
2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 1

3. Scheduling issues

Common approaches /1

 Clock-driven (time-driven) scheduling
 Scheduling decisions are made beforehand (off line) and carried out

at predefined time instants
 The time instants normally occur at regular intervals signaled by a

clock interrupt
 The scheduler first dispatches jobs to execution as due in the current

time period and then suspends itself until then next schedule time
 The scheduler uses an off-line schedule to dispatch

 All parameters that matter must be known in advance
 The schedule is static and cannot be changed at run time
 The run-time overhead incurred in executing the schedule is

minimal

2016/17 UniPD / T. Vardanega Real-Time Systems 111 of 446

Common approaches /2

 Weighted round-robin scheduling
 With basic round-robin

 All ready jobs are placed in a FIFO queue
 The job at head of queue is allowed to execute for one time slice

 If not complete by end of time slice it is placed at the tail of the queue
 All jobs in the queue are given one time slice in one round

 Weighted correction (as applied to scheduling of network traffic)
 Jobs are assigned differing amounts of CPU time according a given

‘weight’ (fractionary) attribute
 Job ܬ gets ࣓ time slices per round – one round is ∑ ࣓ of ready jobs
 Not good for jobs with precedence relations

 Response time gets worse than basic RR which is already bad (!)
 Fit for producer-consumer jobs that operate concurrently in a pipeline

2016/17 UniPD / T. Vardanega Real-Time Systems 112 of 446

Common approaches /3

 Priority-driven (event-driven) scheduling
 This class of algorithms is greedy

 They never leave available processing resources unutilized
 Seeking local optimization

 An available resource may stay unused iff there is no job ready to use it
 A clairvoyant alternative may instead defer access to the CPU to incur less

contention and thus reduce job response time
 Anomalies may occur when job parameters change dynamically

 Scheduling decisions are made at run time when changes occur to the
“ready queue”, hence on local knowledge
 The event causing a scheduling decision is called “dispatching point”

 It includes algorithms also used in non real-time systems
 FIFO, LIFO, SETF (shortest e.t. first), LETF (longest e.t. first)

 Normally applied at every round of RR scheduling

2016/17 UniPD / T. Vardanega Real-Time Systems 113 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 2

Preemption vs. non preemption /1

 Can we compare preemptive scheduling with
non-preemptive scheduling for performance?
 There is no single response that is valid in general

 When all jobs have same release time and preemption overhead
is negligible (!?) then preemptive scheduling is provably better

 It would be interesting to know whether the improvement of the
last finishing time (a.k.a. minimum makespan) under preemptive
scheduling pays off the time overhead of preemption

 For 2 CPUs we do know that the minimum makespan for
non-preemptive scheduling is never worse than 4/3 of
that for preemptive

2016/17 UniPD / T. Vardanega Real-Time Systems 114 of 446

Davis et al., "Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling”, RTSS 2015

Preemption vs. non preemption /2

 The processor speed-up factor determines the maximum
increase in processor speed that a scheduling
algorithm requires over an optimal algorithm of the
same class for any task set

2016/17 UniPD / T. Vardanega Real-Time Systems 115 of 442

Further definitions

 Precedence constraints effect release time and deadline
 One job’s release time cannot follow that of a successor job
 One job’s deadline cannot precede that of a predecessor job

 Effective release time
 For a job with predecessors this is the latest value between its own release

time and the maximum of the effective release time of its predecessors
plus the WCET of the corresponding job

 Effective deadline
 For a job with successors this is the earliest value between its deadline and

the effective deadline of its successors less the WCET of the
corresponding job

 For single processor with preemptive scheduling we may
disregard precedence constraints and just consider ERT and ED

2016/17 UniPD / T. Vardanega Real-Time Systems 116 of 446

Optimality /1

 Priorities assigned in accord to (effective) deadlines
 Earliest Deadline First scheduling is optimal for single

processor systems with independent jobs and preemption
 For any given job set, EDF produces a feasible schedule if one exists
 The optimality of EDF falls short under other hypotheses (e.g., no

preemption, multicore processing)

R1 R2 R3 D3 D1 D2

J1 J1, J2 J3, J1, J2

time

Ready queue:

2016/17 UniPD / T. Vardanega Real-Time Systems 117 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 3

Optimality /2

 Priorities assigned in accord to slack (i.e., laxity)
 Least Laxity First scheduling is optimal under the same

hypotheses as for EDF optimality
 LLF is far more onerous than EDF to implement as it has to keep tab

of execution time!

