8.b A stint of Deadline-Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin's original presentation

• From a different deck

2015/16 UniPD / T. Vardanega

 The slide deck that follows proceeds from the past exam of a student of this class

Real-Time Systems

386 of 442

DP-Fair motivation Focus on periodic, independent task set with implicit deadlines (D_i = p_i) Scheduling overhead costs assumed in task requirements ∑_i U_i ≤ m and U_i ≤ 1∀i Process migration allowed With unlimited context switches and migrations any task set meeting the above conditions will be feasible This problem is easy What's difficult is to find a valid schedule that minimizes context switches and migrations

DP-Correct /1

- The time slice scheduler will execute all jobs' allocated workload within the end of the time slice whenever it is possible to do so
- Jobs are allocated workloads for each slice so that it is possible to complete this work within the slice
- Completion of these workloads causes all tasks' actual deadlines to be met

2015/16 UniPD / T. Vardanega

Real-Time Systems

389 of 492

Correctness		
Theorem 0		
Any DP-Fair schedulin task sets with constrain $\delta_i \leq 1 \ \forall i$	g algorithm is optimal fond the network of the deadlines where $\Delta(T)$	r sporadic $T) \le m and$
D C		
Proof		
Lemma 7 A DP-Fair algorithm cannot cause m prior to time t	ore than $S(T) \times L_j + F_j(t)$ units of t	dle time in slice σ_j
Lemma 8		
If a set T of sporadic tasks with constr then $R_t \leq m$ will hold at all times t	rained deadlines is scheduled in σ_j using $\in \sigma_j$	a DP-Fair algorithm,

407 of 492

419 of 492

Per task

418 of 492

 $\beta = \left\lfloor \frac{1}{U_{r}} \right\rfloor$

• For high U_{max} this bound gets rapidly lower than

 $0.6 \times m$, but can get close to *m* for some examples □ Again this is a sufficient test only [Lopez *et al.*, 2004]

Real-Time Systems

2015/16 UniPD / T. Vardanega