2016/17 UniPD / T. Vardanega

4.b Task interactions and
blocking

| Inhibiting preemption /1

m In many real-life situations some critical actions
should not be preempted
o This is the case e.g. with the execution of non-reentrant
code shared by multiple jobs whether directly (by direct
call) or indirectly (e.g., within a system call primitive)
m Considerations of data integrity or efficiency require
that some system-level activities should not be
preempted

o Preemption is inhibited by simply disabling dispatching

2016/17 UniPD / T. Vardanega Real-Time Systems 209 of 446

Inhibiting preemption /2

m A higher-priority job Jj, that at its release time finds
a lower-priority job J; executing with disabled
preemption gets blocked for a time duration that
depends on J;

o Under FPS this is a flagrant case of priority inversion

m The feasibility of J, now depends on J; too!
o Under FPS, this form of blocking for J; is determined as
[Bi (np) = maxk=i+1,___n(6k)]where 0, < eyis
the longest non-preemptible execution of job J

o This cost is paid by of J; only once pet activation

2016/17 UniPD / T. Vardanega Real-Time Systems 208 of 446

Real-Time Systems

| Self suspension /1

m A job J; that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time

m J; incurs a degenerate form of blocking that can be bounded as
(Bi(ss) = max(8)) + By=1,,i-1 Min(ex, max(6,)))

o max(d;) is the longest duration of self suspension by job J;

0 The rest is the cumulative interference caused by self-suspending
higher-priority jobs that may become ready during the busy period of J;

o For every J, this duration can never be > max(8y) and > ey,

m In general, a job J; that self suspends K times during execution
incurs total blocking(B; = B;(ss) + (K + 1)B;(np)

o As B;(np) is potentially incurred at at every resumption

2016/17 UniPD / T. Vardanega Real-Time Systems 210 of 446

26/03/2017

2016/17 UniPD / T. Vardanega

| Self suspension /2

m Sclf suspension with independent tasks on
single-core processors causes scheduling anomalies
a Deadlines can be missed when task utilization or

suspension delays are decreased

m Example: a feasible task set with EDF

a7 ={0,10,(2,22),6) © Emme—mmm

o1, =1{510,(1,1,1),4} T ! e

a3 ={7,10,(1,1,1),3} «, e

o (In red the self suspension) If 7 executes or suspends N
1 time unit less, then T3 misses its deadline

2016/17 UniPD / T. Vardanega Real-Time Systems 211 of 446

‘ Access contention

m Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

m A resource access control protocol specifies

0 When and under what condition a resource access request
may be granted

o The order in which requests must be serviced
m Access contention situations may cause priority
inversion to atise

2016/17 UniPD / T. Vardanega Real-Time Systems 213 of 446

‘ Blocking effects with RMS

(@i piei, Dy)
vEee Tt 7, ={0,4,2.5,4},7, = {3,10,2,10} U = 0.875

|T‘11T2 fllll | l| 1l

|
12 3 4 8 9 10 11 12

7y self-suspends for 1.5 m——— T, misses its deadline
1

NP S) V4

] | | |

|
1
1 2 3 4 5 6 7 8 9 10 U 12

B3(ss) = 0+ min(2.5,1.5) = 1.5 is a pessimistic upperbound!
With ¢, = 3 the actual blocking for 7, in [3,10) reduces to 1
But still B,(ss) =1 > 6,4(0) =0.5

| Example /1

(¢i.pi €1, Dy) — Maxuse of shared resource per execution

7={- 2,20, 1;(4)}, 7, ={2,-, 3,17, R(4)}, 73 = {6, -, 3, 14, R(2)}

2016/17 UniPD / T. Vardanega Real-Time Systems 212 of 446

Real-Time Systems

under EDF
71 e;R(4);e. 15::e;e;R(4); e 73 ::€;e; R(2); e.
Rinuse by 7, Rin use by 73 Rin use by 7,
T, gets blocked on access to R]
T,[R| T, R T, |R| R Ty R
[[
4 8 10 12 14 16
R released T3 completes T, completes
D1y =20 [Dyy =17 D3y =14 by 7and 7, completes

assigned to /31

¥ R released by 73

2016/17 UniPD / T. Vardanega Real-Time Systems 214 of 446

26/03/2017

2016/17 UniPD

/ T. Vardanega

| Example /2

(pipiei Di)
71 ={--2,20,R(2.5)}, 7, ={2, -, 3,17, R(4)}, 5 = {6, -, 3, 14, R(2)}

under EDF

Same as before except with shorter use of R by 7 -------------

R released by 7, R released by 7,
Rin use by 71 R taken over by 7, R taken over by 73
R released by 73
T,|R| T, R [R| T, R R T, |T,|T
| | I
2 4 6 8 10 12 14 16 18

2016/17 UniPD / T. Vardanega Real-Time Systems 215 of 446

‘ Example

Wait-for graph

Units required Duration of use

@3

Units available

OR,S5 >

These two arcs do not denote accumulation!

i . O R, 1
“* [R1;8[Ry,4;1][R,,1;5]]

Where T; cumulates up to 2 resources

1;2)
]

Obviously!

