
2015/16 UniPD / T. Vardanega 05/04/2016

4.c Task interactions and blocking
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings

Task interactions and blocking

 If a task is delayed by a lower-priority task then the
priority model is, in some sense, being undermined

 The delayed task is said to suffer priority inversion
 If a task is waiting for a lower-priority task, it is said

to be blocked
 The blocked state is other than preempted or suspended

2015/16 UniPD / T. Vardanega Real-Time Systems 236 of 446

Simple locking and priority inversion /1

 To illustrate an initial example of priority inversion,
consider the execution of the task set shown below, under
simple locking (i.e., by use of binary semaphores)

Task Priority Execution sequence Release time

a 1 (low) eQQQQe 0

b 2 ee 2

c 3 eVVe 2

d 4 (high) eeQVe 4

Legend: e: one unit of execution; Q (or V): one unit of use of resource ܴ (or ܴ௩)

2015/16 UniPD / T. Vardanega Real-Time Systems 237 of 446

Simple locking and priority inversion /2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Task
priority

a

b

c

d

0 2 4 6 8 10 12 14 16
Time

2015/16 UniPD / T. Vardanega Real-Time Systems 238 of 446

2015/16 UniPD / T. Vardanega 05/04/2016

With basic priority inheritance protocol

 If task ߬ is blocking task ߬, then ߬ runs with ߬’s priority

0 2 4 6 8 10 12 14 16

a

b

c

d

Task
priority

Time

Direct blocking
from task a

Inheritance blocking

Direct blocking
from task c

Inheritance blocking

Task d is blocked

Task a inherits the priority of task d

2015/16 UniPD / T. Vardanega Real-Time Systems 239 of 446

Bounding direct blocking under BPIP

 If the system has ݎୀଵ,.., critical sections that can lead to a task
߬ being blocked under BPIP then the maximum number of
times that ߬ can be blocked is ܭ

 The upper bound on the blocking time ܤሺܿݎሻ for ߬ with ܭ
critical sections in the system is given by ܤ ܿݎ ൌ
∑ ,ݎሺ݁ݏݑ ݅ሻ ൈ ሻݎ௫ሺܥ
ୀଵ

 ,ݎሺ݁ݏݑ ݅ሻ ൌ 1 if ݎ is used by at least one task ߬: ߨ ൏ ߨ and one task
߬: ߨ ߨ | 0 otherwise

 ሻݎ௫ሺܥ being the duration of use of ݎ by any such task ߬
 The worst case for task ߬ with BPIP is to block for the longest

duration of contending use on access to all the resources it needs

2015/16 UniPD / T. Vardanega Real-Time Systems 240 of 446

Incorporating blocking in response time

2015/16 UniPD / T. Vardanega Real-Time Systems 241 of 446

Ceiling priority protocols

 Two variants
 Original CPP (a.k.a. BPCP)
 Immediate CPP (a.k.a. CPP base version)

 When using them on a single processor
 A high-priority task can only be blocked by lower-priority

tasks at most once per job
 Deadlocks are prevented by construction
 Transitive blocking is prevented by construction
 Mutual exclusive access to resources is ensured by the

protocol itself so that locks are not needed (!)

2015/16 UniPD / T. Vardanega Real-Time Systems 242 of 446

2015/16 UniPD / T. Vardanega 05/04/2016

Original CPP (BPCP)

 Each task ߬ has an assigned static priority
 Each resource ݎ has a static ceiling attribute defined as the

maximum priority of the tasks that may use it
 ߬ has a dynamic current priority ߨ ݐ at time ݐ that is set to

the maximum of its assigned priority and any priorities it
has inherited at ݐ from blocking higher-priority tasks

 ߬ can lock a resource ݎ iff ߨ ݐ ೕሻߨሺݔܽ݉ for all ݎ
currently locked (excluding those ߬ locks itself) at time ݐ
 The blocking ܤ suffered by ߬ is bounded by the longest critical

section with ceiling ߨೖ ߨ
 ܤ ൌ ݁ݏݑୀଵ,..ሺݔܽ݉ ,ݎ ݅ ൈ ௫ܥ ݎ ሻ

2015/16 UniPD / T. Vardanega Real-Time Systems 243 of 446

Inheritance with O-CPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task
priority

Time

Avoidance blocking

Inheritance blocking

c’s priority < system ceiling : access is denied

a inherits c’s priority

Direct blocking

a inherits d’s priority

Inheritance blocking

Q is locked : access is denied

a inherits c’s priority

2015/16 UniPD / T. Vardanega Real-Time Systems 244 of 446

Immediate CPP

 Each task ߬ has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource ݎ has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

 ߬ has a dynamic current priority ߨ ݐ at time ݐ that is the
maximum of its own static priority and the ceiling values of
any resources it is currently using

