
8.b A stint of Deadline-
Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin’s original presentation

From a different deck

The slide deck that follows proceeds from the past
exam of a student of this class

2015/16 UniPD / T. Vardanega Real-Time Systems 386 of 442

DP-Fair motivation

Focus on periodic, independent task set with implicit
deadlines ()

Scheduling overhead costs assumed in task requirements
and

Process migration allowed

With unlimited context switches and migrations any task
set meeting the above conditions will be feasible

This problem is easy

What’s difficult is to find a valid schedule that minimizes
context switches and migrations

2015/16 UniPD / T. Vardanega Real-Time Systems 387 of 492

Partition time into slices demarcated by the deadlines of
all tasks in the system

All jobs are allocated a workload in each slide and these
workload share the same deadline

Why is DP so effective?

No optimal on-line scheduler can exist for a set of jobs with
two or more distinct deadlines on any multiprocessor
system, where

Deadline partitioning

2015/16 UniPD / T. Vardanega Real-Time Systems 388 of 492

DP-Correct /1

The time slice scheduler will execute all jobs’
allocated workload within the end of the time slice
whenever it is possible to do so
Jobs are allocated workloads for each slice so that it
is possible to complete this work within the slice

Completion of these workloads causes all tasks’
actual deadlines to be met

2015/16 UniPD / T. Vardanega Real-Time Systems 389 of 492

DP-Correct /2

2015/16 UniPD / T. Vardanega Real-Time Systems 390 of 492

Notation

denote distinct deadlines of all tasks in
is the time slice in

Local execution remaining is the amount of time that
must execute before the next slice boundary
Local utilization

the ler of the whole task set
is the lu of the whole task set

Slack and represents a dummy job
is the arrival time of the job of

2015/16 UniPD / T. Vardanega Real-Time Systems 391 of 492

DP-Fair rules for periodic tasks set

DP-Fair allocation
All tasks hit their fluid rate curve at the end of each slice by
assigning each task a workload proportional to its utilization
At every assign to

DP-Fair scheduling for time slices
A slice-scheduling algorithm is DP-Fair if it schedules jobs
within a time slice according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than units of idle time to occur in

before time

2015/16 UniPD / T. Vardanega Real-Time Systems 392 of 492

DP-Fair optimality – Proof

Lemma 3

If tasks in are scheduled within a time slice by DP-Fair
scheduling and at all times , then all tasks in
will meet their local deadline at the end of the slice
Lemma 4

If a task set of periodic tasks with implicit deadlines is
scheduled in using DP-Fair algorithm, then will hold
at all times

Any DP-Fair scheduling algorithm for periodic task sets
with implicit deadlines is optimal

2015/16 UniPD / T. Vardanega Real-Time Systems 393 of 492

A DP-Fair algorithm: DP-Wrap /1

Make blocks of length for each and line these
blocks up along a number line (in any order), starting at
zero

Split this stack of blocks into chunks of length 1 at
1,2,...,m 1

2015/16 UniPD / T. Vardanega Real-Time Systems 394 of 492

A DP-Fair algorithm: DP-Wrap /2

Use deadline partitioning to divide time into slices
Assign each chunk to its own processor and multiply each
chunk’s length (1) by the length of the segment ()

2015/16 UniPD / T. Vardanega Real-Time Systems 395 of 492

DP-Wrap features

A very simple algorithm that satisfied all DP-Fair
rules
Almost all calculations can be done in a
preprocessing step (with static task sets)
No computational overhead at secondary events

context switches and migrations per
slice with mirroring
Heuristics may exist to improve performance

Less migration and context switches

2015/16 UniPD / T. Vardanega Real-Time Systems 396 of 492

Mirroring

For tasks that split across two slices
If and are split and executes at the beginning and executes at the
end of the slice then revert the schedule in slice so that executes at
the beginning and at the end

2015/16 UniPD / T. Vardanega Real-Time Systems 397 of 492

Sporadic tasks and

DP-Fair algorithms are still optimal when
and

Definitions
Freeing slack: unused capacity
Active:

, : amounts of time that task has been active
or freeing slack during slice as of time
Local capacity:
Freed slack in as of time :
Slack:

2015/16 UniPD / T. Vardanega Real-Time Systems 398 of 492

DP-Fair scheduling for time slices /1

A slice-scheduling algorithm is DP-Fair if it schedules
jobs within a time slice according to the following
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than units of idle time

to occur in before time
4. Initialize to . At the start time of any active time

segment for in (either or) that ends at
time , increment by

2015/16 UniPD / T. Vardanega Real-Time Systems 399 of 492

DP-Fair scheduling for time slices /2

Rules continued …
5. When a task arrives in a slice at time and its

deadline falls within
Split the remainder of after into two secondary slices
so that the deadline of coincides with the end of
Divide the remaining local execution (and capacity) of all jobs in

(as well as the slack allotment from RULE 3) proportionally
to the lengths of
This step may be invoked recursively for any within

2015/16 UniPD / T. Vardanega Real-Time Systems 400 of 492

DP-Fair scheduling for time slices /3

2015/16 UniPD / T. Vardanega Real-Time Systems 401 of 492

Proof
Lemma 7
A DP-Fair algorithm cannot cause more than units of idle time in slice
prior to time
Lemma 8
If a set of sporadic tasks with constrained deadlines is scheduled in using a DP-Fair algorithm,
then will hold at all times

Any DP-Fair scheduling algorithm is optimal for sporadic
task sets with constrained deadlines where

Correctness

2015/16 UniPD / T. Vardanega Real-Time Systems 402 of 492

DP-Wrap modified

If task issues a job at time in slice and
then allocate execution time

following RULE 4
If instead then split the remainder of
following RULE 5

2015/16 UniPD / T. Vardanega Real-Time Systems 403 of 492

Arbitrary deadlines /1

Task set below is not feasible on 2 processors

units of work to be completed by time

2015/16 UniPD / T. Vardanega Real-Time Systems 404 of 492

Arbitrary deadlines /2

Is there a cure to this problem?
If task has we simply impose an artificial
deadline
Density is not increased hence if is met, will
also be
But this increases the number of context switches
and migrations!

2015/16 UniPD / T. Vardanega Real-Time Systems 405 of 492

Is DP-Fair scheduling sustainable? /1

Consider model with sporadic tasks and
arbitrary deadline
Two cases may occur

The new value of the relaxed parameter is not used in
the scheduling and allocation policies
The new value of the relaxed parameter becomes
known a priori/at job arrival and it is used in the
scheduling and allocation policies

2015/16 UniPD / T. Vardanega Real-Time Systems 406 of 492

Is DP-Fair scheduling sustainable? /2

Shorter execution time
Case 1 (shorter , same density)

Task set is schedulable and the system allocates
workload per each task in each slice
If then task uses part of assigned workload and surely
completes before its deadline

Case 2 (shorter , lesser density)
As DP-Fair is optimal when and
a DF-Fair feasible schedule exists for
A feasible schedule for exists as

2015/16 UniPD / T. Vardanega Real-Time Systems 407 of 492

Is DP-Fair scheduling sustainable? /3

Longer inter-arrival time
Case 1 (longer , same density)

Simply a less demanding instance of sporadic task
The allocation and scheduling rules cover this case

Case 2 (longer , lesser density)
If whereby is
feasible if was feasible

2015/16 UniPD / T. Vardanega Real-Time Systems 408 of 492

Is DP-Fair scheduling sustainable? /4

Longer deadline
Case 1 (longer , same density)

Task completes its workload at time

Case 2 (longer , lesser density)
If whereby is
feasible if was feasible

We may therefore conclude that DP-Fair
scheduling is sustainable

2015/16 UniPD / T. Vardanega Real-Time Systems 409 of 492

Related work: Boundary Fair /1

Very similar to P-Fair
It still uses a function and a characteristic string to evaluate
the fairness of tasks [4] with per-quantum task allocation

It uses deadline partitioning
It uses a less strict notion of fairness

At the end of every slice the absolute value of the allocation
error for any task is less than one time unit

Scheduling decisions made at the start of every slice
It reduces context switches packing two or more allocated
time units of processor to the same task into consecutive units