2016/17 UniPD / T. Vardanega Real-Time Systems 217 of 446

Assumptions and notations

m In order that interference can be minimized, it is preferable
for real-time design to prescribe that
a All jobs do not self suspend (directly or indirectly)
o All jobs can be preempted

m We say that job J, is directly blocked by a lower-priotity
job J; when
o Jyis granted exclusive access to a shared resource R
0 Jj has requested R and its request has not been granted

m To study the problem we may want to use a wait-for graph

2016/17 UniPD / T. Vardanega Real-Time Systems 216 of 446

Real-Time Systems

Resource access control [a]

m Inhibiting preemption in critical sections
o A job that requires access to a resource is always granted it
a A job that has been assigned a resource runs at a priority
higher than any other job

m These two clauses imply each other

m They jointly prevent deadlock situations from occurring
m They cause bounded priority inversion

o At most once per job
m We already understood why

o For a maximum duration [Bi (rc) = maxk:HL__,an]

m For job indices in monotonically non-increasing order and Cj, denoting
worst-case duration of critical-section activity by job Jj

2016/17 UniPD / T. Vardanega Real-Time Systems 218 of 446

26/03/2017

2016/17 UniPD / T. Vardanega

‘ Critique of |[a]

m This strategy causes distributed overhead

o Alljobs — including those that do not compete for resource access —
incur some time penalty

0 Very unfair hence not desirable

m Better if time overhead is solely incurred by the jobs that
actually compete for resource access

0 The priority of the job that is granted the resource must only be
higher than that of its competitor jobs

m This is the principle of the ceiling priority: we shall return to it

0 The resource requirements must be statically known

2016/17 UniPD / T. Vardanega Real-Time Systems 219 of 446

| Critique of [b]

m BPIP suffers two forms of blocking
0 Direct blocking owing to resource contention
0 Inheritance blocking owing to priority raising
m Priority inheritance is transitive
o Direct blocking is transitive as jobs may need to acquire multiple resources
s BPIP does not prevent deadlock as cyclic blocking is a devious
form of transitive direct blocking
m BPIP incurs reducible distributed overhead

0 Under BPIP a job may become blocked multiple times when competing
for more than one shared resource

m BPIP needs no prior knowledge on which resources are shared

o Itis inherently dynamic

2016/17 UniPD / T. Vardanega Real-Time Systems 221 of 446

Resource access control [b]

m Basic priority inheritance protocol (BPIP)
0 The priority of a job varies over time from that initially assigned
0 The variation follows inheritance principles

s Protocol rules

0 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;
at release time they take on their assigned priority

o Allocation: when job] requires access to resource R at time t
= If R is free, R is assigned to J until release

= If R is busy, the request is denied and] becomes blocked
o Priority inheritance: when job J becomes blocked, job J; that blocks it

takes on J’s aurrent priority as its inberited priority and retains it until R is
released; at that point J; reverts to its previous priotity

2016/17 UniPD / T. Vardanega Real-Time Systems 220 of 446

Real-Time Systems

Resource access control [c]

m Basic priority ceiling protocol (BPCP)

0 As BPIP but with the additional constraint that all
resource requirements must be statically known
o Every resource R is assigned a priority ceiling attribute
set to the highest priority of the jobs that require R
m At time t the system has a ceiling 5 (t) attribute set to the
highest priority ceiling of all resources currently in use
m If no resource is currently in use at t g(t) defaults to Q < the
lowest ptiority of all jobs

2016/17 UniPD / T. Vardanega Real-Time Systems 222 of 446

26/03/2017

2016/17 UniPD / T. Vardanega

‘ BPCP protocol rules

m Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

= Allocation: when job J requests access to resource R at time t
o If R is assigned to another job, request is denied and J becomes blocked
a If R is free and J’s priority 7, (t) > ms(t), the request is granted
o If] owns the resource with priority ceiling g (t), the request is granted
o Otherwise the request is denied and J becomes blocked

m Priority inheritance: when job J becomes blocked by job J; — for
direct or avoidance blocking — J; takes J’s current priority 7r;(t)
until J; releases all resources with priority ceiling > 1;(t); at that
point J;’s priority reverts to the level that preceded access to
those resources

2016/17 UniPD / T. Vardanega Real-Time Systems 223 of 446

| Critique of [c] /2

m Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
o Ifjob J at time t has 7;(t) > ms(t) then it must be so that
m] will never use any of the resources in use at time ¢
= So won’t all jobs with higher priority than |

a The system ceiling 5 (t) determines which jobs can be
assigned a resoutce free at time t without risking deadlock
m Alljobs with priority higher than the system ceiling g (t)

m Caveat

o To stop job J from blocking itself in the attempt of nesting
resources, BPCP must grant its request if 77, () < ms(t) but J
holds the resources {X} with ceiling = mg(t)

