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4.c Task interactions and blocking 
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings

Task interactions and blocking

 If a task is delayed by a lower-priority task then the 
priority model is, in some sense, being undermined

 The delayed task is said to suffer priority inversion
 If a task is waiting for a lower-priority task, it is said 

to be blocked
 The blocked state is other than preempted or suspended
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Simple locking and priority inversion /1

 To illustrate an initial example of priority inversion, 
consider the execution of the task set shown below, under 
simple locking (i.e., by use of binary semaphores)

Task Priority Execution sequence Release time

a 1 (low) eQQQQe 0

b 2 ee 2

c 3 eVVe 2

d 4 (high) eeQVe 4

Legend: e: one unit of  execution; Q (or V): one unit of  use of  resource ܴ (or ܴ௩)
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Simple locking and priority inversion /2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Task
priority

a

b

c

d

0 2 4 6 8 10 12 14 16
Time
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With basic priority inheritance protocol

 If task ߬ is blocking task ߬, then ߬ runs with ߬’s priority

0 2 4 6 8 10 12 14 16

a

b

c

d

Task
priority

Time

Direct blocking
from task a

Inheritance blocking

Direct blocking
from task c

Inheritance blocking

Task d is blocked

Task a inherits the priority of  task d
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Bounding direct blocking under BPIP

 If the system has ݎୀଵ,.., critical sections that can lead to a task 
߬ being blocked under BPIP then the maximum number of 
times that ߬ can be blocked is ܭ

 The upper bound on the blocking time ܤሺܿݎሻ for ߬ with ܭ
critical sections in the system is given by ܤ ܿݎ ൌ
∑ ,ݎሺ݁ݏݑ ݅ሻ ൈ ሻݎ௫ሺܥ
ୀଵ

 ,ݎሺ݁ݏݑ ݅ሻ ൌ 1 if ݎ is used by at least one task ߬: ߨ ൏ ߨ and one task 
߬: ߨ  ߨ | 0 otherwise 

 ሻݎ௫ሺܥ being the duration of use of ݎ by any such task ߬
 The worst case for task ߬ with BPIP is to block for the longest 

duration of contending use on access to all the resources it needs
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Incorporating blocking in response time
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Ceiling priority protocols

 Two variants
 Original CPP (a.k.a. BPCP)
 Immediate CPP (a.k.a. CPP base version)

 When using them on a single processor
 A high-priority task can only be blocked by lower-priority 

tasks at most once per job
 Deadlocks are prevented by construction
 Transitive blocking is prevented by construction
 Mutual exclusive access to resources is ensured by the 

protocol itself so that locks are not needed (!)
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Original CPP (BPCP)

 Each task ߬ has an assigned static priority
 Each resource ݎ has a static ceiling attribute defined as the 

maximum priority of the tasks that may use it
 ߬ has a dynamic current priority ߨ ݐ at time ݐ that is set to 

the maximum of its assigned priority and any priorities it 
has inherited at ݐ from blocking higher-priority tasks

 ߬ can lock a resource ݎ iff ߨ ݐ  ೕሻߨሺݔܽ݉ for all ݎ
currently locked (excluding those ߬ locks itself) at time ݐ
 The blocking ܤ suffered by ߬ is bounded by the longest critical 

section with ceiling ߨೖ  ߨ
 ܤ ൌ ݁ݏݑୀଵ,..ሺݔܽ݉ ,ݎ ݅ ൈ ௫ܥ ݎ ሻ
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Inheritance with O-CPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task
priority

Time

Avoidance blocking

Inheritance blocking

c’s priority < system ceiling : access is denied

a inherits c’s priority

Direct blocking

a inherits d’s priority

Inheritance blocking

Q is locked : access is denied

a inherits c’s priority
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Immediate CPP

 Each task ߬ has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource ݎ has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it

 ߬ has a dynamic current priority ߨ ݐ at time ݐ that is the 
maximum of its own static priority and the ceiling values of 
any resources it is currently using

 Any job of that task will only suffer a block at release
 Once the job starts executing all the resources it needs must be free
 If they were not then some task would have priority ≥ than the job’s 

hence its execution would be postponed
 Blocking computed as for O-CPP
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Inheritance with I-CPP
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a

b
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d
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Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

