
2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 1

4.b Task interactions and
blocking

Inhibiting preemption /2

 A higher-priority job ܬ௛ that at its release time finds
a lower-priority job ܬ௟ executing with disabled
preemption gets blocked for a time duration that
depends on ܬ௟
 Under FPS this is a flagrant case of priority inversion

 The feasibility of ܬ௛ now depends on ܬ௟ too!
 Under FPS, this form of blocking for ܬ௜ is determined as
ሻ݌௜ሺ݊ܤ ൌ max	௞ୀ௜ାଵ,..,௡ሺߠ௞ሻ where ߠ௞ ൑ ݁௞ is
the longest non-preemptible execution of job ܬ௞	

 This cost is paid by of ܬ௜ only once per activation

2016/17 UniPD / T. Vardanega Real-Time Systems 208 of 446

Inhibiting preemption /1

 In many real-life situations some critical actions
should not be preempted
 This is the case e.g. with the execution of non-reentrant

code shared by multiple jobs whether directly (by direct
call) or indirectly (e.g., within a system call primitive)

 Considerations of data integrity or efficiency require
that some system-level activities should not be
preempted
 Preemption is inhibited by simply disabling dispatching

2016/17 UniPD / T. Vardanega Real-Time Systems 209 of 446

Self suspension /1

 A job ܬ௜ that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time

 ௜ܬ incurs a degenerate form of blocking that can be bounded as
ሻݏݏ௜ሺܤ ൌ max	ሺߜ௜ሻ ൅ ∑ min	ሺ݁௞,max	ሺߜ௞ሻሻ௞ୀଵ,..,௜ିଵ
 max	ሺߜ௜ሻ is the longest duration of self suspension by job ܬ௜
 The rest is the cumulative interference caused by self-suspending

higher-priority jobs that may become ready during the busy period of ܬ௜
 For every ܬ௞, this duration can never be ൐ max	ሺߜ௞ሻ and ൐ ݁௞

 In general, a job ܬ௜ that self suspends ܭ times during execution
incurs total blocking ܤ௜ ൌ ௜ܤ ݏݏ ൅ ሺܭ ൅ 1ሻܤ௜ሺ݊݌ሻ
 As ܤ௜ሺ݊݌ሻ is potentially incurred at at every resumption

2016/17 UniPD / T. Vardanega Real-Time Systems 210 of 446

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 2

 Self suspension with independent tasks on
single-core processors causes scheduling anomalies
 Deadlines can be missed when task utilization or

suspension delays are decreased
 Example: a feasible task set with EDF
 ߬ଵ ൌ 0,10, 2,2,2 , 6
 ߬ଶ ൌ 5,10, 1,1,1 , 4
 ߬ଷ ൌ 7,10, 1,1,1 , 3
 (In red the self suspension) If ߬ଵexecutes or suspends

1 time unit less, then ߬ଷ misses its deadline

Self suspension /2

2016/17 UniPD / T. Vardanega Real-Time Systems 211 of 446

Blocking effects with RMS

T2

࣎૚ ൌ ૙, ૝, ૛. ૞, ૝ , ࣎૛ ൌ ૜, ૚૙, ૛, ૚૙ ࢁ		 ൌ ૙. ૡૠ૞

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

࣎૚ self-suspends for 1.5 ࣎૛ misses its deadline

૛࡮ ࢙࢙ ൌ ૙ ൅࢔࢏࢓ ૛. ૞, ૚. ૞ ൌ ૚. ૞ is a pessimistic upperbound!
With ࣐૛ ൌ ૜ the actual blocking for ࣎૛ in [3,10) reduces to 1

But still ࡮૛ ࢙࢙ ൌ ૚ ൐ ࣌૛,૚ሺ૙ሻ ൌ ૙. ૞

2016/17 UniPD / T. Vardanega Real-Time Systems 212 of 446

ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ

Access contention

 Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

 A resource access control protocol specifies
 When and under what condition a resource access request

may be granted
 The order in which requests must be serviced

 Access contention situations may cause priority
inversion to arise

2016/17 UniPD / T. Vardanega Real-Time Systems 213 of 446

Example /1

2016/17 UniPD / T. Vardanega Real-Time Systems 214 of 446

T1T2RT3RT1

2 4 6 8 10 12

࣎૚ =	{‐,	‐,	2,	20,	R(4)},	࣎૛ =	{2,	‐,	3,	17,	R(4)}	,	࣎૜ =	{6,	‐,	3,	14,	R(2)}	

under	EDF

࣎૚ ::	e;	R(4);	e. ࣎૛ ::	e;	e;	R(4);	e. ࣎૜ ::	e;	e;	R(2);	e.