R1,e1 R2,e2 D1D2

J1

time

Ready queue:

e11 e12 e13 ଵܮ ݐ ൌ ଵܦ െ ݐ െ ሺ݁ଵ െ ݁ଵଵ ݁ଵଶ ݁ଵଷ ሻ

t ଶܮ ݐ ൌ ଶܦ െ ݐ െ ݁ଶ
J2, J1

e2

2016/17 UniPD / T. Vardanega Real-Time Systems 118 of 446

Optimality /3

 If the goal is that jobs just make their deadlines, then having
jobs complete any earlier has no merit
 The Latest Release Time algorithm (converse of EDF)

follows this logic and schedules jobs backwards from the
latest deadline
 LRT operates backward treating deadlines as release times and

release times as deadlines
 LRT is not greedy as it may leave the CPU unused with ready

tasks
 Greedy scheduling algorithms may cause jobs to incur

larger interference

2016/17 UniPD / T. Vardanega Real-Time Systems 119 of 446

Latest Release Time scheduling

2016/17 UniPD / T. Vardanega Real-Time Systems 120 of 446

Needs preemption and off line decisions

Job	scheduling

Time

Predictability of execution

 Initial intuition
 The execution of job set J under a given scheduling algorithm

is predictable if the actual start time and the actual response
time of every job in J vary within the bounds of the maximal
and minimal schedule
 Maximal schedule: the schedule created by the scheduling

algorithm under worst-case assumptions
 Minimal schedule: analogously for best-case

 Theorem: the execution of independent jobs with given
release times under preemptive priority-driven scheduling
on a single processor is predictable

2016/17 UniPD / T. Vardanega Real-Time Systems 121 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 4

2016/17 UniPD / T. Vardanega Real-Time Systems 122 of 446

Ramifications for dynamic scheduling

dynamic	scheduling

fixed	priority	per	task

fixed	priority	per	job dynamic	priority	per	job

static	priority

dynamic	priority

EDF LLFFPS

2016/17 UniPD / T. Vardanega Real-Time Systems 123 of 446

Clock-driven scheduling /1

 Workload model
 N periodic tasks with N constant and statically defined

 In Jim Anderson’s definition of periodic (not Jane Liu’s)
 The ሺ߮, , ݁, ሻܦ parameters of every task ߬ are constant

and statically known
 The schedule is static and committed off line before system

start to a table S of decision times ݐ
 ܵ ݐ ൌ ߬ if a job of task ߬ must be dispatched at time ݐ
 ܵ ݐ ൌ ܫ (idle) otherwise
 Schedule computation can be as sophisticated as we like since

we pay for it only once and before execution
 Jobs cannot overrun otherwise the system is in error

2016/17 UniPD / T. Vardanega Real-Time Systems 124 of 446

Clock-driven scheduling /2
Input: stored schedule ܵሺݐሻ for ݇ ൌ 0, . . , ܰ െ 1 ܪ; (hyper-period)
SCHEDULER:
݅ ൌ 0; ݇ ൌ 0; set timer to expire at ݐ ;
do forever :

sleep until timer interrupt;
if an aperiodic job is executing

preempt;
end if;
current task T ൌ ܵሺݐሻ	;
݅ ൌ ݅ 1; ݇ ൌ 	;ܰ	ࢊ	݅
set timer to expire at ݅/ܰ ൈ ܪ ݐ ; -- at time ݐ in all ܪ forever
if current task ܶ ൌ ܫ
execute job at head of aperiodic queue;

else execute job of task ܶ;
end if;

end do;
end SCHEDULER

2016/17 UniPD / T. Vardanega Real-Time Systems 125 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 5

Clock-driven scheduling /3

t1 , Tm

tj , I

tk , Tl

S[]

0

N-1

1

J

K

Tm

T

Timer

t1

assign

set

dispatch

We need an interval timer

2016/17 UniPD / T. Vardanega Real-Time Systems 126 of 446

Example

 Static schedule table S for J would need 17 entries
 That’s too many and too fragmented!

