
2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 1

5. System issues

Context switch

 Preemption causes time and space overheads which should
be duly accounted for in realistic schedulability tests

 Under preemption every single job incurs at least two
context switches
 One at activation to install its execution context
 One at completion to clean up

 The resulting costs should be charged to the job
 Knowing the timing behavior of the run-time system we could

incorporate overhead costs in schedulability tests

2014/15 UniPD / T. Vardanega Real-Time Systems 262 of 492

Real-time operating systems /1

 Tasks must be known to the RTOS
 Tasks are the unit of CPU allocation by the scheduler

 Tasks issue jobs, one at a time, which are subject to scheduling and dispatching
 The scheduler decides which task gets the CPU

 Typically by the position assigned to tasks in the ready queue
 The dispatcher gets tasks to run and operates the context switch

 On task creation, some RAM is assigned to the Task Control
Block for that task
 The insertion of a task in a state queue (e.g., ready) is made by placing a

pointer to the relevant TCB
 The disposal of a task at end of life requires removal of its TCB and de-

allocation of any memory it had in use
 In typical embedded systems, tasks never terminate

2014/15 UniPD / T. Vardanega Real-Time Systems 263 of 492

Task control block

Thread ID

Start address

Context

Task parameters

Scheduling information

Synchronization information

Time usage information

Timer information

…

Task type

Phase

Period
Relative deadline

Event list
…

Assigned priority

Current priority

2014/15 UniPD / T. Vardanega Real-Time Systems 264 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 2

Priority levels /1

 The scheduling techniques that we have studied
assume jobs to have distinct priorities
 It is not obvious however that concrete systems can always

meet this requirement
 Consequently jobs may have to share priority levels
 At the same level of priority, dispatching may be FIFO or

round-robin
 If priority levels are shared then we have a worst-case

situation to contemplate in the analysis
 That job ܬ be released immediately after all other jobs

residing at its level of priority

2014/15 UniPD / T. Vardanega Real-Time Systems 265 of 492

Priority levels /2

2014/15 UniPD / T. Vardanega Real-Time Systems 266 of 492

0

1

݊

߬௜ ௝߬

߬௥߬௦ ߬௞

low

high
FIFO

Runnable

Ready

Priority levels /3

 Let ܵሺ݅ሻ denote the set of jobs ܬ ௝ with ߨ௝ ൌ ,௜ߨ
excluding ܬ௜ itself

 The time demand equation for ܬ௜ to study in the
interval 0 ൏ ݐ ൑ min	ሺܦ௜, ௜ሻ݌ then becomes

 ߱௜భ ݐ ൌ ݁௜ ൅ ௜ܤ ൅ ∑ ݁௜ ൅ௌሺ௜ሻ ∑ ఠ೔భሺ௧ሻ
௣ೖ௞ୀଵ,..,௜ିଵ ݁௞

 This obviously worsens ܬ௜ ’s response time
 But the impact in terms of schedulability loss at system

level may not be as bad (see later …)

2014/15 UniPD / T. Vardanega Real-Time Systems 267 of 492

Priority levels /4

 When the number 1, . . , Ω௡ of assigned priorities is greater
than the number ߨଵ, . . , ஐೞߨ of available priorities (a.k.a.
priority grid) then we need some Ω௡: Ω௦ mapping
 All (top-range) assigned priorities ൒ ଵߨ take value ߨଵ
 For 1 ൏ ݇ ൑ Ω௦, the assigned priorities in the range ሺߨ௞ିଵ, ௞ሿߨ

take value ߨ௞

 Two main techniques
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]

2014/15 UniPD / T. Vardanega Real-Time Systems 268 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 3