14 16 18

R T2 R T3 R

Max	use	of	shared	resource	per	execution

R	in	use	by	߬ଵ

R	released	
by	߬ଵand		
assigned to	ܬଷ,ଵ

R	in	use	by	߬ଷ R	in	use	by	߬ଶ

R	released	by	߬ଷ

߬ଷ completes ߬ଶ completes

߬ଵ completes

߬ଶ gets	blocked	on	access	to	R

ଵ,ଵܦ ൌ 20 ଶ,ଵܦ ൌ 17 ଷ,ଵܦ ൌ 14

ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 3

Example /2

2016/17 UniPD / T. Vardanega Real-Time Systems 215 of 446

࣎૚ =	{‐,	‐,	2,	20,	R(2.5)},	࣎૛	=	{2,	‐,	3,	17,	R(4)}	,	࣎૜ =	{6,	‐,	3,	14,	R(2)}	

under	EDF

Same	as	before	except	with	shorter use	of	R	by	࣎૚

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

߬ଷ	misses	its	deadline

R	in	use	by	߬ଵ
R	released	by	߬ଵ
R	taken	over	by	߬ଶ

R	released	by	߬ଶ
R	taken	over	by	߬ଷ

R	released	by	߬ଷ

ሺ߮௜, ,௜݌ ݁௜, ௜ሻܦ

Scheduling	anomaly!

Assumptions and notations

 In order that interference can be minimized, it is preferable
for real-time design to prescribe that
 All jobs do not self suspend (directly or indirectly)
 All jobs can be preempted

 We say that job ܬ௛ is directly blocked by a lower-priority
job ܬ௟ when
 ௟ܬ is granted exclusive access to a shared resource ܴ
 ௛ܬ has requested ܴ and its request has not been granted

 To study the problem we may want to use a wait-for graph

2016/17 UniPD / T. Vardanega Real-Time Systems 216 of 446

Example

T1

T2

T3

T4

R1,	5

R2,	1

(2;	3)

(1;	1)

(1;	2)

[R2,1;8[R1,4;1][R1,1;5]]

Units	available

Units	required Duration	of	use

Obviously!

Wait‐for	graph

2016/17 UniPD / T. Vardanega Real-Time Systems 217 of 446

Where	T3 cumulates	up	to	2	resources

These	two	arcs	do	not denote	accumulation!

Resource access control [a]

 Inhibiting preemption in critical sections
 A job that requires access to a resource is always granted it
 A job that has been assigned a resource runs at a priority

higher than any other job
 These two clauses imply each other
 They jointly prevent deadlock situations from occurring

 They cause bounded priority inversion
 At most once per job

 We already understood why

 For a maximum duration ܤ௜ሺܿݎሻ ൌ ௞ܥ௞ୀ௜ାଵ,..,௡ݔܽ݉
 For job indices in monotonically non-increasing order and ܥ௞ denoting

worst-case duration of critical-section activity by job ܬ௞

2016/17 UniPD / T. Vardanega Real-Time Systems 218 of 446

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 4

Critique of [a]

 This strategy causes distributed overhead
 All jobs – including those that do not compete for resource access –

incur some time penalty
 Very unfair hence not desirable

 Better if time overhead is solely incurred by the jobs that
actually compete for resource access
 The priority of the job that is granted the resource must only be

higher than that of its competitor jobs
 This is the principle of the ceiling priority: we shall return to it

 The resource requirements must be statically known

2016/17 UniPD / T. Vardanega Real-Time Systems 219 of 446

Resource access control [b]

 Basic priority inheritance protocol (BPIP)
 The priority of a job varies over time from that initially assigned
 The variation follows inheritance principles

 Protocol rules
 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;

at release time they take on their assigned priority
 Allocation: when job ܬ requires access to resource ܴ at time ݐ