2016/17 UniPD / T. Vardanega Real-Time Systems 225 of 446

| Critique of [c] /1

m BPCP is not greedy (whereas BPIP is)
o Under BPCP a request for a free resource may be denied !

m Hence under BPCP each job J incurs three distinct forms
of blocking caused by lower-priority job J;

s owns @ T, >
@-®—-® ©—-®—-®

1. Direct blocking 2, Priority-inheritance blocking

no - @—® @—@ — mo-m>mno

3. Avoidance blocking

2016/17 UniPD / T. Vardanega Real-Time Systems 224 of 446

Real-Time Systems

| Critique of [¢] /3

m BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking
m Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
o Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job
0 The job that causes others to block cannot itself be blocked
m Hence BPCP does not permit transitive blocking
o Demonstration: by exercise
m The maximum possible value of that duration for job J; is
termed the blocking time B;(rc) due to resource contention
a B;(rc) must be accounted for in the schedulability test for J;

2016/17 UniPD / T. Vardanega Real-Time Systems 226 of 446

26/03/2017

2016/17 UniPD / T. Vardanega

‘ Computing the BPCP blocking time /1

Directly blocked by
J2 J3 J4 J5

J 6 2
J S

Priority-inheritance blocked by
J2 J3 J4 J5 J&

2 3

NN

Avoidance blocked b
J2 J3 J4 J5 JE

J2 3
J3 5

alrslr

| B;(rc) = max value in row i across all tables

2016/17 UniPD / T. Vardanega Real-Time Systems 227 of 446

Resource access control [d]

m Stack-based ceiling priority protocol
o SB-CPP beats BPCP in terms of

m Saving memory resources especially precious to embedded
systems by sharing stack space across jobs
O It prevents a job’s stack space from fragmenting because
it ensures that none of the job’s request for resources
may be denied during execution
= What BPCP instead allows
= Stack fragmentation from blocking and not from preemption (!)
0 We must also require that jobs do not self suspend

m Having lower algorithmic complexity in time and space
from needing less checks against g (t)

2016/17 UniPD / T. Vardanega Real-Time Systems 229 of 446

Computing the BPCP blocking time /2

m Table “directly blocked by” is straightforward
w ‘Table “priority-inheritance blocked by’

0 The value in cell [, k] is the maximum value found in
(rows 1, ..., i-1; column k) in Table “directly blocked by’

m Table “avoidance blocked by’

o If (desirably) jobs are assigned distinct priorities, the cells here are as
in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2016/17 UniPD / T. Vardanega Real-Time Systems 228 of 446

SB-CPP protocol rules [Baker, 1991]

» Computation of and updates to ceiling 4 (t):

0 When all resources are free, ms(t) = Q
o mg(t) is updated any time t a resource is assigned or released
m Scheduling: on its release time job J stays blocked until
its assigned priority 7, (t) > 15 (t)
0 Jobs that are not blocked are dispatched to execution by
preemptive priority-driven scheduling
m Allocation: whenever a job issues a request for a
resource, the request is granted =,

O

2016/17 UniPD / T. Vardanega Real-Time Systems 230 of 446

Real-Time Systems

26/03/2017

2016/17 UniPD / T. Vardanega

| Critique of [d]

m Under SB-CPP a job J can only begin execution when
the resources it may need are free

o Otherwise 7;(t) > mg(t) cannot hold
m Under SB-CPP a job J that may get preempted does
not become blocked on resumption
0 The preempting job surely does not contend any resources
with J

m SB-CPP prevents deadlock from occurring

m Under SB-CPP B;(rc) for any job J; is computed in
the same way as with BPCP

2016/17 UniPD / T. Vardanega Real-Time Systems 231 of 446

‘ Summary

m Issues arising from task interactions under
preemptive priority-based scheduling

m Survey of resource access control protocols

m Critique of the surveyed protocols

2016/17 UniPD / T. Vardanega Real-Time Systems 233 of 446

Resource access control [e]

m Ceiling priority protocol (base version)
a CPP does not use the system ceiling w4 (t) although the
resources continue to have a ceiling priority attribute

m Scheduling:

0 A job that does not hold any resource executes at the level of
its assigned priority
0 Jobs are scheduled under FPS with FIFO_within_priorities
o A job that holds any resources has its current priority set to
the highest value among the ceiling priority of those resources
m Allocation: Whenever a job issues a request fora =,
resource, the request is granted &

2016/17 UniPD / T. Vardanega Real-Time Systems 232 of 446

‘ Selected readings

m L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time

synchronization
DOI: 10.1109/12.57058
m T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time

Processes
DOI: 10.1109/REAIL.1990.128747

2016/17 UniPD / T. Vardanega Real-Time Systems 234 of 446

Real-Time Systems

26/03/2017

