
8.b A stint of Deadline-
Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin’s original presentation

From a different deck

The slide deck that follows proceeds from the past
exam of a student of this class

2015/16 UniPD / T. Vardanega Real-Time Systems 386 of  442

DP-Fair motivation

Focus on periodic, independent task set with implicit 
deadlines ( )

Scheduling overhead costs assumed in task requirements
and 

Process migration allowed

With unlimited context switches and migrations any task 
set meeting the above conditions will be feasible

This problem is easy

What’s difficult is to find a valid schedule that minimizes 
context switches and migrations

2015/16 UniPD / T. Vardanega Real-Time Systems 387 of  492

Partition time into slices demarcated by the deadlines of 
all tasks in the system

All jobs are allocated a workload in each slide and these 
workload share the same deadline

Why is DP so effective?

No optimal on-line scheduler can exist for a set of jobs with 
two or more distinct deadlines on any multiprocessor 
system, where 

Deadline partitioning
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DP-Correct /1

The time slice scheduler will execute all jobs’ 
allocated workload within the end of the time slice 
whenever it is possible to do so
Jobs are allocated workloads for each slice so that it 
is possible to complete this work within the slice

Completion of these workloads causes all tasks’ 
actual deadlines to be met
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DP-Correct /2
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Notation

denote distinct deadlines of all tasks in 
is the time slice in 

Local execution remaining is the amount of time that 
must execute before the next slice boundary
Local utilization

the ler of the whole task set
is the lu of the whole task set

Slack and represents a dummy job
is the arrival time of the job of 
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DP-Fair rules for periodic tasks set

DP-Fair allocation
All tasks hit their fluid rate curve at the end of each slice by 
assigning each task a workload proportional to its utilization
At every assign to 

DP-Fair scheduling for time slices
A slice-scheduling algorithm is DP-Fair if it schedules jobs 
within a time slice according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than units of idle time to occur in 

before time 
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DP-Fair optimality – Proof

Lemma 3

If tasks in are scheduled within a time slice by DP-Fair
scheduling and at all times , then all tasks in 
will meet their local deadline at the end of the slice
Lemma 4

If a task set of periodic tasks with implicit deadlines is 
scheduled in using DP-Fair algorithm, then will hold 
at all times 

Any DP-Fair scheduling algorithm for periodic task sets 
with implicit deadlines is optimal 
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A DP-Fair algorithm: DP-Wrap /1

Make blocks of length for each and line these 
blocks up along a number line (in any order), starting at 
zero

Split this stack of blocks into chunks of length 1 at 
1,2,...,m  1
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A DP-Fair algorithm: DP-Wrap /2

Use deadline partitioning to divide time into slices
Assign each chunk to its own processor and multiply each 
chunk’s length (1) by the length of the segment ( )
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DP-Wrap features

A very simple algorithm that satisfied all DP-Fair 
rules
Almost all calculations can be done in a 
preprocessing step (with static task sets)
No computational overhead at secondary events

context switches and migrations per 
slice with mirroring
Heuristics may exist to improve performance

Less migration and context switches
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Mirroring

For tasks that split across two slices
If and are split and executes at the beginning and executes at the 
end of the slice then revert the schedule in slice so that executes at 
the beginning and at the end
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Sporadic tasks and 

DP-Fair algorithms are still optimal when 
and 

Definitions
Freeing slack: unused capacity 
Active:

, : amounts of time that task has been active 
or freeing slack during slice as of time 
Local capacity:
Freed slack in as of time : 
Slack: 
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DP-Fair scheduling for time slices /1

A slice-scheduling algorithm is DP-Fair if it schedules 
jobs within a time slice according to the following 
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than units of idle time 

to occur in before time 
4. Initialize to . At the start time of any active time 

segment for in (either or ) that ends at 
time , increment by 
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DP-Fair scheduling for time slices /2

Rules continued …
5. When a task arrives in a slice at time and its 

deadline falls within 
Split the remainder of after into two secondary slices 
so that the deadline of coincides with the end of 
Divide the remaining local execution (and capacity) of all jobs in 

(as well as the slack allotment from RULE 3) proportionally 
to the lengths of 
This step may be invoked recursively for any within 
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DP-Fair scheduling for time slices /3
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Proof
Lemma 7
A DP-Fair algorithm cannot cause more than units of idle time in slice 
prior to time 
Lemma 8
If a set of sporadic tasks with constrained deadlines is scheduled in using a DP-Fair algorithm, 
then will hold at all times 

