2016/17 UniPD / T. Vardanega

8.2 Multicore systems —
initial reckoning

Credits to A. Burns and A. Wellings
(2 RTS s
to B. Andersson and J. Jonsson for their work in Proc. of

the the IEEE Real-Time Systems Symposinm, WiP Session,
2000, pp. 53-56

and to a student of this class from a few years back

| Hardware architecture taxonomy

m A multiprocessor (or multi-core) is #ghtly coupled

o Global status and workload information on all processors
(cores) can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler

0 When each processor (core) has its own scheduler, the
decisions and actions of all schedulers are coherent

m Scheduling in this model is an NP-hard problem
m A distributed system is /oosely coupled
o Itis too costly to keep global status

o There usually is a dispatcher / scheduler per processor

2016/17 UniPD / T. Vardanega Real-Time Systems 359 of 449

| Fundamental issues)

R et

/

m Hardware architecture taxonomy I

a Homogeneous VS. heterogeneous processors

m Rescarch focused first on SMP (symmetric multiprocessors) that make a
much simpler problem

m Scheduling approach

0 Global or partitioned or alternatives between these extremes
m Partitioning = allocation problem followed by single-CPU scheduling

m Optimality criteria are shattered
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than pattitioned

2016/17 UniPD / T. Vardanega Real-Time Systems 358 of 449

| Understanding the hardware /3

Shared DRAM

Memory Controller

Caches

Shared L2

/

I Shared bus | /
!

Core || Core || Core || Core

1 L2 s)l 4

2016/17 UniPD / T. Vardanega Real-Time Systems 360 of 449

DAAl Tivrva~s OuvvAatAarmAas

Courtesy of PROXIMA

14/05/2017

2016/17 UniPD / T. Vardanega 14/05/2017

. LT 3 .
| Hardware interference /1 £ - ‘ A big anomaly
']
v ‘ AN
[] Paraﬂel execution ona multiprocessor causes vast Single-core alone Multicore alone on CPU w/o0 SW interaction
opportunities of contention for hardware resources i i :
that are shared among the cores 3 3
m This phenomenon increases the execution time of £, g,
running threads by causing them to hold the CPU B ﬁ 2
without progressing (V) i
o Unlike software interference, which prevents a ready 2 i i .
thread from running M0 w0 M0 v seenooo e
Execution Time Elxocluln_nn T.'f"?
Courtesy of PRMTlS
2016/17 UniPD / T. Vardanega Real-Time Systems 361 of 449 2016/17 UniPD / T. Vardanega Real-Time Systems 363 of 449

| Hardware interference /2 ‘ State of the art: what a loss!
m The WCET of a simple i I : m Some task sets may be deemed unschedulable even though they
. 1| 1 Withmid opponent | | have low utilization
single-path program L
. 1 d ! e ! 0 Much less than linear with the number of processors
running alone does not 3i | I~ Withfierce opponent | O This is known as the Dhall’s effect [Dhall & Liu, 1978]
c= |y T — H . .
stay the same when S | ! m The exact schedulability tests (those in the state of the art) have
2 : i exponential time complexity
other programs happen & . , p 1 plexity
to execute on other § oo i 0 The known sufficient tests have more affordable polynomial time
CPUs E complexity but (obviously) are pessimistic
g : m Rate-monotonic priority assignment is not optimal
: ‘m L S m — = No optimal priority assighment scheme with polynomial time
. Execution Time complexity has been found yet
Courtesy of PROMT'S
2016/17 UniPD / T. Vardanega Real-Time Systems 362 of 449 2016/17 UniPD / T. Vardanega Real-Time Systems 364 of 449

DAAl Tivrva~s OuvvAatAarmAas n)

2016/17 UniPD / T. Vardanega

Simplifying assumptions

Processor (CPU) identity

o All processors are equivalent
Task independence

o Tasks are logically independent of one another

Task unity

o Tasks can run only on one CPU at any one time

Task migration
0 Tasks can run on different CPUs at different times

No overhead

o Context switch and migration costs are in WCET estimates

2016/17 UniPD / T. Vardanega Real-Time Systems 365 of 449

The solution space for scheduling

2016/17 UniPD / T. Vardanega Real-Time Systems 367 of 449

Predictability [Ha & Liu, 1994]

m For arbitrary job sets on multiprocessors, if the scheduling
algotithm is work-conserving"), preemptive, global (with
migration), with fixed job priorities is predictable

a Job completion times monotonically related to job execution times

m Hence it is safe to consider only upper bounds for job

execution times in schedulability tests

m This is not true for non-preemptive scheduling

1) A global multicore scheduling algorithm is work conserving if
processors are not idle while tasks eligible for execution are not
able to execute on other processors

