
2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 1

8.a Multicore systems –
initial reckoning

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a 
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2015/16 UniPD / T. Vardanega Real-Time Systems 356 of  446

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor

2015/16 UniPD / T. Vardanega Real-Time Systems 357 of  446

Understanding the hardware /3

2015/16 UniPD / T. Vardanega Real-Time Systems 358 of  446

Instruction
cache

Data
cache

Caches

Courtesy of



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 2

Hardware interference /1

 Parallel execution on a multiprocessor causes vast 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to hold the CPU 
without progressing (!)
 Unlike software interference, which prevents a ready 

thread from running

2015/16 UniPD / T. Vardanega Real-Time Systems 359 of  446

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of a simple 
single-path program 
running alone does not
stay the same when 
other programs happen 
to execute on other 
CPUs

2015/16 UniPD / T. Vardanega Real-Time Systems 360 of  446

Courtesy of

A big anomaly

2015/16 UniPD / T. Vardanega Real-Time Systems 361 of  446

Single-core alone Multicore alone on CPU w/o SW interaction

ൈ 2.75

Courtesy of

State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they 
have low utilization 
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential time 
complexity
 The known sufficient tests have polynomial time complexity but obviously 

are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet

2015/16 UniPD / T. Vardanega Real-Time Systems 362 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 3

Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks have no internal parallelism: they can run only on one CPU at any 

one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are built into WCET estimates 

2015/16 UniPD / T. Vardanega Real-Time Systems 363 of  446

Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A scheduling algorithm is work conserving if processors are not idle 

while tasks eligible for execution are not able to execute on other 
processors

2015/16 UniPD / T. Vardanega Real-Time Systems 364 of  446

The solution space for scheduling

2015/16 UniPD / T. Vardanega Real-Time Systems 365 of  446

Global Partitioned

Clustered Hybrid (semi-partitioned)

Software interference /1

 We know what is the interference ܫ௜ suffered by a 
task ߬௜ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors interference only occurs for tasks from 
݉ ൅ 1 onward

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors

2015/16 UniPD / T. Vardanega Real-Time Systems 366 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 4

Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௞௠௔௫ ൌ ௞ܥ ൅
ଵ
௠
∑ ሺ ோೖ

೘ೌೣ

்ೕ
௝ܥ ൅ ሻఛೕ∈௛௣ሺ௞ሻ݆ܥ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact

2015/16 UniPD / T. Vardanega Real-Time Systems 367 of  446

Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks 
a and b first on each of the 2 processors

 But this would leave no time for task c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

෍ ௜ܷ ൌ 1.67 ൏ 2
௜

2015/16 UniPD / T. Vardanega Real-Time Systems 368 of  446

Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use 
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

෍ ௜ܷ ൌ 2
௜

2015/16 UniPD / T. Vardanega Real-Time Systems 369 of  446

Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task

2015/16 UniPD / T. Vardanega Real-Time Systems 370 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 5

Anomaly 1: decrease in ݄݌ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ௜ܷ ൌ 1.83௜ but
߬௖ is saturated because ܥ௖ ൅ ௖ܫ ൌ ௖ܦ
hence any increase in ܫ௖ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2015/16 UniPD / T. Vardanega Real-Time Systems 371 of  446

Anomaly 1 (cont’d)

 If we reduce ௔ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ௖ increases from 4 to 6 and ߬௖ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2015/16 UniPD / T. Vardanega Real-Time Systems 372 of  446

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬௖ with ܫ௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2015/16 UniPD / T. Vardanega Real-Time Systems 373 of  446

Anomaly 2 (cont’d)

 If we extend ௖ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ௖ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬௖

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2015/16 UniPD / T. Vardanega Real-Time Systems 374 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 6

The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and 
implement 
 They work very well on single-core processors
 EDF [1] and LLF [2] are optimal for single-core processors

 They collapse the urgency of a job into a single value and use it to 
greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail 
when used on multiprocessors
 EDF and LLF are no longer optimal

2015/16 UniPD / T. Vardanega Real-Time Systems 375 of  446

Theorem 1 (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, then no feasible schedule can 
allow any processor to remain idle for any length of time

Why do greedy schedulers fail?

