
5/27/2016

1

This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers
based on partitioned proportionate fairness

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega
University of Padua - Italy

27th EUROMICRO Conference on Real-Time Systems (ECRTS)
Lund, July 9th, 2015

Outline
 Motivation of our work
 Brief recall of RUN and QPS algorithms
 Implementation and evaluation
 Conclusions and future work

2 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Introduction

RUN
Reduction to UNiprocessor

(RTSS-11)

QPS
Quasi-Partitioning Scheduling

(ECRTS-14)

On periodic task-sets

Optimal multiprocessor scheduling
Based on proportionate fairness

Designed to reduce # of preemptions and migrations

Also on sporadic task-sets

3 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Motivation

RUN QPS
Implemented1

on top of LITMUS^RT

Confirming
moderate run-time overhead
in between that of P-EDF and G-EDF

1 Compagnin, D.; Mezzetti, E.; Vardanega, T., "Putting RUN into Practice: Implementation and Evaluation,“ (ECRTS‐14)

4 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

5/27/2016

2

Recall of the algorithms /1

RUN QPS
Off-line phase

On-line phase
The multiprocessor schedule is “derived” from

the corresponding uniprocessor schedule

Multiprocessor
scheduling

problem
decomposition

Uniprocessor
scheduling
problems

5 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Recall of the algorithms /2

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity
can be exceeded

External servers
reserve capacity for exceeding
parts on a different processor

6 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Recall of the algorithms /3

On-line phase
RUN QPS

7 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Implementation /1

RUN QPS
Global scheduling
• virtual scheduling
• compact tree representation
• node selection is performed
• cpus are assigned to level-0

servers
• timers trigger budget

consumption events
• release queue and lock

Local scheduling
• With EDF

Local scheduling +
Processor synchronization

• uniform representation of tasks and
servers

• budgets consistently updated
• timer triggers budget consumption

events
• per-hierarchy release queue and lock

Notable differences

8 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

5/27/2016

3

Implementation /2

Global scheduling
• virtual scheduling
• compact tree representation
• node selection is performed
• CPUs are assigned to level-0

servers
• timers trigger budget

consumption events
• release queue and lock

Local scheduling
• with EDF P3 notifies P1 of the S1’s execution

Local scheduling +
Processor synchronization

RUN QPS
Noteworthy differences

9 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Evaluation

 Empirical evaluation instead of simulation

 Focus on scheduling interference
 Cost of scheduling primitives
 Incurred preemptions and migrations

 Evaluation limited to periodic task
 External servers are always “active”
 Sporadic activations would normally have lower utilization

 Thus reducing the number of preemptions/migrations

10 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Experimental setup

 LITMUSRT on a 16-cores AMD Opteron 6370P

 Exhaustive measurements over the two algorithms
 Thousand of automatically generated task sets
 Harmonic and non-harmonic, with global utilization in 50%-100%
 Stressing both the off-line and the on-line phases

 Two-step experimental process
 Preliminary empirical determination of system overheads

collect
measurements
on overheads

determine
per-job

upper bound

perform
actual

evaluation

11 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Primitive overheads and empirical bound

 Expectation was confirmed
 QPS has lighter-weight scheduling primitives
 And does not need Tree Update Operations (TUP)

 Empirical upper bound on the scheduling overhead
 Based on theoretical bounds on the scheduling structures

(RUN tree and QPS hierarchy)

maximum observed overheads

12 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

5/27/2016

4

Per-job scheduling interference

 Determined by preemptions and
migrations

 In relation to reduction-tree and
processor hierarchy depth

13 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Scheduling primitives
max schedulemax release

 Maximum observed cost of core scheduling primitives
 Release and Schedule
 Variation under increasing system utilization

14 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Overall per-job overhead
medium tasks (utilization [0.1;0.5])heavy tasks (utilization [0.5;0.9])

 QPS is more susceptible to packing
than RUN

 Lighter-weight tasks ease the
partitioning problem
 And lead to less complex scheduling

structures

15 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

d23

Conclusions and future work

 QPS benefits from partitioned scheduling
 Hence improves over RUN for cost of scheduling primitives

 … but is more susceptible to the off-line phase
 QPS’s need for processor synchronization hits performance badly

with higher processor hierarchies
 RUN exhibits an almost constant overhead

 Induced by its global scheduling nature
 Which in turn may penalize it at lower system utilization

 Future work
 Mainly interested in evaluating how this class of algorithms may

behave when the number of processing units increases
 Considering also how different implementation may affect the

algorithm scalability

16 ECRTS, Lund (S), 9 July 2015 D Compagnin et al.

Slide 15

d23 remeber that we are talking about the avg cost for job here (so we expected to be constant on fully partitioned systems)
davide, 16/06/2015

5/27/2016

5

This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers
based on partitioned proportionate fairness

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega
University of Padua - Italy

27th EUROMICRO Conference on Real-Time Systems (ECRTS)
Lund, July 9th, 2015

