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5. System issues

Context switch

 Preemption causes time and space overheads which should 
be duly accounted for in realistic schedulability tests

 Under preemption every single job incurs at least two 
context switches
 One at activation to install its execution context
 One at completion to clean up

 The resulting costs should be charged to the job
 Knowing the timing behavior of the run-time system we could 

incorporate overhead costs in schedulability tests
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Real-time operating systems /1

 Tasks must be known to the RTOS
 Tasks are the unit of CPU allocation by the scheduler

 Tasks issue jobs, one at a time, which are subject to scheduling and dispatching
 The scheduler decides which task gets the CPU

 Typically by the position assigned to tasks in the ready queue
 The dispatcher gets tasks to run and operates the context switch

 On task creation, some RAM is assigned to the Task Control 
Block for that task
 The insertion of a task in a state queue (e.g., ready) is made by placing a 

pointer to the relevant TCB
 The disposal of a task at end of life requires removal of its TCB and de-

allocation of any memory it had in use
 In typical embedded systems, tasks never terminate
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Task control block

Thread ID

Start address

Context

Task parameters

Scheduling information

Synchronization information

Time usage information

Timer information

…

Task type

Phase

Period
Relative deadline

Event list
…

Assigned priority

Current priority
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Priority levels /1

 The scheduling techniques that we have studied 
assume jobs to have distinct priorities
 It is not obvious however that concrete systems can always 

meet this requirement
 Consequently jobs may have to share priority levels
 At the same level of priority, dispatching may be FIFO or 

round-robin
 If priority levels are shared then we have a worst-case 

situation to contemplate in the analysis
 That job ܬ be released immediately after all other jobs 

residing at its level of priority
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Priority levels /2
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0

1

݊

߬௜ ௝߬

߬௥߬௦ ߬௞

low

high
FIFO

Runnable

Ready

Priority levels /3

 Let ܵሺ݅ሻ denote the set of jobs ܬ ௝ with ߨ௝ ൌ  ,௜ߨ
excluding ܬ௜ itself

 The time demand equation for ܬ௜ to study in the 
interval 0 ൏ ݐ ൑ min	ሺܦ௜, ௜ሻ݌ then becomes 

 ߱௜భ ݐ ൌ ݁௜ ൅ ௜ܤ ൅ ∑ ݁௜ ൅ௌሺ௜ሻ ∑ ఠ೔భሺ௧ሻ
௣ೖ௞ୀଵ,..,௜ିଵ ݁௞

 This obviously worsens ܬ௜ ’s response time
 But the impact in terms of schedulability loss at system 

level may not be as bad (see later …)
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Priority levels /4

 When the number 1, . . , Ω௡ of assigned priorities is greater 
than the number ߨଵ, . . , ஐೞߨ of available priorities (a.k.a. 
priority grid) then we need some Ω௡: Ω௦ mapping
 All (top-range) assigned priorities ൒ ଵߨ take value ߨଵ
 For 1 ൏ ݇ ൑ Ω௦, the assigned priorities in the range ሺߨ௞ିଵ, ௞ሿߨ

take value ߨ௞

 Two main techniques
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]
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Priority levels /5

 Uniform mapping
 Uniformly apportions availability to demand

 ܳ ൌ ஐ೙
ஐೞ

⇒ ௞ߨ ൌ ݇ܳ, ݇ ൌ 1,2, . . , Ω௦ െ 1, ஐೞߨ ൌ Ω௡

 Example: with Ω௡ ൌ 9,Ω௦ ൌ 3 and ߨଵ ൌ 1, ଶߨ ൌ 2, ଷߨ ൌ 3	we 
have ܳ ൌ 3 hence 1. . 3 → ,ଵߨ 4. . 6 → ,ଶߨ 7. . 9 → ଷߨ

 Constant ratio mapping

 Keeps the ratio ݃ ൌ ሺగ೔షభାଵሻ
గ೔

constant for ݅ ൌ 2, . . , Ω௦ for the 
better good of higher-priority jobs

 Example (as above): with constant ratio ଵ
ଶ

and ߨଵ ൌ 1 we have 
ଶߨ ൌ 4, ଷߨ ൌ 10,… so that 1 → ,ଵߨ 2. . 4 → ,ଶߨ 5. . 9 → ଷߨ
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Priority levels /6