 Why 17?

2016/17 UniPD / T. Vardanega Real-Time Systems 127 of 446

J = {t1 = (0, 4, 1, 4), t2 = (0, 5, 1.8, 5), t3 = (0, 20, 1, 20), t4 = (0, 20, 2, 20}
U = 0.76
H = 20

0 4 8 12 16

t1 t3 t2 t1 t1 t1t4 t2 t1t2 t2

t1 t1 t1 t1t2 t2 t2 19.8

20

ሺ߮, , ݁, ሻܦ

Clock-driven scheduling /4

 Obvious reasons of complexity control suggest minimizing
the size of the cyclic schedule (table S)
 The scheduling point ݐ should occur at regular intervals

 Each such interval is termed minor cycle (frame) and has duration ݂
 We need a periodic timer
 Within minor cycles there is no preemption but a single minor cycle may

contain the execution of multiple (run-to-completion) jobs
 ߮ for every task ߬ must be a non-negative integer multiple of ݂

 The first job of every task has release time (forcedly) set at the beginning
of a minor cycle

 We must therefore enforce some artificial constraints

2016/17 UniPD / T. Vardanega Real-Time Systems 128 of 446

Clock-driven scheduling /5

 Constraint 1: Every job ܬ must complete within ݂
 ࢌ ୀ࢞ࢇ ,.. ሺࢋሻ so that overruns can be detected

 Constraint 2: f must be an integer divisor of hyper-
period ܪ ܪ : ൌ ݂ܰ where ܰ is an integer
 Satisfied if ݂ is an integer divisor of at least one task period
 The hyper-period beginning at minor cycle ݂݇ for ݇ ൌ 0, . . ܰ െ 1

is termed major cycle

 Constraint 3: There must be one full frame ݂ between
J’s release time ݐᇱ and its deadline: ݐᇱ ܦ ݐ 2݂ so
that ܬ can be scheduled in that frame
 This can be expressed as: 2݂ െ gcd	ሺ, ݂ሻ ܦ for every task ߬

2016/17 UniPD / T. Vardanega Real-Time Systems 129 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 6

Understanding constraint 3

2016/17 UniPD / T. Vardanega Real-Time Systems 130 of 492

ᇱ࢚

ᇱ࢚ ࡰ

ᇱ࢚

ࢌ

࢚ ࢚ࢌ ࢚ ࢌ

a

b

c

ݐ 2݂ ᇱݐ ܦ

ᇱݐ െ ݐ gcd	ሺ, ݂ሻ

2݂ െ gcd	ሺ, ݂ሻ ܦ

Constraint 3

ᇱ࢚ ᇱ࢚ ࡰ ᇱ࢚

ᇱ࢚ ᇱ࢚ ࡰ

ᇱ࢚

This	is	the	frame	in	which	job	ࡶmust	be	scheduled

Example

 T = {(0, 4, 1, 4), (0, 5, 2, 5), (0, 20, 2, 20)}
 H = 20
 [c1] : ݂ max ݁ : f ≥ 2
 [c2] : /݂ െ ݂/ ൌ 0 : f = {2, 4, 5, 10, 20}
 [c3] : 2݂ െ gcd	ሺ, ݂ሻ : f ≤ 2	ܦ