Priority levels /5

 Uniform mapping
 Uniformly apportions availability to demand

 ܳ ൌ ஐ೙
ஐೞ

⇒ ௞ߨ ൌ ݇ܳ, ݇ ൌ 1,2, . . , Ω௦ െ 1, ஐೞߨ ൌ Ω௡

 Example: with Ω௡ ൌ 9,Ω௦ ൌ 3 and ߨଵ ൌ 1, ଶߨ ൌ 2, ଷߨ ൌ 3	we
have ܳ ൌ 3 hence 1. . 3 → ,ଵߨ 4. . 6 → ,ଶߨ 7. . 9 → ଷߨ

 Constant ratio mapping

 Keeps the ratio ݃ ൌ ሺగ೔షభାଵሻ
గ೔

constant for ݅ ൌ 2, . . , Ω௦ for the
better good of higher-priority jobs

 Example (as above): with constant ratio ଵ
ଶ

and ߨଵ ൌ 1 we have
ଶߨ ൌ 4, ଷߨ ൌ 10,… so that 1 → ,ଵߨ 2. . 4 → ,ଶߨ 5. . 9 → ଷߨ

2014/15 UniPD / T. Vardanega Real-Time Systems 269 of 492

Priority levels /6

4 ..6Ωn Ωs

Ωn / Ωs 1

2

3

4

5

6

7

8

9

1

ratio ൌ ଵ
ଶ

2 .. 4

5 ..10

Uniform mapping Constant ratio mapping

7 .. 9

1 ..3

ratio ൌ ଵ
ଶ

2014/15 UniPD / T. Vardanega Real-Time Systems 270 of 492

Priority levels /7

 Lehoczky & Sha showed that the use of constant ratio
mapping degrades the schedulable utilization of RMS
gracefully
 For large ݊, with ܦ௜ ൌ ݃ ∀݅, and	௜݌ ൌ ݉݅݊ଶஸ௝ஸஐೞ

ሺగೕషభାଵሻ
గೕ

, the
schedulable utilization ݂ሺ݃ሻ evaluates to
 ݂ሺ݃ሻ ൌ ݈݊ 2݃ ൅ 1 െ ݃ for ݃ ൐ ଵ

ଶ
 ݂ሺ݃ሻ ൌ ݃ for ݃ ൑ ଵ

ଶ

 The ௙ሺ௚ሻ
௟௡ሺଶሻ

ratio is termed relative schedulability in relation
to the RM schedulable utilization
 Example: with Ωs = 256 and Ωn = 100,000 relative schedulability

evaluates to 0.9986, which shows that 256 priority levels suffice for
RMS

2014/15 UniPD / T. Vardanega Real-Time Systems 271 of 492

Real-time operating systems /2

 Must be small, modular, extensible
 Small footprint because they are often stored in ROM (which used

to be little) and because most embedded systems have little RAM
anyway
 Real-time embedded systems do not include permanent storage other

than for background aperiodic activities
 Modular because this facilitates verification, validation and

certification of its design and implementation, including of temporal
predictability

 Extensible because some but not all specific systems may need
functionalities above and beyond the core ones

 Adhering to the principle of microkernel architecture
 Minimal kernel services include scheduling, inter-process

communication and synchronization, interrupt handling

2014/15 UniPD / T. Vardanega Real-Time Systems 272 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 4

Real-time operating systems /3

 Tasks may be realized as specialized primitive
entities living within the RTOS
 In that case the model of concurrent computation is

solely determined by the RTOS
 Or at application level with generic support from

the RTOS API (e.g., pthread_*)
 In that case it is up to the user to ensure care that the

actual implementation corresponds with the analysis
model if feasibility guarantees must be had

2014/15 UniPD / T. Vardanega Real-Time Systems 273 of 492

Real-time operating systems /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release it executes the application-code of the job and then calls
into the suspension

 Sporadic task
 An RTOS thread whose suspension point is not released

periodically but with guaranteed minimum distance
 After release it executes the job and then calls into the suspension

 Aperiodic task
 Indistinguishable from the rest other than its being placed in a

server’s backlog queue and not in the ready queue

2014/15 UniPD / T. Vardanega Real-Time Systems 274 of 492

Task states /1

2014/15 UniPD / T. Vardanega Real-Time Systems 275 of 492

Inheritance blocking

How to represent
that state and the
transitions to and from it
with the least overhead

Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the
distinct forms of suspension
 A time-based queue for periodic suspensions
 An event-based queue for sporadic suspensions

 But someone shall still take care of warranting minimum separation
between subsequent releases (!)