2015/16 UniPD / T. Vardanega Real-Time Systems 410 of 492

Related work: Boundary Fair /2

Not DP-Fair but DP-Correct

2015/16 UniPD / T. Vardanega Real-Time Systems 411 of 492

Related work: LLREF [5] /1

It uses deadline partitioning with DP-Wrap task allocation
In each slice scheduling is made using the notion of T-L Plane

Each task is represented by a token within a triangle and its position
stands for the local remaining work of at time
The horizontal cathetus indicates the time
The length of the vertical cathetus is one processor’s execution capacity
The hypotenuse represents the-no laxity line
Token can move in two directions. Horizontally if the task doesn’t
execute, diagonally down if it does
When a token hits the horizontal cathetus or the hypotenuse (secondary
events) a scheduling decision is made

Tasks are sorted and m tasks with the least laxity are executed

2015/16 UniPD / T. Vardanega Real-Time Systems 412 of 492

Related work: LLREF /2

DP-Fair algorithm but does unnecessary work

2015/16 UniPD / T. Vardanega Real-Time Systems 413 of 492

Useful DP-Fair bibliography

1. C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Environment”, Journal of the ACM (JACM), 20(1):46–61, 1973

2. A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time
environment”, Technical report, Massachusetts Institute of Technology, 1983

3. S. K. Cho, S. Lee, A. Han, and K.-J. Lin, “Efficient Real- Time Scheduling Algorithms for
Multiprocessor Systems”, IEICE Transactions on Communications, E85-B(12):2859– 2867,
2002

4. D. Zhu, D. Mossé and R. Melhem, “Multiple-Resource Periodic Scheduling Problem: how much
fairness is necessary?”, IEEE Real-Time Systems Symposium (RTSS), 2003

5. H. Cho, B. Ravindran and E. Jensen, “An Optimal Real-Time Scheduling Algorithm for
Multiprocessors”, IEEE Real-Time Systems Symposium (RTSS), 2006

6. B. Andersson and, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, IEEE
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2006

7. K. Funaoka, S. Kato and N. Yamasaki, “Work-Conserving Optimal Real-Time Scheduling on
Multiprocessors” Euromicro Conference on Real-Time Systems (ECRTS), 2008

8. S. Funk and V. Nadadur “LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task
Sets”, Conference on Real-Time and Networked Systems (RTNS), 2009

2015/16 UniPD / T. Vardanega Real-Time Systems 414 of 492

Related work: EKG [6]

Tasks are divided into heavy and light
Each heavy task is assigned to a dedicate processor
Every light task is assigned to one group of processors and it shares
them with other light tasks

Some light tasks are split in two processors and they are executed
either before or after
Light tasks that are not split are executed between or and

and they are scheduled by EDF
Heavy tasks start executing when they become ready
EDF is not a DP-Fair allocation but the DP-Fair rules are
satisfied

2015/16 UniPD / T. Vardanega Real-Time Systems 415 of 492

8.c More theoretical results

More theoretical results /1

For the simplest workload model made of
independent periodic and sporadic tasks
A P-fair scheme can sustain for
processors but its run-time overheads are excessive

Tasks incur very many preemptions and are frequently
required to migrate horrendously costly disruption

Partitioned FPS first-fit (on decreasing task utilization)
can sustain

But this is a sufficient test only [Oh & Baker, 1998]

2015/16 UniPD / T. Vardanega Real-Time Systems 417 of 492

More theoretical results /2

Partitioned EDF first-fit can sustain

For high this bound gets rapidly lower than
, but can get close to for some examples

Again this is a sufficient test only [Lopez et al., 2004]

Per task

2015/16 UniPD / T. Vardanega Real-Time Systems 418 of 492

More theoretical results /3

Global EDF can sustain

For high this bound can be as low as
but also close to for other

examples
Again, only sufficient [Goossens et al., 2003]

2015/16 UniPD / T. Vardanega Real-Time Systems 419 of 492

More theoretical results /4

Combinations
FPS (higher band) to those tasks with
EDF for the rest

Again, only sufficient [Baruah, 2004]

2015/16 UniPD / T. Vardanega Real-Time Systems 420 of 492