Any DP-Fair scheduling algorithm is optimal for sporadic 
task sets with constrained deadlines where

Correctness
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DP-Wrap modified

If task issues a job at time in slice and 
then allocate execution time 

following RULE 4
If instead then split the remainder of 
following RULE 5
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Arbitrary deadlines /1

Task set below is not feasible on 2 processors

units of work to be completed by time 
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Arbitrary deadlines /2

Is there a cure to this problem?
If task has we simply impose an artificial 
deadline 
Density is not increased hence if is met, will 
also be
But this increases the number of context switches 
and migrations!
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Is DP-Fair scheduling sustainable? /1

Consider model with sporadic tasks and 
arbitrary deadline
Two cases may occur

The new value of the relaxed parameter is not used in 
the scheduling and allocation policies
The new value of the relaxed parameter becomes 
known a priori/at job arrival and it is used in the 
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

Shorter execution time
Case 1 (shorter , same density)

Task set is schedulable and the system allocates 
workload per each task in each slice
If then task uses part of assigned workload and surely 
completes before its deadline

Case 2 (shorter , lesser density)
As DP-Fair is optimal when and 
a DF-Fair feasible schedule exists for 
A feasible schedule for exists as 
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Is DP-Fair scheduling sustainable? /3

Longer inter-arrival time
Case 1 (longer , same density)

Simply a less demanding instance of sporadic task
The allocation and scheduling rules cover this case

Case 2 (longer , lesser density)
If whereby is 
feasible if was feasible
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Is DP-Fair scheduling sustainable? /4

Longer deadline
Case 1 (longer , same density)

Task completes its workload at time 

Case 2 (longer , lesser density)
If whereby is 
feasible if was feasible

We may therefore conclude that DP-Fair 
scheduling is sustainable
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Related work: Boundary Fair /1

Very similar to P-Fair
It still uses a function and a characteristic string to evaluate 
the fairness of tasks [4] with per-quantum task allocation

It uses deadline partitioning
It uses a less strict notion of fairness

At the end of every slice the absolute value of the allocation 
error for any task is less than one time unit

Scheduling decisions made at the start of every slice
It reduces context switches packing two or more allocated 
time units of processor to the same task into consecutive units
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Related work: Boundary Fair /2

Not DP-Fair but DP-Correct

2015/16 UniPD / T. Vardanega Real-Time Systems 411 of  492

Related work: LLREF [5] /1

It uses deadline partitioning with DP-Wrap task allocation
In each slice scheduling is made using the notion of T-L Plane

Each task is represented by a token within a triangle and its position 
stands for the local remaining work of at time 
The horizontal cathetus indicates the time
The length of the vertical cathetus is one processor’s execution capacity
The hypotenuse represents the-no laxity line
Token can move in two directions. Horizontally if the task doesn’t 
execute, diagonally down if it does
When a token hits the horizontal cathetus or the hypotenuse (secondary 
events) a scheduling decision is made

Tasks are sorted and m tasks with the least laxity are executed
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Related work: LLREF /2

DP-Fair algorithm but does unnecessary work
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Related work: EKG [6]

Tasks are divided into heavy and light
Each heavy task is assigned to a dedicate processor
Every light task is assigned to one group of processors and it shares 
them with other light tasks

Some light tasks are split in two processors and they are executed 
either before or after 
Light tasks that are not split are executed between or and 

and they are scheduled by EDF
Heavy tasks start executing when they become ready
EDF is not a DP-Fair allocation but the DP-Fair rules are 
satisfied
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8.c More theoretical results



More theoretical results /1

For the simplest workload model made of 
independent periodic and sporadic tasks
A P-fair scheme can sustain for 
processors but its run-time overheads are excessive

Tasks incur very many preemptions and are frequently 
required to migrate horrendously costly disruption

Partitioned FPS first-fit (on decreasing task utilization) 
can sustain 

But this is a sufficient test only [Oh & Baker, 1998]
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More theoretical results /2

Partitioned EDF first-fit can sustain

For high this bound gets rapidly lower than 
, but can get close to for some examples

Again this is a sufficient test only [Lopez et al., 2004]

Per task
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More theoretical results /3

Global EDF can sustain

For high this bound can be as low as 
but also close to for other 

examples
Again, only sufficient [Goossens et al., 2003]
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More theoretical results /4

Combinations
FPS (higher band) to those tasks with 
EDF for the rest

Again, only sufficient [Baruah, 2004]
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