Task a inherits Q’s ceiling priority
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O-CPP versus I-CPP

 Although the worst-case behavior of the two ceiling priority 
schemes is identical (from a scheduling viewpoint), there are 
some points of difference
 I-CPP is easier to implement than O-CPP as blocking relationships 

need not be monitored
 I-CPP leads to less context switches as blocking occurs prior to job 

activation
 I-CPP requires more priority movements as they happen with all

resource usages
 O-CPP changes priority only if an actual block has occurred

 I-CPP is called Priority Protect Protocol in POSIX and Priority Ceiling 
Emulation in Ada and Real-Time Java
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An extendible task model

 Our workload model so far allows
 Constrained and implicit deadlines (ܦ  ܶ)
 Periodic and sporadic tasks 

 As well as aperiodic tasks under some server scheme

 Task interactions with the resulting blocking being 
(compositionally) factored in the response time equations
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Model extensions

 Cooperative scheduling
 Release jitter
 Arbitrary deadlines
 Fault tolerance
 Offsets
 Optimal priority assignment
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Cooperative scheduling /1

 Fully preemptive behavior may not be always acceptable for 
safety-critical systems

 Cooperative or deferred-preemption scheduling splits tasks 
into (fixed or floating) slots
 The running task calls the scheduler (yield) at the end of each slot
 If no higher-priority task is ready then the task continues into the next slot
 The time duration of each such slot is bounded by ܤ௫
 Mutual exclusion is realized by non-preemption (else it gets broken)

 The use of deferred preemption has two important benefits
 It increases system feasibility as it can lead to lower response time values

 It dominates both preemptive and non-preemptive scheduling (!)

 No interference can occur (by definition) during each last slot of execution
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 Let the execution time of the final slot be

 When the response time equation converges, that is,      
when                     ,  the response time is given by

Cooperative scheduling /2
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Release jitter /1

 A serious problem for precedence-constrained tasks 
 Especially under parallelism (hence in distributed systems and multi-cores)

 Example: a periodic task ߬ with period ܶ ൌ 20 releases a 
sporadic task ߬௩ at the end of every run of ߬’s jobs

 What is the interval time between any two subsequent releases of 
jobs of ߬௩?

Time
߬

Sporadic arrival ࢜ ൌ ࢚  ࢙ࡾ
These two sporadic releases of  ߬௩ are spaced 
by 21-15 = 6 time units (!) owing to jitter in 
߬ ’s response time: ߬௩ inherits ߬ ’s period ܶ
and release jitter ܬ௩ ൌ ܴೌೣ െ ܴ

ܶ ൌ 20

Sporadic arrival ࢜శ ൌ ࢚  శ࢙ࡾ

t ܴೞ ൌ 15 ܴೞశభ ൌ 1

2015/16 UniPD / T. Vardanega Real-Time Systems 253 of  446

 Sporadic task ߬௦ released at 0, ܶ െ ,ܬ 2ܶ െ ,ܬ 3ܶ െ ܬ
 Examination of the derivation of the RTA equation implies that 

task ߬ will suffer 
 One interference from ߬௦ if ܴ ∈ ሾ0, ܶ െ ሻܬ
 Two interferences if ܴ ∈ ሾܶ െ ,ܬ 2ܶ െ ሻܬ
 Three interferences if ܴ ∈ ሾ2ܶ െ ,ܬ 3ܶ െ ሻܬ

 Release jitter in higher-priority tasks extends their interference 
potential: the response time equation captures that as
ܴ ൌ ܥ  ܤ  ∑ ோାೕ

்ೕ
∈ሺሻܥ

 Periodic tasks can only suffer release jitter if the clock is jittery
 In that case the response time of a jittery periodic task ߬ measured 

relative to the real release time becomes ܴ′ ൌ ܴ  ܬ

Release jitter /2
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Arbitrary deadlines /1 

 The RTA equation must be modified to cater for 
situations where D > T in which multiple jobs of the 
same task compete for execution
 ߱