݂ ൌ 2 ∶ 4 െ gcd 4,2 4	OK
4 െ gcdሺ5,2ሻ 5 OK

															4 െ gcd	ሺ20,2ሻ 20 OK
݂ ൌ 4 ∶ 8 െ gcd 4,4 4	OK

8 െ gcdሺ5,4ሻ 5 KO

݂ ൌ 5 ∶ 10 െ gcd 4,2 4	KO
݂ ൌ 10 ∶ 20 െ gcd 4,2 4	KO

݂ ൌ 20 ∶ 40 െ gcd 4,2 4	KO

2016/17 UniPD / T. Vardanega Real-Time Systems 131 of 446

Clock-driven scheduling /5

 It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given f simultaneously

 In that case we must decompose T’s jobs by slicing
their larger ݁௫ into fragments small enough to
artificially yield a “good” f

2016/17 UniPD / T. Vardanega Real-Time Systems 132 of 446

Clock-driven scheduling /6

 To construct a cyclic schedule we must therefore
make three design decisions
 Fix an f
 Slice (the large) jobs
 Assign (jobs and) slices to minor cycles

 There is a very unfortunate inter-play among these
decisions
 Cyclic scheduling thus is very fragile to any change in

system parameters

2016/17 UniPD / T. Vardanega Real-Time Systems 133 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 7

Clock-driven scheduling /7
Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:

t := 0; k = 0;
do forever:

sleep until clock interrupt @ time t f;
currentBlock = S(k);
t := t+1; k := t mod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute aperiodic job at top of queue;

end do;
end do;

end SCHEDULER

2016/17 UniPD / T. Vardanega Real-Time Systems 134 of 446

Example (slicing) – 1/2

2016/17 UniPD / T. Vardanega Real-Time Systems 135 of 446

ࡶ ൌ ࣎ ൌ , , , , ࣎ ൌ , , , ૠ , ࣎ ൌ ሺ, , , ሻ ࡴ, ൌ
࣎ causes disruption since we need ࢋ ࢌ to satisfy c3
We must therefore slice ࢋ : how many slices do we need?

0 4 8 12 16

We first look at the schedule with ࢌ ൌ and ࡲ ൌ ࡴ
ࢌ

ൌ 	
without ࣎, to see what least-disruptive opportunities we have …

t1 t2

f = 4

t1 t1 t2 t1 t2 t1 t2

S(t=4)

ሺ߮, , ݁, ሻܦ

Example (slicing) – 2/2

… then we observe that ࢋ ൌ , , is a good choice

0 4 8 12 16

࣎ ൌ ᇱ࣎ ൌ , , , ࢞ , ᇱᇱ࣎ ൌ , , , ࢟ , ᇱᇱᇱ࣎ ൌ , , ,

where ࢞ ൏ ࢟ represent the precedence constraints that
must hold between the slices (could have used phases instead)

t1 t2 t3’ t1 t3” t1 t2 t1 t2 t1 t2 t3’’’

2016/17 UniPD / T. Vardanega Real-Time Systems 136 of 446

Design issues /1

 Completing a job much ahead of its deadline is of no use
 If we have spare time we might give aperiodic jobs more

opportunity to execute hence make the system more responsive
 The principle of slack stealing allows aperiodic jobs to execute

in preference to periodic jobs when possible
 Every minor cycle include some amount of slack time not used for

scheduling periodic jobs
 The slack is a static attribute of each minor cycle

 A scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
 This provision requires a fine-grained interval timer (again!) to signal the

end of the slack time for each minor cycle

2016/17 UniPD / T. Vardanega Real-Time Systems 137 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 8

Design issues /2

 What can we do to handle overruns ?
 Halt the job found running at the start of the new minor cycle

 But that job may not be the one that overrun!
 Even if it was, stopping it would only serve a useful purpose if

producing a late result had no residual utility
 Defer halting until the job has completed all its “critical actions”

 To avoid the risk that a premature halt may leave the system in an
inconsistent state

 Allow the job some extra time by delaying the start of the next
minor cycle
 Plausible if producing a late result still had utility

2016/17 UniPD / T. Vardanega Real-Time Systems 138 of 446

Design issues /3

 What can we do to handle mode changes?
 A mode change is when the system incurs some

reconfiguration of its function and workload parameters
 Two main axes of design decisions