2014/15 UniPD / T. Vardanega Real-Time Systems 276 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 5

The scheduler /1

 This is a distinct part of the RTOS that does not
execute in response to explicit application invocations

 It acts every time a task changes state (hence the ready
queue does)
 The corresponding time events are termed dispatching points

 Scheduler “activation” is often periodic in response to
clock interrupts

2014/15 UniPD / T. Vardanega Real-Time Systems 277 of 492

The scheduler /2

 At every clock interrupt the scheduler must
 Manage the queue of time-based events pending
 Increment the execution time budget counter of the running

job to support time-based scheduling policy (e.g., LLF)
 Manage the ready queue

 The ൒ ݏ10݉ period (a.k.a. tick size) typical of general-
purpose operating systems is not fit for RTOS
 But a higher frequency incurs larger overhead

 The scheduler needs to make provisions for
event-driven execution too

2014/15 UniPD / T. Vardanega Real-Time Systems 278 of 492

Tick scheduling /1

 So far we have tacitly assumed that the scheduler
operates on an event-driven basis
 The scheduler always immediately executes upon the

occurrence of a scheduling event
 If it was so then we could reasonably assume that a job is

placed in the ready queue at its release time

 Schedulers may also operate in a time-driven manner
 In that case the scheduling decisions are made and

executed on the arrival of periodic clock interrupts
 This mode of operation is termed tick scheduling

2014/15 UniPD / T. Vardanega Real-Time Systems 279 of 492

Tick scheduling /2

 The tick scheduler may acknowledge a job’s release
time 1 (scheduling) tick later than it arrived
 This delay has negative impact on the job’s response time
 We also need to assume that a logical place exists where

jobs in the “release time arrived but not yet acknowledged” state
are held

 The time and space overhead of transferring jobs from
that logical place to the ready queue is not null and must
be accounted for in the schedulability test together with
the time and space overhead of handling clock interrupts

2014/15 UniPD / T. Vardanega Real-Time Systems 280 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 6

Example

0 1 2 3 4 5 6

ࢀ ൌ ࣎૚ ൌ ૙. ૚, ૝, ૚, ૝ , ࣎૛ ൌ ૙. ૚, ૞, ૚. ૡ, ૞ , ࣎૜ ൌ ૙, ૛૙, ૞, ૛૙
࣎૜ with a first not preemptable section of duration ૚. ૚

With RTA and event-driven scheduling ࡾ૚ ൌ ૛. ૚, ૛ࡾ ൌ ૜. ૢ, ૜ࡾ ൌ ૚૝. ૝ (OK)
What with tick scheduling, clock period 1 and time overhead ૙. ૙૞ ൅ ૙. ૙૟ ൈ ࢔ ?

࣎૚

࣎૜

Deadline miss

Ready
at tick

yield࣎૛

࣎૜

࣎૚, ࣎૛ ࣎૚ ࣎૛

1-tick delay

2014/15 UniPD / T. Vardanega Real-Time Systems 281 of 492

ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ

Tick scheduling /3

 The effect of tick scheduling is captured in the RTA for job ܬ௜
 By introducing a notional task ߬଴ ൌ ሺ݌଴, ݁଴ሻ at the highest priority to

account for the ݁଴ cost of handling periodic clock interrupts
 For all jobs ܬ௞ ∶ ௞ߨ ൒ ௜, by adding to ݁௞ߨ the time overhead ݉଴ due to

moving each of them to the ready queue
 ሺܭ௞ ൅ 1ሻ times for the ܭ௞ times that job ܬ௞ may self suspend

