2015/16 UniPD / T. Vardanega 08/06/2016

| Multiprocessor PCP /1

8.e Global resource sharing " Partitioged FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]

0 The processor that hosts a resource is called the
synchronization processor (SP) for that resource

m It knows all the use requirements of all its resources

o The critical sections of a tesource execute on the
processor that hosts that resource
m Jobs that use remote resources are “distributed transactions”

o The processor to which a task is assigned is the loca/
processor for all of the jobs of that task

2015/16 UniPD / T. Vardanega Real-Time Systems 426 of 446

‘ Contention and blocking | Multiprocessor PCP /2

m The premises on which single-runner solutions : m A task may need local and global resources
were based fall apart o Local resoutces reside on the local processor of that task
o Suspending is no longer conducive to eatlier release of o Global resources are used by tasks residing on different
shared resource € parallelism gets in the way processors
a Priority boosting the lock holder does not help too < m Resource access control needs actual locks for

per-CPU priorities may not have global meaning protection from true parallelism

o Having local and global resources causes suspending to a Lock-free algotithms then become attractive

become dangerous € local priotity inversions may occur]
m SPs use M-PCP to control access to their global

resources

0 Spinning protects against that hazard but wastes CPU
cycles

2015/16 UniPD / T. Vardanega Real-Time Systems 425 of 446 2015/16 UniPD / T. Vardanega Real-Time Systems 427 of 446

Real-Time Systems 1

2015/16 UniPD / T. Vardanega

08/06/2016

| Multiprocessor PCP /3

m The task that holds a global lock should not be
preempted locally
a All global critical sections are executed at higher ceiling
priorities than local tasks on the SP and any other tasks
in the system (this does not preserve independencel)
m A task Ty that is denied access to a global shared
resource pg suspends and waits in a priority-based
queue for that resource

o Tasks with lower-priority than Ty on its local processor
may thus acquire global resources with higher ceiling

2015/16 UniPD / T. Vardanega Real-Time Systems 428 of 446

| Blocking under M-PCP

m With M-PCP task 7; is blocked by lower-priority tasks in 5 ways (1)
a Local blocking (once per release): when finding a local resource held by a

local lower-priority task that got running as a consequence of T;’s
suspension on access to a remote resource

a Remote blocking (once per request): when finding a remote resource held by
a remote lower-priority task

a Local preemption: when global critical sections are executed on T;’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

Q Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

a Deferred interference as local higher-priotity tasks suspend on access to
remote resources because of blocking effects

2015/16 UniPD / T. Vardanega Real-Time Systems 430 of 446

| Multiprocessor PCP /4

m If the global resource being acquired by task 7; with
priority lower than Ty resides on the same SP as
pg then Ty suffers an anomalous form of priority
inversion

o This obviously exposes resource nesting to the risk of
deadlock = M-PCP disallows resource nesting

a This is why other protocols want Ty to spin

m With global resources hosted on > 1 SPs, resource
nesting is not allowed as deadlock may occur

2015/16 UniPD / T. Vardanega Real-Time Systems 429 of 446

Real-Time Systems

| Multiprocessor SRP

m Partitioned EDF with resources bound to

processors [Gai, Lipari, Di Natale, 2001]

o SRP is used for controlling access to local resources

o Tasks that lock a global tesource cannot be preempted
m They become preemptable again when releasing the resource

o Tasks that request a global resource that is busy are
placed in a FIFO queue on the SP and spin-lock on their
local processor

m When released by the lock holder, the global resource is assigned
to the request at the head of the queue

2015/16 UniPD / T. Vardanega Real-Time Systems 431 of 446

2015/16 UniPD / T. Vardanega

08/06/2016

‘ In general ...

m With lock-based resource control protocols, locks can
use either suspension or spinning

m With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue

a To bound blocking time, priority-inversion avoidance
algorithms have to be used

m With spinning, the task busy-waits

o To bound blocking time, the spinning task becomes
non-preemptable and its request is placed in FIFO queue

m The lock owner may run non-preemptively

2015/16 UniPD / T. Vardanega Real-Time Systems 432 of 446

| O (m) locking protocols : P-sched

F-partition) = == == - m - m m e mm e ———)

1
4 e !
; PRIO [~ & --- H
/ ~3 -
/| 1
= m - LS |

res; FIFO

[-partition) = == == = == - ————— -

binary semaphore \ |

and prio boosting \\: - a
suspend! ™~
| -

suspend

@ limiting access to global resources: per-partition contention token.
Must be acquired before requesting any global resource (token +
PRIO queue shared for all global resources)

o releasing resources as soon as possible: priority boosting for tasks
queued in global resources (at most 1 per partition)