 With or without deadline during the transition
 With or without overlap between outgoing and incoming

operation modes

2016/17 UniPD / T. Vardanega Real-Time Systems 139 of 446

Overall evaluation

 Pro
 Comparatively simple design
 Simple and robust implementation
 Complete and cost-effective verification

 Con
 Very fragile design

 Construction of the schedule table is a NP-hard problem
 High extent of undesirable architectural coupling

 All parameters must be fixed a priori at the start of design
 Choices may be made arbitrarily to satisfy the constraints on f
 Totally inapt for sporadic jobs

2016/17 UniPD / T. Vardanega Real-Time Systems 140 of 446

Priority-driven scheduling

 Base principle
 Every job is assigned a priority
 The job with the highest priority is selected for execution

 Dynamic-priority scheduling
 Distinct jobs of the same task may have distinct priorities

 Static-priority scheduling
 All jobs of the same task have one and same priority

2016/17 UniPD / T. Vardanega Real-Time Systems 141 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 9

Dynamic-priority scheduling

 Two main algorithms
 Earliest Deadline First (EDF)
 Least Laxity First (LLF)

 Theorem [Liu, Layland: 1973] EDF is optimal for
independent jobs with preemption
 Also true with sporadic tasks
 The relative deadline for periodic tasks may be arbitrary with the

respect to period (<, =, >)

 Result trivially applicable to LLF
 EDF is not optimal for jobs that do not allow preemption

2016/17 UniPD / T. Vardanega Real-Time Systems 142 of 446

Static (fixed)-priority scheduling (FPS)

 Two main variants with respect to the strategy for
priority assignment
 Rate monotonic

 A task with lower period (faster rate) gets higher priority

 Deadline monotonic
 A task with higher urgency (shorter deadline) gets higher priority

 What about “execution-monotonic”?

 Before looking at those strategies in more detail we
need to fix some basic notions

2016/17 UniPD / T. Vardanega Real-Time Systems 143 of 446

Dynamic scheduling: comparison criteria /1

 Priority-driven scheduling algorithms that disregard
job urgency (deadline) perform poorly
 The WCET is not a factor of interest for priority!

 How to compare the performance of scheduling
algorithms?

 Schedulable utilization is a useful criterion
 A scheduling algorithm can produce a feasible schedule

for a task set ܶ on a single processor if ܷሺܶሻ does not
exceed its schedulable utilization

2016/17 UniPD / T. Vardanega Real-Time Systems 144 of 446

Dynamic scheduling: comparison criteria /2

 Theorem [Liu, Layland: 1973] for single processors
the schedulable utilization of EDF is 1

 For arbitrary deadlines, the density
ߜ ൌ

ೖ
୫୧୬	ሺೖ,ೖሻ

becomes an important factor to
feasibility
 As ∆ൌ ∑ ߜ ܷ when ܦ ൏ for some ߬, then
∆ 1 becomes a sufficient schedulability test for EDF

2016/17 UniPD / T. Vardanega Real-Time Systems 145 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 10

Dynamic scheduling: comparison criteria /3

 The schedulable utilization criterion alone is not
sufficient: we must also consider predictability
 Recall its intuition on page 121

 On transient overload the behavior of static-priority
scheduling can be determined a-priori and is reasonable
 The overrun of any job of a given task ߬ does not harm the

tasks with higher priority than ߬
 Under transient overload EDF becomes instable

 A job that missed its deadline is more urgent than a job with a
deadline in the future: one lateness may cause many more!

2016/17 UniPD / T. Vardanega Real-Time Systems 146 of 446

Dynamic scheduling: comparison criteria /4

 Other figures of merit for comparison exist
 Normalized Mean Response Time (NMRT)

 Ratio between the job response time and the CPU time actually
consumed for its execution

 The larger the NMRT value, the larger the task idle time
 Guaranteed Ratio (GR)

 Number of tasks (jobs) whose execution can be guaranteed
versus the total number of tasks that request execution

 Bounded Tardiness (BT)
 Number of tasks (jobs) whose tardiness can be guaranteed to

stay within given bounds
 With BT, soft real-time systems can have some utility

2016/17 UniPD / T. Vardanega Real-Time Systems 147 of 446

Example (EDF) /1

2016/17 UniPD / T. Vardanega Real-Time Systems 148 of 446

ࢀ ൌ ࣎ ൌ , , . , , ࣎ ൌ ሺ, , . , ሻ
Density ∆ ࢀ ൌ ࢋ

ࡰ
 ࢋ

ࡰ
ൌ .