 Any job of that task will only suffer a block at release
 Once the job starts executing all the resources it needs must be free
 If they were not then some task would have priority ≥ than the job’s

hence its execution would be postponed
 Blocking computed as for O-CPP

2015/16 UniPD / T. Vardanega Real-Time Systems 245 of 446

Inheritance with I-CPP

2015/16 UniPD / T. Vardanega Real-Time Systems 246 of 446

a

b

c

d

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

Task a inherits Q’s ceiling priority

2015/16 UniPD / T. Vardanega 05/04/2016

O-CPP versus I-CPP

 Although the worst-case behavior of the two ceiling priority
schemes is identical (from a scheduling viewpoint), there are
some points of difference
 I-CPP is easier to implement than O-CPP as blocking relationships

need not be monitored
 I-CPP leads to less context switches as blocking occurs prior to job

activation
 I-CPP requires more priority movements as they happen with all

resource usages
 O-CPP changes priority only if an actual block has occurred

 I-CPP is called Priority Protect Protocol in POSIX and Priority Ceiling
Emulation in Ada and Real-Time Java

2015/16 UniPD / T. Vardanega Real-Time Systems 247 of 446

An extendible task model

 Our workload model so far allows
 Constrained and implicit deadlines (ܦ ܶ)
 Periodic and sporadic tasks

 As well as aperiodic tasks under some server scheme

 Task interactions with the resulting blocking being
(compositionally) factored in the response time equations

2015/16 UniPD / T. Vardanega Real-Time Systems 248 of 446

Model extensions

 Cooperative scheduling
 Release jitter
 Arbitrary deadlines
 Fault tolerance
 Offsets
 Optimal priority assignment

2015/16 UniPD / T. Vardanega Real-Time Systems 249 of 446

Cooperative scheduling /1

 Fully preemptive behavior may not be always acceptable for
safety-critical systems

 Cooperative or deferred-preemption scheduling splits tasks
into (fixed or floating) slots
 The running task calls the scheduler (yield) at the end of each slot
 If no higher-priority task is ready then the task continues into the next slot
 The time duration of each such slot is bounded by ܤ௫
 Mutual exclusion is realized by non-preemption (else it gets broken)

 The use of deferred preemption has two important benefits
 It increases system feasibility as it can lead to lower response time values

 It dominates both preemptive and non-preemptive scheduling (!)

 No interference can occur (by definition) during each last slot of execution

2015/16 UniPD / T. Vardanega Real-Time Systems 250 of 446

2015/16 UniPD / T. Vardanega 05/04/2016

2015/16 UniPD / T. Vardanega Real-Time Systems 251 of 446

 Let the execution time of the final slot be

 When the response time equation converges, that is,
when , the response time is given by

Cooperative scheduling /2

2015/16 UniPD / T. Vardanega Real-Time Systems 252 of 446

Release jitter /1

 A serious problem for precedence-constrained tasks
 Especially under parallelism (hence in distributed systems and multi-cores)

 Example: a periodic task ߬ with period ܶ ൌ 20 releases a
sporadic task ߬௩ at the end of every run of ߬’s jobs

 What is the interval time between any two subsequent releases of
jobs of ߬௩?

Time
߬

Sporadic arrival ࢜ ൌ ࢚ ࢙ࡾ
These two sporadic releases of ߬௩ are spaced
by 21-15 = 6 time units (!) owing to jitter in
߬ ’s response time: ߬௩ inherits ߬ ’s period ܶ
and release jitter ܬ௩ ൌ ܴೌೣ െ ܴ

ܶ ൌ 20

Sporadic arrival ࢜శ ൌ ࢚ శ࢙ࡾ

t ܴೞ ൌ 15 ܴೞశభ ൌ 1

2015/16 UniPD / T. Vardanega Real-Time Systems 253 of 446

 Sporadic task ߬௦ released at 0, ܶ െ ,ܬ 2ܶ െ ,ܬ 3ܶ െ ܬ
 Examination of the derivation of the RTA equation implies that

task ߬ will suffer
 One interference from ߬௦ if ܴ ∈ ሾ0, ܶ െ ሻܬ
 Two interferences if ܴ ∈ ሾܶ െ ,ܬ 2ܶ െ ሻܬ
 Three interferences if ܴ ∈ ሾ2ܶ െ ,ܬ 3ܶ െ ሻܬ

 Release jitter in higher-priority tasks extends their interference
potential: the response time equation captures that as
ܴ ൌ ܥ ܤ ∑ ோାೕ

்ೕ
∈ሺሻܥ

 Periodic tasks can only suffer release jitter if the clock is jittery
 In that case the response time of a jittery periodic task ߬ measured

relative to the real release time becomes ܴ′ ൌ ܴ ܬ

Release jitter /2

2015/16 UniPD / T. Vardanega Real-Time Systems 254 of 446

2015/16 UniPD / T. Vardanega 05/04/2016

Arbitrary deadlines /1

 The RTA equation must be modified to cater for
situations where D > T in which multiple jobs of the
same task compete for execution
 ߱