4 ..6Ωn Ωs

Ωn / Ωs 1

2

3

4

5

6

7

8

9

1

ratio ൌ ଵ
ଶ

2 .. 4

5 ..10

Uniform mapping Constant ratio mapping

7 .. 9

1 ..3

ratio ൌ ଵ
ଶ
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Priority levels /7

 Lehoczky & Sha showed that the use of constant ratio 
mapping degrades the schedulable utilization of RMS 
gracefully
 For large ݊, with ܦ௜ ൌ ݃ ∀݅, and	௜݌ ൌ ݉݅݊ଶஸ௝ஸஐೞ

ሺగೕషభାଵሻ
గೕ

, the 
schedulable utilization ݂ሺ݃ሻ evaluates to
 ݂ሺ݃ሻ ൌ ݈݊ 2݃ ൅ 1 െ ݃ for ݃ ൐ ଵ

ଶ
 ݂ሺ݃ሻ ൌ ݃ for ݃ ൑ ଵ

ଶ

 The ௙ሺ௚ሻ
௟௡ሺଶሻ

ratio is termed relative schedulability in relation 
to the RM schedulable utilization
 Example: with Ωs = 256 and Ωn = 100,000 relative schedulability

evaluates to 0.9986, which shows that 256 priority levels suffice for 
RMS
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Real-time operating systems /2

 Must be small, modular, extensible
 Small footprint because they are often stored in ROM (which used 

to be little) and because most embedded systems have little RAM 
anyway
 Real-time embedded systems do not include permanent storage other 

than for background aperiodic activities
 Modular because this facilitates verification, validation and 

certification of its design and implementation, including of temporal 
predictability

 Extensible because some but not all specific systems may need 
functionalities above and beyond the core ones

 Adhering to the principle of microkernel architecture
 Minimal kernel services include scheduling, inter-process 

communication and synchronization, interrupt handling
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Real-time operating systems /3

 Tasks may be realized as specialized primitive 
entities living within the RTOS
 In that case the model of concurrent computation is 

solely determined by the RTOS
 Or at application level with generic support from 

the RTOS API (e.g., pthread_*)
 In that case it is up to the user to ensure care that the 

actual implementation corresponds with the analysis 
model if feasibility guarantees must be had
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Real-time operating systems /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release it executes the application-code of the job and then calls 
into the suspension

 Sporadic task
 An RTOS thread whose suspension point is not released 

periodically but with guaranteed minimum distance
 After release it executes the job and then calls into the suspension

 Aperiodic task
 Indistinguishable from the rest other than its being placed in a 

server’s backlog queue and not in the ready queue
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Task states /1
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Inheritance blocking

How to represent
that state and the
transitions to and from it
with the least overhead

Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on 

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the 
distinct forms of suspension
 A time-based queue for periodic suspensions
 An event-based queue for sporadic suspensions

 But someone shall still take care of warranting minimum separation 
between subsequent releases (!)
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The scheduler /1

 This is a distinct part of the RTOS that does not 
execute in response to explicit application invocations

 It acts every time a task changes state (hence the ready 
queue does)
 The corresponding time events are termed dispatching points

 Scheduler “activation” is often periodic in response to 
clock interrupts
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The scheduler /2

 At every clock interrupt the scheduler must
 Manage the queue of time-based events pending
 Increment the execution time budget counter of the running 

job to support time-based scheduling policy (e.g., LLF)
 Manage the ready queue

 The ൒ ݏ10݉ period (a.k.a. tick size) typical of general-
purpose operating systems is not fit for RTOS
 But a higher frequency incurs larger overhead

 The scheduler needs to make provisions for 
event-driven execution too
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Tick scheduling /1

 So far we have tacitly assumed that the scheduler 
operates on an event-driven basis
 The scheduler always immediately executes upon the 

occurrence of a scheduling event
 If it was so then we could reasonably assume that a job is 

placed in the ready queue at its release time

 Schedulers may also operate in a time-driven manner
 In that case the scheduling decisions are made and 

executed on the arrival of periodic clock interrupts
 This mode of operation is termed tick scheduling
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Tick scheduling /2