Utilization ࢁ ࢀ ൌ ࢋ

 ࢋ

ൌ . ૠ ൏

What happens to ࢀ under EDF?

t2t2 t2t1

0 1 2 3 4 5

t1 t1 t2

6

t1

7
OK

8
OK

H = 10

t1

ሺ߮, , ݁, ሻܦ

Example (EDF) /2

T = {t1= (0, 2, 1, 2), t2= (0, 5, 3, 5)} ࢁ ࢚ ൌ ࢋ

 ࢋ

ൌ .

T has no feasible schedule: what job suffers most under EDF?

T = {t1= (0, 2, 0.8, 2), t2= (0, 5, 3.5, 5)} ࢁ ࢚ ൌ ࢋ

 ࢋ

ൌ .

T has no feasible schedule: what job suffers most under EDF?

What about

T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with ࢁ ࢚ ൌ ࢋ

 ࢋ

ൌ . 	?

t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8 10

t2 t1

5
Which job is dispatched here?

2016/17 UniPD / T. Vardanega Real-Time Systems 149 of 446

ሺ߮, , ݁, ሻܦ

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 11

Critical instant /1

 Feasibility and schedulability tests must consider the
worst case for all tasks
 The worst case for task ߬ occurs when the worst possible

relation holds between its release time and that of all higher-
priority tasks

 The actual case may differ depending on the admissible
relation between ܦ and

 The notion of critical instant – if one exists – captures
the worst case
 The response time ܴ for a job of task ߬ with release time on

the critical instant is the longest possible value for ߬

2016/17 UniPD / T. Vardanega Real-Time Systems 150 of 446

Critical instant /2

 Theorem: under FPS with ܦ ∀݅, the critical instant	
for task ߬ occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the set

 We seek max	ሺ߱,ሻ for all jobs ݆ of task ߬ for

߱, ൌ 	 ݁ 	
ሺ߱, ߮ െ ߮ሻ

݁ 	െ	߮

ሺୀଵ,..,ିଵሻ
For task indices assigned in decreasing order of priority

 The summation term captures the interference that any job ݆ of task ߬
incurs from jobs of higher-priority tasks ߬ between the release
time of the first job of task ߬ (with phase ߮) to the response time
of job ݆ of task ߬ (which occurs at ߮ ߱,)

2016/17 UniPD / T. Vardanega Real-Time Systems 151 of 446

Time-demand analysis /1

 When ߮ is 0 for all jobs considered then this equation
captures the absolute worst case for task ߬

 This equation stands at the basis of Time Demand
Analysis which investigates how ߱ varies as a function of
time
 So long as ߱ሺݐሻ ݐ for some t within the time interval of interest the

supply satisfies the demand, hence the job can complete in time
 Theorem [Lehoczky, Sha, Ding: 1989] condition ߱ሺݐሻ ݐ

is an exact feasibility test (necessary and sufficient)
 The obvious question is for which ‘ݐ’ to check
 The method proposes to check at all periods of all higher-priority

tasks until the deadline of the task under study

2016/17 UniPD / T. Vardanega Real-Time Systems 152 of 446

Time demand analysis /2

T
im

e
de

m
an

d
Time supply2

4

6 8 10

2

4

6

8

e1

p1

T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

The supply exceeds the demand

2016/17 UniPD / T. Vardanega Real-Time Systems 153 of 446

ሺ߮, , ݁, ሻܦ

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 12

Time demand analysis /3
T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply
2

4

6 8 10

2

4

6

8

e1

e2

p2

The supply exceeds the demandThe supply exceeds the demand

2016/17 UniPD / T. Vardanega Real-Time Systems 154 of 446

Time demand analysis /4
T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply
2

4

6 8 10

2

4

6

8

e1

e2

p3

e3

5 73

The supply exceeds the demand
while it does not at all other t

of interest to t3 (!)