2016/17 UniPD / T. Vardanega Real-Time Systems 366 of 449

DAAl Tivrva~s OuvvAatAarmAas

Software interference /1

m We know what is the interference I; suffered by a
task T; for single-processor scheduling
o How does this change for multiprocessors?

m For globa/ multiprocessor scheduling with m
processors, interference only occurs for tasks
{Tj}, j>m

m Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors

2016/17 UniPD / T. Vardanega Real-Time Systems 368 of 449

14/05/2017

2016/17 UniPD / T. Vardanega

| Software interference /2

m A very pessimistic bound considers all higher-
priority tasks to always fully interfere

max 1 R;;nax g
a Rp™ =G + ;erehp(k)([T_j] G +C))

m This naive bound can be improved, and has been,
but for great computational complexity and still
without becoming exact

2016/17 UniPD / T. Vardanega Real-Time Systems 369 of 449

‘ Dhall’s effect /2

Task T D C U
d | 10 [10] 9] 09| 0n2procesons
e | 10 |10 9] 09 dui=2
£ |10]10]2] 02 i

m Partitioned scheduling does not work here either

m After tasks d and e are allocated, task f cannot reside on just one
processor
0 It needs to migrate from one to the other to find room for execution

m And it also needs that tasks d and e are willing to use
cooperative scheduling for it complete in time

2016/17 UniPD / T. Vardanega Real-Time Systems 371 of 449

Dhall’s effect /1

Task T D C U

10 10 5 0.5 On 2 processors
5
8

b 10 | 10 0.5 ZUi=1-67<2
c 12 | 12 0.67

m Under global scheduling, EDF and FPS would run tasks
a and b first on each of the 2 processors

m But this would leave no time for task ¢ to complete
0 7 time units on each processor, 14 in total, but 8 on neither

m Even if the total system is underutilized (!)

2016/17 UniPD / T. Vardanega Real-Time Systems 370 of 449

DAAl Tivma~n O AL

NV S

‘ Global scheduling anomalies

m In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
0 This suggests that increasing the petiod should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1

a A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time when tasks execute

= Anomaly 2

Q A decrease in processor demand of a task causes an znerease in
the interference suffered by that task

2016/17 UniPD / T. Vardanega Real-Time Systems 372 of 449

14/05/2017

2016/17 UniPD / T. Vardanega

| Anomaly 1: decrease in hp demand

Task | T D | C U
m = 2 processors and Y,; U; = 1.83 but
a 3 3 2] 067 T is saturated because C; + I, = D,
4 4 2 | 0.50 hence any increase in I, would make it
c 1211218 | 067 unschedulable

2016/17 UniPD / T. Vardanega Real-Time Systems 373 of 449

| Anomaly 2: decrease in own demand

Task C U
a 4 4 2 0.5 m = 2 processors and U = 1.8 but
b 5 3 0.6 T with Io = 3 is saturated
c 10 | 10 | 7 0.7
P a | c a | c a ‘
4 8
5 10
2016/17 UniPD / T. Vardanega Real-Time Systems 375 of 449

| Anomaly 1 (cont’d)

m If we reduce T, to 4 we decrease system load to U = 1.67

m But in this way I, increases from 4 to 6 and T, misses its

deadline (!)

2016/17 UniPD / T. Vardanega Real-Time Systems 374 of 449

DAaAl Tivma~n OuratAaArmas

| Anomaly 2 (cont’d)

m If we extend T to 11 we decrease system load to U = 1.74

m But in this way I, increases from 3 to 5 (1) as it becomes
visible in the second job of T

2016/17 UniPD / T. Vardanega Real-Time Systems 376 of 449

14/05/2017

2016/17 UniPD / T. Vardanega

| The defeat of greedy schedulers

m Greedy algorithms ate easy to explain, study, and
implement
0 They work very well on single-core processors
o EDF [1] and LLF [2] are optimal for single-core processors

w They collapse the urgency of a job into a single value and use it to
greedily schedule jobs

m Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors where computation and
parallelism are distinct dimensions
0 There, EDF and LLF are no longer optimal

2016/17 UniPD / T. Vardanega Real-Time Systems 377 of 449

‘ P-fair scheduling [Baruah et al. 1990]

w Proportional progress is a form of proportionate fairness
also known as P-fairness
o Each task 7; is assigned resources in proportion to its wezght
W; = % so that it progresses steadily
o Useful, e.g., for real-time multimedia applications
m At every time t, task T; must have been scheduled
either |W; X t| or [W; X t] time units

o Without loss of generality, preemption is assumed to only
occur at integral time units

0 The workload model is assumed to be periodic

2016/17 UniPD / T. Vardanega Real-Time Systems 379 of 449

| Why do greedy schedulers fail?