 The tick scheduler may acknowledge a job’s release 
time 1 (scheduling) tick later than it arrived
 This delay has negative impact on the job’s response time
 We also need to assume that a logical place exists where 

jobs in the “release time arrived but not yet acknowledged” state 
are held

 The time and space overhead of transferring jobs from 
that logical place to the ready queue is not null and must 
be accounted for in the schedulability test together with 
the time and space overhead of handling clock interrupts
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Example

0 1 2 3 4 5 6

ࢀ ൌ ࣎૚ ൌ ૙. ૚, ૝, ૚, ૝ , ࣎૛ ൌ ૙. ૚, ૞, ૚. ૡ, ૞ , ࣎૜ ൌ ૙, ૛૙, ૞, ૛૙
࣎૜ with a first not preemptable section of  duration ૚. ૚

With RTA and event-driven scheduling ࡾ૚ ൌ ૛. ૚, ૛ࡾ ൌ ૜. ૢ, ૜ࡾ ൌ ૚૝. ૝ (OK)
What with tick scheduling, clock period 1 and time overhead ૙. ૙૞ ൅ ૙. ૙૟ ൈ ࢔ ?

࣎૚

࣎૜

Deadline miss

Ready 
at tick

yield࣎૛

࣎૜

࣎૚, ࣎૛ ࣎૚ ࣎૛

1-tick delay
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ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ

Tick scheduling /3

 The effect of tick scheduling is captured in the RTA for job ܬ௜
 By introducing a notional task ߬଴ ൌ ሺ݌଴, ݁଴ሻ at the highest priority to 

account for the ݁଴ cost of handling periodic clock interrupts
 For all jobs ܬ௞ ∶ ௞ߨ ൒ ௜, by adding to ݁௞ߨ the time overhead ݉଴ due to 

moving each of them to the ready queue
 ሺܭ௞ ൅ 1ሻ times for the ܭ௞ times that job ܬ௞ may self suspend

 For every individual jobs ܬ௟: ௟ߨ ൏  ௜, by introducing a distinct notionalߨ
task ߬ఊ ൌ ሺ݌௟,݉଴ሻ to account for the time overhead of moving them 
to the ready queue

 Computing ܤ௜ሺ݊݌ሻ as function of ݌଴:  ܬ௜ may suffer up to ݌଴ units of 
delay after becoming ready even without non-preemptable execution 

 ሻ݌௜ሺ݊ܤ ൌ ሺ ௞ሺݔܽ݉
ఏೖ
௣బ
ሻ ൅ 1ሻ݌଴ before including non-preemption

 Where ߠ௞ is the maximum time of non-preemptable execution by any job ܬ௞
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System calls /1

 The most part of RTOS services are executed in 
response to direct or indirect invocations by tasks
 These invocations are termed system calls

 System calls need not be directly visible to the 
application
 They are hidden in procedure calls exported by compiler 

libraries
 The library procedure does all of the preparatory work needed 

to make the correct invocation of the actual system call on 
behalf of the application
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System calls /2

 In embedded systems the RTOS and the 
application share memory
 Not the case in general-purpose operating systems
 Real-time embedded applications are more trustworthy 

and we do not want to pay the space and time overhead 
arising from address space separation

 The RTOS must then protect its own data structures 
from the risk of race condition

 RTOS services must therefore be non-preemptable
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System calls /3
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I/O issues

 The I/O subsystem of a real-time system may 
require its own scheduler

 Simple methods to access an I/O resource
 Use a run-to-completion non-preemptive FIFO policy
 Use some kind of TDMA scheme 

 Non-preemptive quantized

 Priority-driven scheduling techniques as those in 
use for processor scheduling
 RM, EDF, LLF can be used to schedule I/O requests
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Interrupt handling /1

 HW interrupts are the most efficient manner for the 
processor to notify the application about the 
occurrence of external events
 E.g., completion of asynchronous I/O operations like 

DMA (direct memory access)
 Frequency and computational load of the interrupt 

handling activities vary with the interrupt source
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Interrupt handling /2

 For reasons of efficiency the interrupt handling 
service is typically subdivided in an immediate part 
and a deferred part
 The immediate part executes at the level of interrupt 

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which 
code to associate to either part
 Interrupt service can also have a device-independent part and 

a device-specific part
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Interrupt handling /3