2016/17 UniPD / T. Vardanega Real-Time Systems 155 of 446

 It is straightforward to extend TDA to determine
the response time of tasks

The smallest value ݐ that satisfies
ݐ ൌ ݁ ∑ ௧

ೖሺୀଵ,..ିଵሻ ݁
is the worst-case response time of task ߬

 Solutions methods to calculate this value were
independently proposed by
 [Joseph, Pandia: 1986]
 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

Time demand analysis /5

2016/17 UniPD / T. Vardanega Real-Time Systems 156 of 446

Time demand analysis /6

 What changes in the definition of critical instant when <ܦ ?
 Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991] The first

job of task ߬ may not be the one that incurs the worst-case
response time

 Hence we must consider all jobs of task ߬ within the so-called
level-i busy period
 The ݐ, ݐ time interval within which the processor is busy executing jobs

with priority ݅, release time in ݐ, ݐ , response time falling within ݐ
 The release time in ݐ, ݐ captures the full backlog of interfering jobs
 The response time of all those jobs falling within ݐ ensures that the busy

period includes their completion

2016/17 UniPD / T. Vardanega Real-Time Systems 157 of 446

2016/17 UniPD / T. Vardanega 06/03/2017

Real Time Systems 13

Example

Time window 1 [0,70)
Time left for J2,1 : 70-26 = 44
Still to execute: 62-44 = 18

Time window 2 [70,100)
Time left for J2,1 : 30-26 = 4
Still to execute: 18-4 = 14
Release time of job J2,2

Time window 3 [100,140)
Time left for J2,1 = 40
J2,1 completes at: 114 (R = 114)
Time available for J2,2 : 40-14 = 26
Still to execute: 62-26 = 36

Time window 4 [140,200)
Time available for J2,2 : 60-26 = 34
Still to execute: 36-34 = 2

Time window 5 [200,210)
Release time of job J2,3

J2,2 completes at: 202 (R = 102)
Time available for J2,3 : 10-2 = 8
Still to execute: 62-8 = 54

Time window 6 [210,280)
Time available for J2,3 : 70-26 = 44
Still to execute: 54-44 = 10

Time window 7 [280,300)
Time available for J2,3 : 20-20 = 0
Release time of job J2,4

Time window 8 [300,350)
Time available for J2,3 : 50-6 = 44
J2,3 completes at: 300+6+10 = 316 (R = 116)

T1 = {-, 70, 26, 70}, T2 = {-, 100, 62, 120}
Let’s look at the level-2 busy period

The T2 busy period
extends beyond
this point (!) J2,1 ’s response time is not worst-case!

Ready queue: J1,1, J2,1 Ready queue: J1,2, J2,1 Ready queue: J2,1, J2,2

Ready queue: J1,2, J2,2

Ready queue: J2,2, J2,3

Ready queue: J1,3, J2,3
Ready queue: J1,4, J2,3

Ready queue: J1,4, J2,3, J2,4
Still in ready queue: J2,4

2016/17 UniPD / T. Vardanega Real-Time Systems 158 of 446

ሺ߮, , ݁, ሻܦ

Level-i busy period

T1 = {-, 100, 20, 100}, T2 = {-, 150, 40, 150}, T3 = {-, 350, 100, 350} U = 0.75
The same definition of level-i busy period holds also for D ≤ p

but its width is obviously shorter!

2016/17 UniPD / T. Vardanega Real-Time Systems 159 of 446

Summary

 Initial survey of scheduling approaches
 Important definitions and criteria
 Detail discussion and evaluation of main scheduling

algorithms
 Initial considerations on analysis techniques

2016/17 UniPD / T. Vardanega Real-Time Systems 160 of 446

Selected readings

 T. Baker, A. Shaw
The cyclic executive model and Ada
DOI: 10.1109/REAL.1988.51108

2016/17 UniPD / T. Vardanega Real-Time Systems 161 of 446