ାଵ ݍ ൌ ݍ  1 ܥ  ∑ ఠ
ሺሻ
்ೕ

∈ሺሻܥ

 ܴ ݍ ൌ ߱
 ݍ െ ݍ ܶ

 The number ݍ of additional releases to consider is 
bounded by the lowest value of ݍ:ܴሺݍሻ  ܶ
 ߱ሺݍሻ represents the level-i busy period, which extends as 

long as ݍ ܶ falls within it 

 The worst-case response time is then ܴ ൌ ሻݍܴሺݔܽ݉
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Arbitrary deadlines /2
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߱ሺݍሻ

ܶ

0 1 2 ݍ

The ሺݍ  1ሻ௧ job release of  
task ߬ falls in the level-݅ busy period
but this ݍ is also the last index to
consider as the next job release belongs
in a different busy period

ݍ  1

Arbitrary deadlines /3

 When the formulation of the RTA equation is 
combined with the effect of release jitter, two 
alterations must be made
 First, the interference factor must be increased if any higher 

priority tasks suffers release jitter

 Second, if the task under analysis can suffer release jitter then 
two consecutive windows could overlap if response time plus 
jitter is greater than period 
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ݍ

Arbitrary deadlines /4
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߱ሺݍሻ

ܶ

0 1 2 ݍ

If  task ߬ has release jitter then 
the level-݅ busy period may extend 
until the next release

ݍ  1
ܬ
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Offsets

 So far we assumed all tasks share a common release time 
(a.k.a. the critical instant)

Task             T          D            C         R      U=0.9
a      8    5    4    4
b     20    9    4    8
c     20   10    4   16

 What if we allowed offsets?
Task             T          D            C       O        R

a      8    5    4   0   4
b     20    9    4   0   8
c     20   10    4  10   8

Deadline miss!

Note that arbitrary 
offsets are not
tractable with critical-
instant analysis hence 
we cannot use the 
RTA equation for it!
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Non-optimal analysis /1

 Task periods are not arbitrary in reality: they are likely to 
have some relation to one another
 In the previous example two tasks have a common period
 In this case we might give one of such tasks an offset ܱ (e.g., 

tentatively set to ்
ଶ

, so long that ܱ  ܦ  ܶ) and then analyze the 
resulting system with a transformation that removes the offset so 
that critical-instant analysis continues to apply

 Doing so with the example, tasks ߬, ߬ (߬ with ܱ ൌ 10) 
are replaced by a single notional task with
ܶ ൌ ܶ െ ܱ ൌ

்್
ଶ

ܥ , ൌ ܥ ൌ ܦ ,4 ൌ ܶ and no offset
 This technique aids in the determination of a “good” offset
 The RTA equation on slide 150 shows how to consider offsets , but 

determining the worst case with them is an intractable problem
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Non-optimal analysis /2

 This notional task ߬ has two important properties
 If it is feasible (when sharing a critical instant with all other tasks) then the two real 

tasks that it represents will meet their deadlines when one is given the half-period 
offset

 If all lower priority tasks are feasible when suffering interference from ߬ then they 
will stay schedulable when the notional task is replaced by the two real tasks (one 
of which with offset)

 These properties follow from the observation that ߬ always has no 
less CPU utilization than the two real tasks it subsumes

Task           T          D          C      O       R    U=0.9
߬ 8    5    4   0   4
߬ 10   10    4   0   8
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Notional task parameters
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This strategy can be extended to handle more than two tasks

Tasks ߬ and ߬ have the same period
else we would use ݊݅ܯሺ ܶ, ܶሻ for greater pessimism

Priority relations
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procedure Assign_Pri (Set : in out Task_Set; 
N   : Natural; -- number of tasks
OK  : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

 Theorem: If task p is assigned the lowest priority and is feasible then, if a 
feasible priority ordering exists for the complete task set, an ordering exists 
with task p assigned the lowest priority
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Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for singlecore systems 
to wider range of relaxations of workload parameters 
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 Any such relaxation should preserve schedulability
 Much like what predictability does for increase

 A sustainable scheduling algorithm does not suffer 
scheduling anomalies

2015/16 UniPD / T. Vardanega Real-Time Systems 264 of  446

Summary

 Completing the survey and critique of resource access 
control protocols using some examples

 Relevant extensions to the simple workload model
 A simulated-annealing heuristic for the assignment of 

priorities
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Selected readings

 A. Baldovin, E. Mezzetti, T. Vardanega
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596
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