 For every individual jobs ܬ௟: ௟ߨ ൏ ௜, by introducing a distinct notionalߨ
task ߬ఊ ൌ ሺ݌௟,݉଴ሻ to account for the time overhead of moving them
to the ready queue

 Computing ܤ௜ሺ݊݌ሻ as function of ݌଴: ܬ௜ may suffer up to ݌଴ units of
delay after becoming ready even without non-preemptable execution

 ሻ݌௜ሺ݊ܤ ൌ ሺ ௞ሺݔܽ݉
ఏೖ
௣బ
ሻ ൅ 1ሻ݌଴ before including non-preemption

 Where ߠ௞ is the maximum time of non-preemptable execution by any job ܬ௞

2014/15 UniPD / T. Vardanega Real-Time Systems 282 of 492

System calls /1

 The most part of RTOS services are executed in
response to direct or indirect invocations by tasks
 These invocations are termed system calls

 System calls need not be directly visible to the
application
 They are hidden in procedure calls exported by compiler

libraries
 The library procedure does all of the preparatory work needed

to make the correct invocation of the actual system call on
behalf of the application

2014/15 UniPD / T. Vardanega Real-Time Systems 283 of 492

System calls /2

 In embedded systems the RTOS and the
application share memory
 Not the case in general-purpose operating systems
 Real-time embedded applications are more trustworthy

and we do not want to pay the space and time overhead
arising from address space separation

 The RTOS must then protect its own data structures
from the risk of race condition

 RTOS services must therefore be non-preemptable

2014/15 UniPD / T. Vardanega Real-Time Systems 284 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 7

System calls /3

2014/15 UniPD / T. Vardanega Real-Time Systems 285 of 492

I/O issues

 The I/O subsystem of a real-time system may
require its own scheduler

 Simple methods to access an I/O resource
 Use a run-to-completion non-preemptive FIFO policy
 Use some kind of TDMA scheme

 Non-preemptive quantized

 Priority-driven scheduling techniques as those in
use for processor scheduling
 RM, EDF, LLF can be used to schedule I/O requests

2014/15 UniPD / T. Vardanega Real-Time Systems 286 of 492

Interrupt handling /1

 HW interrupts are the most efficient manner for the
processor to notify the application about the
occurrence of external events
 E.g., completion of asynchronous I/O operations like

DMA (direct memory access)
 Frequency and computational load of the interrupt

handling activities vary with the interrupt source

2014/15 UniPD / T. Vardanega Real-Time Systems 287 of 492

Interrupt handling /2

 For reasons of efficiency the interrupt handling
service is typically subdivided in an immediate part
and a deferred part
 The immediate part executes at the level of interrupt

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which
code to associate to either part
 Interrupt service can also have a device-independent part and

a device-specific part
2014/15 UniPD / T. Vardanega Real-Time Systems 288 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 8

Interrupt handling /3

 When the HW interface asserts an interrupt the
processor saves state registers (e.g., PC, PSW) in the
interrupt stack and jumps to the address of the
needed interrupt service routine (ISR)
 At this time interrupts are disabled to prevent race

conditions on the arrival of further interrupts
 Interrupts arriving at that time may be lost or kept

pending (depending on the HW)

 Interrupts operate at an assigned level of priority so
that interrupt service is subject to scheduling

2014/15 UniPD / T. Vardanega Real-Time Systems 289 of 492

Interrupt handling /4

 Depending on the HW the interrupt source is
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 After the interrupt source has been determined
registers are restored and interrupts are enabled
again

2014/15 UniPD / T. Vardanega Real-Time Systems 290 of 492

Interrupt handling /5

 The worst-case latency incurred on interrupt
handling is determined by the time needed to
 Complete the current instruction, save registers, clear the

pipeline, acquire the interrupt vector, activate the trap
 Disable interrupts so that the ISR can be executed at the

highest priority
 This duration corresponds to interference across interrupts

 Save the context of the interrupted task, identify the
interrupt source and jump to the corresponding ISR

