r)

H(q)

Where to
resume from?

6. H(r) resumes R

The resumption model – 2

 Repairing errors raised by the run-time system is difficult
 E.g., an arithmetic overflow in a complex expressions results in registers

containing partial evaluations: calling the handler overwrites these registers
 Some languages from the late ‘70 (Pearl, Mesa) support the resumption and

termination models – Ada and Java support the termination model

 Implementing a strict resumption model is difficult
 A compromise solution is to re-execute the block associated with the

exception handler: that’s what Eiffel does
 In that case the local variables of the block must not be re-initialised on a

retry (needs a form of non-reentrancy)

 The resumption model is useful with asynchronous exceptions
when current execution is ≠ from the exception context

2014/15 UniPD / T. Vardanega Real-Time Systems 102 of 492

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 14

The resumption model – 3

2014/15 UniPD / T. Vardanega Real-Time Systems 103 of 492

2014/15 UniPD / T. Vardanega Real-Time Systems 104 of 492

The termination model
Procedure P

Procedure Q
Procedure R

P invokes Q
Q invokes R

Exception r raised

Handler is sought

Handler for r

R is terminated
and abandoned

Q terminates “normally”
(in accord with the domain

[block] structure of the language)

P resumes at its
designated forward

point of resumption
(but only because

r was handled in Q!)

2014/15 UniPD / T. Vardanega Real-Time Systems 105 of 492

Ideal fault-tolerant component

Normal activity Exception handler

Service
request

Normal
response

Interface
exception

Failure
exception

Return to
normal activity

Internal
exception

Service
request

Normal
response

Failure
exception

Interface
exception

2014/15 UniPD / T. Vardanega Real-Time Systems 106 of 492

Summary – 1

 Reliability
 A measure of the success with which the system conforms to some

authoritative specification of its behavior
 When the behavior of a system deviates from that which is

specified for it, this is called a failure
 Failures result from faults
 Faults can be accidentally or intentionally introduced into a

system
 They can be transient, permanent or intermittent
 Fault prevention consists of fault avoidance and fault removal
 Fault tolerance involves the introduction of redundant

components into a system so that faults can be detected and
tolerated

2014/15 UniPD / T. Vardanega 09/04/2015

Real Time Systems 15

2014/15 UniPD / T. Vardanega Real-Time Systems 107 of 492

Summary – 2

 N-version programming (static redundancy)
 The independent generation of N >= 2 functionally

equivalent programs from the same initial specification
 Based on the assumptions that a program can be completely,

consistently and unambiguously specified, and that programs
which have been developed independently will fail
independently

 Dynamic redundancy
 Error detection, damage confinement and assessment, error

recovery, and fault treatment and continued service
 Atomic actions aid damage confinement

 Not discussed here

2014/15 UniPD / T. Vardanega Real-Time Systems 108 of 492

Summary – 3

 With backward error recovery communicating processes need
to reach consistent recovery points to avoid the domino effect

 For sequential systems, the recovery block is an appropriate
language concept for backward error recovery

 Although forward error recovery is system specific, exception
handling has been identified as an appropriate framework for
its implementation

 The concept of an ideal fault-tolerant component was
introduced which uses exceptions

 The notions of software safety and dependability have been
introduced

Summary – 4

 It is not unanimously accepted that exception
handling facilities should be provided in a language
 For example, C and occam2 have none

 To skeptics an exception is a GOTO where the
destination is undeterminable and the source is
unknown!

 They can therefore be considered to be the
antithesis of structured programming

 Not the view taken here!

2014/15 UniPD / T. Vardanega Real-Time Systems 109 of 492