ାଵ ݍ ൌ ݍ 1 ܥ ∑ ఠ
ሺሻ
்ೕ

∈ሺሻܥ

 ܴ ݍ ൌ ߱
 ݍ െ ݍ ܶ

 The number ݍ of additional releases to consider is
bounded by the lowest value of ݍ:ܴሺݍሻ ܶ
 ߱ሺݍሻ represents the level-i busy period, which extends as

long as ݍ ܶ falls within it

 The worst-case response time is then ܴ ൌ ሻݍܴሺݔܽ݉

2015/16 UniPD / T. Vardanega Real-Time Systems 255 of 446

Arbitrary deadlines /2

2015/16 UniPD / T. Vardanega Real-Time Systems 256 of 446

߱ሺݍሻ

ܶ

0 1 2 ݍ

The ሺݍ 1ሻ௧ job release of
task ߬ falls in the level-݅ busy period
but this ݍ is also the last index to
consider as the next job release belongs
in a different busy period

ݍ 1

Arbitrary deadlines /3

 When the formulation of the RTA equation is
combined with the effect of release jitter, two
alterations must be made
 First, the interference factor must be increased if any higher

priority tasks suffers release jitter

 Second, if the task under analysis can suffer release jitter then
two consecutive windows could overlap if response time plus
jitter is greater than period

2015/16 UniPD / T. Vardanega Real-Time Systems 257 of 446

ݍ

Arbitrary deadlines /4

2015/16 UniPD / T. Vardanega Real-Time Systems 258 of 446

߱ሺݍሻ

ܶ

0 1 2 ݍ

If task ߬ has release jitter then
the level-݅ busy period may extend
until the next release

ݍ 1
ܬ

2015/16 UniPD / T. Vardanega 05/04/2016

Offsets

 So far we assumed all tasks share a common release time
(a.k.a. the critical instant)

Task T D C R U=0.9
a 8 5 4 4
b 20 9 4 8
c 20 10 4 16

 What if we allowed offsets?
Task T D C O R

a 8 5 4 0 4
b 20 9 4 0 8
c 20 10 4 10 8

Deadline miss!

Note that arbitrary
offsets are not
tractable with critical-
instant analysis hence
we cannot use the
RTA equation for it!

2015/16 UniPD / T. Vardanega Real-Time Systems 259 of 446

Non-optimal analysis /1

 Task periods are not arbitrary in reality: they are likely to
have some relation to one another
 In the previous example two tasks have a common period
 In this case we might give one of such tasks an offset ܱ (e.g.,

tentatively set to ்
ଶ

, so long that ܱ ܦ ܶ) and then analyze the
resulting system with a transformation that removes the offset so
that critical-instant analysis continues to apply

 Doing so with the example, tasks ߬, ߬ (߬ with ܱ ൌ 10)
are replaced by a single notional task with
ܶ ൌ ܶ െ ܱ ൌ

்್
ଶ

ܥ , ൌ ܥ ൌ ܦ ,4 ൌ ܶ and no offset
 This technique aids in the determination of a “good” offset
 The RTA equation on slide 150 shows how to consider offsets , but

determining the worst case with them is an intractable problem

2015/16 UniPD / T. Vardanega Real-Time Systems 260 of 446

Non-optimal analysis /2

 This notional task ߬ has two important properties
 If it is feasible (when sharing a critical instant with all other tasks) then the two real

tasks that it represents will meet their deadlines when one is given the half-period
offset

 If all lower priority tasks are feasible when suffering interference from ߬ then they
will stay schedulable when the notional task is replaced by the two real tasks (one
of which with offset)

 These properties follow from the observation that ߬ always has no
less CPU utilization than the two real tasks it subsumes

Task T D C O R U=0.9
߬ 8 5 4 0 4
߬ 10 10 4 0 8

2015/16 UniPD / T. Vardanega Real-Time Systems 261 of 446

Notional task parameters

2015/16 UniPD / T. Vardanega Real-Time Systems 262 of 446

This strategy can be extended to handle more than two tasks

Tasks ߬ and ߬ have the same period
else we would use ݊݅ܯሺ ܶ, ܶሻ for greater pessimism

Priority relations

2015/16 UniPD / T. Vardanega 05/04/2016

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

 Theorem: If task p is assigned the lowest priority and is feasible then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task p assigned the lowest priority

2015/16 UniPD / T. Vardanega Real-Time Systems 263 of 446

Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for singlecore systems
to wider range of relaxations of workload parameters
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 Any such relaxation should preserve schedulability
 Much like what predictability does for increase

 A sustainable scheduling algorithm does not suffer
scheduling anomalies

2015/16 UniPD / T. Vardanega Real-Time Systems 264 of 446

Summary

 Completing the survey and critique of resource access
control protocols using some examples

 Relevant extensions to the simple workload model
 A simulated-annealing heuristic for the assignment of

priorities

2015/16 UniPD / T. Vardanega Real-Time Systems 265 of 446

Selected readings

 A. Baldovin, E. Mezzetti, T. Vardanega
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596

2015/16 UniPD / T. Vardanega Real-Time Systems 266 of 446