 If ܴ is free, ܴ is assigned to ܬ until release
 If ܴ is busy, the request is denied and ܬ becomes blocked

 Priority inheritance: when job ܬ becomes blocked, job ܬ௟ that blocks it
takes on ܬ’s current priority as its inherited priority and retains it until ܴ is
released; at that point ܬ௟ reverts to its previous priority

2016/17 UniPD / T. Vardanega Real-Time Systems 220 of 446

Critique of [b]

 BPIP suffers two forms of blocking
 Direct blocking owing to resource contention
 Inheritance blocking owing to priority raising

 Priority inheritance is transitive
 Direct blocking is transitive as jobs may need to acquire multiple resources

 BPIP does not prevent deadlock as cyclic blocking is a devious
form of transitive direct blocking

 BPIP incurs reducible distributed overhead
 Under BPIP a job may become blocked multiple times when competing

for more than one shared resource

 BPIP needs no prior knowledge on which resources are shared
 It is inherently dynamic

2016/17 UniPD / T. Vardanega Real-Time Systems 221 of 446

Resource access control [c]

 Basic priority ceiling protocol (BPCP)
 As BPIP but with the additional constraint that all

resource requirements must be statically known
 Every resource ܴ is assigned a priority ceiling attribute

set to the highest priority of the jobs that require ܴ
 At time ݐ the system has a ceiling ߨ௦ሺݐሻ attribute set to the

highest priority ceiling of all resources currently in use
 If no resource is currently in use at ݐ defaults to Ω	ሻݐ௦ሺߨ < the

lowest priority of all jobs

2016/17 UniPD / T. Vardanega Real-Time Systems 222 of 446

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 5

BPCP protocol rules

 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

 Allocation: when job ܬ requests access to resource ܴ at time ݐ
 If ܴ is assigned to another job, request is denied and ܬ becomes blocked
 If ܴ is free and ܬ’s priority ߨ௃ሺݐሻ ൐ ሻ, the request is grantedݐ௦ሺߨ
 If ܬ owns the resource with priority ceiling ߨ௦ሺݐሻ, the request is granted
 Otherwise the request is denied and ܬ becomes blocked

 Priority inheritance: when job ܬ becomes blocked by job ܬ௟ – for
direct or avoidance blocking – ௟ܬ takes ܬ’s current priority ߨ௃ሺݐሻ
until ܬ௟ releases all resources with priority ceiling ൐ ሻ; at thatݐ௃ሺߨ
point ܬ௟’s priority reverts to the level that preceded access to
those resources

2016/17 UniPD / T. Vardanega Real-Time Systems 223 of 446

Critique of [c] /1

 BPCP is not greedy (whereas BPIP is)
 Under BPCP a request for a free resource may be denied !

 Hence under BPCP each job ܬ incurs three distinct forms
of blocking caused by lower-priority job ܬ௟

3.	Avoidance	blocking

J R Jl
1.	Direct	blocking

Jh R Jl
2.	Priority‐inheritance	blocking

J R X Jl࣊ࡶሺ࢚ሻ ࢙࣊ሺ࢚ሻ ൌ ࢄ࣊ ൐ ሺ࢚ሻࡶ࣊

J ࢎࡶ࣊ ൐ ࣊࢐requires owns

2016/17 UniPD / T. Vardanega Real-Time Systems 224 of 446

Critique of [c] /2

 Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
 If job ܬ at time ݐ has ߨ௃ሺݐሻ ൐ ሻݐ௦ሺߨ then it must be so that
 ܬ will never use any of the resources in use at time ݐ
 So won’t all jobs with higher priority than ܬ

 The system ceiling ߨ௦ሺݐሻ determines which jobs can be
assigned a resource free at time ݐ without risking deadlock
 All jobs with priority higher than the system ceiling ߨ௦ሺݐሻ

 Caveat
 To stop job ܬ from blocking itself in the attempt of nesting

resources, BPCP must grant its request if ߨ௃ሺݐሻ ൑ ሻݐ௦ሺߨ but ܬ
holds the resources ܺ with ceiling ൌ ሻݐ௦ሺߨ