2015/16 UniPD / T. Vardanega Real-Time Systems 376 of  446

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task ߬௜ is assigned resources in proportion to its weight

௜ܹ ൌ 		
஼೔
்೔

so that it progresses proportionately

 Useful e.g., for real-time multimedia applications

 At every time ݐ task ߬௜ must have been scheduled either 
௜ܹ ൈ ݐ or ௜ܹ ൈ ݐ time units

 Without loss of generality, preemption is assumed to only 
occur at integral time units

 The workload model is assumed to be periodic

2015/16 UniPD / T. Vardanega Real-Time Systems 377 of  446

P-fair scheduling /2

 ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ is the difference between the total 
resource allocation that task ߬௜ should have received 
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬௜ is ahead iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൏ 0
 ߬௜ is behind iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൐ 0
 ߬௜ is punctual iff ,ሺܵࢍࢇ࢒ ߬௜, ሻݐ ൌ 0

2015/16 UniPD / T. Vardanega Real-Time Systems 378 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 7

P-fair scheduling /3

 ሻݔሺࢻ is the characteristic (infinite) string of task ߬௫
over ሼെ, 0, ൅ሽ for ݐ ∈ Գ with
 ௧ࢻ ݔ ൌ ࢔ࢍ࢏࢙ ௫ܹ · ݐ ൅ 1 െ ௫ܹ · ݐ െ 1

 Distance from the integral approximation of fluid curve
 ,ݔሺࢻ ሻݐ is the characteristic substring
௧ାଵࢻ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ… ݔ of task ߬௫ at time ݐ
where ݐ′ ൌ ݉݅݊ ݅: ݅ ൐ :ݐ ሻݔ௜ሺࢻ ൌ 0

 For a P-fair schedule ܵ	at time ݐ, task ߬௜ is
 Urgent iff ߬௜ is behind and ࢚ࢻ ߬௜ ് െ
 Tnegru iff ߬௜ is ahead and ࢚ࢻ ߬௜ ് ൅
 Contending otherwise

2015/16 UniPD / T. Vardanega Real-Time Systems 379 of  446

Properties of a P-fair schedule ܵ

 For task ߬௜	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ not scheduled at ݐ then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at t then ߬௜ is ahead at ݐ ൅ 1

 For task ߬௜	behind at time ݐ under ܵ
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ scheduled at ݐ	then ߬௜ is ahead at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ െ and ߬௜ not scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ 0 and ߬௜ scheduled at ݐ	then ߬௜ is punctual at ݐ ൅ 1
 If ࢚ࢻ ߬௜ ൌ ൅ and ߬௜ scheduled at ݐ	then ߬௜ is behind at ݐ ൅ 1

urgent

tnegru

2015/16 UniPD / T. Vardanega Real-Time Systems 380 of  446

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ to preserve 

P-fairness
 No task tnegru at time ݐ can be scheduled at ݐ without breaking 

P-fairness

 Problems with ݊଴ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at 
time ݐ, with ݉ resources and ݊ ൌ ݊଴ ൅ ݊ଵ ൅ ݊ଶ
 If ݊ଶ ൐ ݉ the scheduling algorithm cannot schedule all urgent

tasks
 If ݊଴ ൐ ݊ െ݉ the scheduling algorithm is forced to schedule 

some tnegru tasks
2015/16 UniPD / T. Vardanega Real-Time Systems 381 of  446

P-fair scheduling /5

 The PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ൒ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ ൅

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ଴,௡ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm

2015/16 UniPD / T. Vardanega Real-Time Systems 382 of  446



2015/16 UniPD / T. Vardanega 20/05/2016

Real-Time Systems 8

Example (PF scheduling) /1

Task C T W

v 1 3 0.333…
w 2 4 0.5
x 5 7 0.714…
y 8 11 0.727…
z 335 462 3-U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top 

system utilization up
 In general its period is set to the 

system hyperperiod
 This time we halved it

 With PF we always have 
݊ଶ ൐ ݉ and ݊଴ ൑ ݊ െ݉

2015/16 UniPD / T. Vardanega Real-Time Systems 383 of  446

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

2015/16 UniPD / T. Vardanega Real-Time Systems 384 of  446