 When the HW interface asserts an interrupt the 
processor saves state registers (e.g., PC, PSW) in the 
interrupt stack and jumps to the address of the 
needed interrupt service routine (ISR)
 At this time interrupts are disabled to prevent race 

conditions on the arrival of further interrupts
 Interrupts arriving at that time may be lost or kept 

pending (depending on the HW)

 Interrupts operate at an assigned level of priority so 
that interrupt service is subject to scheduling
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Interrupt handling /4

 Depending on the HW the interrupt source is 
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally 

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 After the interrupt source has been determined 
registers are restored and interrupts are enabled 
again
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Interrupt handling /5

 The worst-case latency incurred on interrupt 
handling is determined by the time needed to
 Complete the current instruction, save registers, clear the 

pipeline, acquire the interrupt vector, activate the trap
 Disable interrupts so that the ISR can be executed at the 

highest priority
 This duration corresponds to interference across interrupts

 Save the context of the interrupted task, identify the 
interrupt source and jump to the corresponding ISR

 Begin execution of the selected ISR

2014/15 UniPD / T. Vardanega Real-Time Systems 291 of  492

Interrupt handling /6

 To reduce distributed overhead, the deferred part of 
the interrupt handling service must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on 
RTOS data structures
 Which must be protected by appropriate access control 

protocols
 If we can do that then we do not need the RTOS to 

spawn its own tasks for this purpose
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Interrupt handling /7

 To achieve better responsiveness for the deferred 
part of interrupt services schemes such as slack 
stealing or bandwidth preservation could be used
 Bandwidth preservation retains the reserve of execution 

budget not used by aperiodic activities across periodic 
replenishments

 But their implementation needs specialized support 
from the RTOS
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Time management /1

 A system clock consists of
 A periodic counting register

 Automatically reset to the tick size every time it reaches the triggering edge
and triggers the clock tick

 The register a hardware part automatically decremented at very 
clock pulse and a software part incremented by the handler of 
the clock tick

 A queue of time events fired in the interval, whose treatment 
is pending

 An (immediate) interrupt handling service
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Time management /2

 The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock
 The resolution should be an integer divisor of the tick 

size so that the RTOS may perform tick scheduling at 
every N clock ticks

 Then we have more frequent time-service interrupts and 
less frequent (ଵ

ே
) clock interrupts

 Time-service interrupts maintain the system clock
 Clock interrupts are used for scheduling
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Time management /3

 The software clock resolution is an important RTOS design 
parameter
 The finer the resolution the better the clock accuracy but the larger 

the time-service interrupt overhead
 There is delicate balance between the clock accuracy needed 

by the application and the clock resolution that can be 
afforded by the system
 Latency is intrinsic in any query made by a task to the software 

clock
 E.g., 439 clock cycles in ORK for the Leon microprocessor

 The resolution cannot be finer-grained than the maximum 
latency incurred in accessing the clock (!)
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Time management /4

 Beside periodic clocks RTOS may also support 
one-shot timers a.k.a. interval timers
 They operate in a programmed (non-repetitive) way

 The RTOS scans the queue of the programmed 
time events to set the time of the next interrupt due 
from the interval timer
 The resolution of the interval timer is limited by the time 

overhead of its handling by the RTOS
 E.g., 7,061 clock cycles in ORK for Leon 

 www.dit.upm.es/~ork/
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Time management /5

 The accuracy of time events is given by the difference 
between the time at which the event occurred and the time 
value as programmed

 It depends on three fundamental factors of influence
 The frequency at which the time-event queues are inspected

 If interval timers were not used, this would correspond to the period 
of time-service interrupts

 The policy with which the RTOS handles the time-event queues
 LIFO vs. FIFO

 The time overhead cost of handling time events in the queue
 The release time of periodic tasks is inherently exposed to 

jitter (!)
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Fine-grained response time analysis

Blocking time
(resource access 
protocol or kernel)

“In” context switch “Out” context switch
Interference from 
the clock

Interference from 
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a 
suspension callܴ௜଴ ൌ ௜ܤ ൅ 1ܵܥ ൅ ௜ܥ

ܴ௜ ൌ ܴ௜௡ ൅ ௐܬ

ܴ௜ is a compositional term Its RHS benefits from composable terms

Summary

 RTOS design issues
 Context switch
 Priority levels
 Tick scheduling
 Interrupt handling
 Time management
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