 Begin execution of the selected ISR

2014/15 UniPD / T. Vardanega Real-Time Systems 291 of 492

Interrupt handling /6

 To reduce distributed overhead, the deferred part of
the interrupt handling service must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on
RTOS data structures
 Which must be protected by appropriate access control

protocols
 If we can do that then we do not need the RTOS to

spawn its own tasks for this purpose

2014/15 UniPD / T. Vardanega Real-Time Systems 292 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 9

Interrupt handling /7

 To achieve better responsiveness for the deferred
part of interrupt services schemes such as slack
stealing or bandwidth preservation could be used
 Bandwidth preservation retains the reserve of execution

budget not used by aperiodic activities across periodic
replenishments

 But their implementation needs specialized support
from the RTOS

2014/15 UniPD / T. Vardanega Real-Time Systems 293 of 492

Time management /1

 A system clock consists of
 A periodic counting register

 Automatically reset to the tick size every time it reaches the triggering edge
and triggers the clock tick

 The register a hardware part automatically decremented at very
clock pulse and a software part incremented by the handler of
the clock tick

 A queue of time events fired in the interval, whose treatment
is pending

 An (immediate) interrupt handling service

2014/15 UniPD / T. Vardanega Real-Time Systems 294 of 492

Time management /2

 The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock
 The resolution should be an integer divisor of the tick

size so that the RTOS may perform tick scheduling at
every N clock ticks

 Then we have more frequent time-service interrupts and
less frequent (ଵ

ே
) clock interrupts

 Time-service interrupts maintain the system clock
 Clock interrupts are used for scheduling

2014/15 UniPD / T. Vardanega Real-Time Systems 295 of 492

Time management /3

 The software clock resolution is an important RTOS design
parameter
 The finer the resolution the better the clock accuracy but the larger

the time-service interrupt overhead
 There is delicate balance between the clock accuracy needed

by the application and the clock resolution that can be
afforded by the system
 Latency is intrinsic in any query made by a task to the software

clock
 E.g., 439 clock cycles in ORK for the Leon microprocessor

 The resolution cannot be finer-grained than the maximum
latency incurred in accessing the clock (!)

2014/15 UniPD / T. Vardanega Real-Time Systems 296 of 492

2014/15 UniPD / T. Vardanega 29/04/2015

Real Time Systems 10

Time management /4

 Beside periodic clocks RTOS may also support
one-shot timers a.k.a. interval timers
 They operate in a programmed (non-repetitive) way

 The RTOS scans the queue of the programmed
time events to set the time of the next interrupt due
from the interval timer
 The resolution of the interval timer is limited by the time

overhead of its handling by the RTOS
 E.g., 7,061 clock cycles in ORK for Leon

 www.dit.upm.es/~ork/

2014/15 UniPD / T. Vardanega Real-Time Systems 297 of 492

Time management /5

 The accuracy of time events is given by the difference
between the time at which the event occurred and the time
value as programmed

 It depends on three fundamental factors of influence
 The frequency at which the time-event queues are inspected

 If interval timers were not used, this would correspond to the period
of time-service interrupts

 The policy with which the RTOS handles the time-event queues
 LIFO vs. FIFO

 The time overhead cost of handling time events in the queue
 The release time of periodic tasks is inherently exposed to

jitter (!)

2014/15 UniPD / T. Vardanega Real-Time Systems 298 of 492

2014/15 UniPD / T. Vardanega Real-Time Systems 299 of 492

Fine-grained response time analysis

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension callܴ௜଴ ൌ ௜ܤ ൅ 1ܵܥ ൅ ௜ܥ

ܴ௜ ൌ ܴ௜௡ ൅ ௐܬ

ܴ௜ is a compositional term Its RHS benefits from composable terms

Summary

 RTOS design issues
 Context switch
 Priority levels
 Tick scheduling
 Interrupt handling
 Time management

2014/15 UniPD / T. Vardanega Real-Time Systems 300 of 492