2015/16 UniPD / T. Vardanega Real-Time Systems 434 of 446

| O (m) locking protocols : G-sched

r—taskset- —
1

- m -

(resy. WPRIO |',
N

suspend

JLFP scheduler

@ blocking suffered only by tasks using resources
e per-request blocking is by = 2(m — 1)w;, wy. length of max critical
section for resj

o all resources are global resources

2015/16 UniPD / T. Vardanega Real-Time Systems 433 of 446

P —

| Three sources of blocking]

m Priority boosting for earlier release of resource

o Everyone pays for it since contending tasks may be on
any CPU

a BPo%% = max(wy)

m FIFO guening for the contending tasks
9 Bik = (m = Dwy

w Contention token
o Round-robin across CPUs

a BoKen = (m — Dmaxy(@y)

2015/16 UniPD / T. Vardanega Real-Time Systems 435 of 446

Real-Time Systems

2015/16 UniPD / T. Vardanega

08/06/2016

| O (m) independence preservation /1

2015/16 UniPD / T. Vardanega Real-Time Systems 436 of 446

| O (m) independence preservation /3

a]] =t ? T

executing holding res busy wait release request res. «completion

prio

-]

clustera Q !
| e ——

ry | —
clustery " b = lj'

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time

@ t = 3: task 7 suspends and task 7; resumes execution

@ t = 4: task 73 migrates to cluster; and preempts task 7

2015/16 UniPD / T. Vardanega Real-Time Systems 438 of 446

| O (m) independence preservation /2

Clusters of size 1 < c<m

Suspension-based
o Head of per-cluster FIFO participates in global FIFO
a The per-cluster queue is FIFO+PRIO

Independence preserved by inter-cluster migration

a Head of global FIFO (if pre-empted) can migrate to any
CPU along the global FIFO and inherit the priority of
the waiting task

Blocking is per request: B) = (m — 1)wy,

2015/16 UniPD / T. Vardanega Real-Time Systems 437 of 446

| Brandenburg, 2013]

m Theorem

o Under non-global scheduling (for cluster size ¢ < m) it is
impossible for a resource access control protocol to
simultaneously:

m Prevent unbounded priority-inversion (PI) blocking
m Be independence-preserving

0 When tasks don’t suffer PI blocking from resources they don’t use

® Avoid inter-cluster job migration

w Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration ()

2015/16 UniPD / T. Vardanega Real-Time Systems 439 of 446

Real-Time Systems

2015/16 UniPD / T. Vardanega

08/06/2016

| MrsP [Burns, Wellings, 2013] /1

m RTA for a partitioned multiprocessor should be
tdentical to the single-processor case
a The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention
m The property that once a task starts executing its
resources are available is intrinsic to RTA
o It should therefore be supported by global resource
control protocols

m Which cannot live with suspension-based solutions!

2015/16 UniPD / T. Vardanega Real-Time Systems 440 of 446

| MisP [Burns, Wellings, 2013] /3

r-partition]---------——----
|
|
1

spinning at

own ceiling f_,_ - Ce
- m 4 / : _______ =1
resy, - -

spinning at
own ceiling

2015/16 UniPD / T. Vardanega Real-Time Systems 442 of 446

MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
0 More urgent tasks suffer longer blocking
m Spinning at the /ocal ceiling priority is better

o With all processors using PCP/SRP at most one task petr
processor may contend globally

o Access requests are served in FIFO order
m To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

m The lock-holder job migrates to the processor of a spinning task and
runs in its stead until it either completes or migrates again

2015/16 UniPD / T. Vardanega Real-Time Systems 441 of 446

Real-Time Systems

| MrsP [Burns, Wellings, 2013] /4

m For partitioned scheduling (¢ = 1)
w Spinning-based
o Local wait spinning at local ceiling
m Allows using uniprocessor-style RTA

m Blocking is per resource, increased by parallelism

"P) = maxy ((m — D) = (m — 1) x maxy (wr)

a B = max(wy
m Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in

the global FIFO is currently spinning

2015/16 UniPD / T. Vardanega Real-Time Systems 443 of 446

2015/16 UniPD / T. Vardanega

MrsP [Burns, Wellings, 2013] /5

m Resource nesting can be supported with either group
locking ot static ordering of resources

o With static ordering, resource access is allowed only with
order number greater than any currently held resources

o The implementation should provide an «out of order»
exception to prevent run-time errors
m The ordering solution is better than banning nesting
and has less penalty than group locking

2015/16 UniPD / T. Vardanega Real-Time Systems 444 of 446

08/06/2016

| Summary

Issues and state of the art

Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing

2015/16 UniPD / T. Vardanega Real-Time Systems 446 of 446

MrsP [Burns, Wellings, 2013] /6

O [| = t ? T

executing holding res. busy wait release request res. completion

prio

0 1 2 3 { 5 6 7 8 9 10 11 12 13 14 time

e t = 13: task 7 start spinning at ceiling priority

o t=4: task 73 migrates to P; and executes in place of 7

2015/16 UniPD / T. Vardanega Real-Time Systems 445 of 446

Real-Time Systems