2016/17 UniPD / T. Vardanega Real-Time Systems 225 of 446

Critique of [c] /3

 BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

 Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
 Under BPCP when a job becomes blocked, its blocking can only be

caused by a single job
 The job that causes others to block cannot itself be blocked

 Hence BPCP does not permit transitive blocking
 Demonstration: by exercise

 The maximum possible value of that duration for job ܬ௜ is
termed the blocking time ሻܿݎ௜ሺܤ due to resource contention
 ሻܿݎ௜ሺܤ must be accounted for in the schedulability test for ܬ௜

2016/17 UniPD / T. Vardanega Real-Time Systems 226 of 446

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 6

Computing the BPCP blocking time /1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

ሻࢉሺ࢘࢏࡮ ൌmax	value	in	row	i across	all	tables
Low

High

2016/17 UniPD / T. Vardanega Real-Time Systems 227 of 446

Computing the BPCP blocking time /2

 Table “directly blocked by” is straightforward

 Table “priority-inheritance blocked by”
 The value in cell [i, k] is the maximum value found in

(rows 1, …, i-1; column k) in Table “directly blocked by”

 Table “avoidance blocked by”
 If (desirably) jobs are assigned distinct priorities, the cells here are as

in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2016/17 UniPD / T. Vardanega Real-Time Systems 228 of 446

Resource access control [d]

 Stack-based ceiling priority protocol
 SB-CPP beats BPCP in terms of
 Saving memory resources especially precious to embedded

systems by sharing stack space across jobs
 It prevents a job’s stack space from fragmenting because

it ensures that none of the job’s request for resources
may be denied during execution
 What BPCP instead allows
 Stack fragmentation from blocking and not from preemption (!)

 We must also require that jobs do not self suspend
 Having lower algorithmic complexity in time and space

from needing less checks against ߨ௦ሺݐሻ

2016/17 UniPD / T. Vardanega Real-Time Systems 229 of 446

SB-CPP protocol rules [Baker, 1991]

 Computation of and updates to ceiling :ሻݐ௦ሺߨ
 When all resources are free, ߨ௦ሺݐሻ ൌ Ω
 ሻݐ௦ሺߨ is updated any time ݐ a resource is assigned or released

 Scheduling: on its release time job ܬ stays blocked until
its assigned priority ߨ௃ሺݐሻ ൐ ሻݐ௦ሺߨ
 Jobs that are not blocked are dispatched to execution by

preemptive priority-driven scheduling
 Allocation: whenever a job issues a request for a

resource, the request is granted

2016/17 UniPD / T. Vardanega Real-Time Systems 230 of 446

2016/17 UniPD / T. Vardanega 26/03/2017

Real-Time Systems 7

Critique of [d]

 Under SB-CPP a job ܬ can only begin execution when
the resources it may need are free
 Otherwise ߨ௃ሺݐሻ ൐ ሻݐ௦ሺߨ cannot hold

 Under SB-CPP a job ܬ that may get preempted does
not become blocked on resumption
 The preempting job surely does not contend any resources

with ܬ

 SB-CPP prevents deadlock from occurring

 Under SB-CPP ܤ௜ሺܿݎሻ for any job ܬ௜ is computed in
the same way as with BPCP

2016/17 UniPD / T. Vardanega Real-Time Systems 231 of 446

Resource access control [e]

 Ceiling priority protocol (base version)
 CPP does not use the system ceiling ߨ௦ሺݐሻ although the

resources continue to have a ceiling priority attribute
 Scheduling:

 A job that does not hold any resource executes at the level of
its assigned priority

 Jobs are scheduled under FPS with FIFO_within_priorities
 A job that holds any resources has its current priority set to

the highest value among the ceiling priority of those resources
 Allocation: Whenever a job issues a request for a

resource, the request is granted
2016/17 UniPD / T. Vardanega Real-Time Systems 232 of 446

Summary

 Issues arising from task interactions under
preemptive priority-based scheduling

 Survey of resource access control protocols
 Critique of the surveyed protocols

2016/17 UniPD / T. Vardanega Real-Time Systems 233 of 446

Selected readings

 L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time
synchronization
DOI: 10.1109/12.57058

 T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time
Processes
DOI: 10.1109/REAL.1990.128747

2016/17 UniPD / T. Vardanega Real-Time Systems 234 of 446