Theorem 1 (stating the obvious)

When the total utilization of a periodic task set is equal to the
number of processors, then no feasible schedule can allow any
processor to remain idle for any length of time

2016/17 UniPD / T. Vardancga Real-Time Systems 378 of 449

| P-fair scheduling /2

m lag(S,t;,t) is the difference between the total
resource allocation that task T; should have received
in [0, t) and what it received under schedule S

m For a P-fair schedule S at time ¢
a T; is abead iff lag (S, t;,t) <0
Q T; is bebind iff lag(S,t;,t) > 0
Q Tj is puncrual iff lag(S,t;, t) = 0

2016/17 UniPD / T. Vardanega Real-Time Systems 380 of 449

DAAl Tivrva~s OuvvAatAarmAas

14/05/2017

2016/17 UniPD / T. Vardanega

| P-fair scheduling /3

m a(x) is the characteristic (infinite) string of task Ty
over {—,0,+} for t € N with
0 a(x) =sign(W, - (£ +1) — [Wy - t]| - 1)
m Distance from the integral approximation of fluid rate curve <:|
a a(x,t) is the characteristic substring
i (0) Ay 5 (X) ... ar, (x) of task T, at time t
where t' = mini:i > t:a;(x) =0
m For a P-fair schedule § at time ¢, task 7; is
Q Urgent iff T; is behind and ety (T;) # —
Q Tnegru iff T; is abead and oty (T;) # +
a Contending otherwise

2016/17 UniPD / T. Vardanega Real-Time Systems 381 of 449

‘ Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a,(1;) = — and 7; not scheduled at t then T; is ahead at t + 1
e {EI If ay(t;) = 0 and 7; not scheduled at t then T; is punctual at t + 1
o If a;(t;) = + and 7; not scheduled at t then T; is behindat t + 1
o If a,(1;) = + and 7; scheduled at t then T; is ahead at t + 1

m For task T; bebind at time t under S
o If a,(1;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a,(1;) = — and 7; not scheduled at t then T; is behind at t + 1
b If a;(1;) = 0 and T; scheduled at t then T; is punctnalat t + 1
e {EI If a;(1;) = + and T; scheduled at t then T; is bebind at t + 1

2016/17 UniPD / T. Vardanega Real-Time Systems 383 of 449

| Fluid Rate Curve

work

completed =
-7 1
-7 !
-7 1
e !
Fluid rate curve /- :
|

Utilization U Py : s

- S
< - |

SlopeW—T/, H > =

L7 Actual work curve !]

e Slope=0or1 1 %
Ahead Pie i
- . 1
Behind i
- 1
- ; |
_.-~ Contending !
e 1
A 1

z [.
' time

|

job release period T deadline

2016/17 UniPD / T. Vardanega Real-Time Systems 382 of 449

DAAl Tivrva~s OuvvAatAarmAas

P-fair scheduling /4

m General principle of P-fairness
a Every task wrgent at time t must be scheduled at t so that P-
fairness can be preserved
a No task #zegru at time t can be scheduled at t without breaking
P-fairness

m Breakage with ng fregru, Ny contending, Ny urgent tasks at

time t, with m resources and n = ng + nq + n, tasks

a If n, > m, the scheduling algorithm cannot schedule all #rgent
tasks = some of them will never be able to catch back

a If ng > n —m, the scheduling algorithm is forced to schedule
some #negru tasks and consequently waste CPU time on them

2016/17 UniPD / T. Vardanega Real-Time Systems 384 of 449

14/05/2017

2016/17 UniPD / T. Vardanega 14/05/2017

| P-fair scheduling /5 ‘ Example (PF scheduling) /2
These tasks are scheduled and they become abead |7

I Ing = poriodl [[characteristic stri

[urgem | dontending [tnegru
| tasks tasks tasks

tyl v o r| 1 sflv]w

m The commandments of the PF scheduling algorithm
0 Schedule all #gent tasks

o Allocate the remaining resources to the highest-priotity contending
tasks according to the total order function =2 with ties broken
arbitrarily
s x 2yiffa(xt) = a(y,t)

m And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
» With PF we have Xy cion We = m

o A dummy task may need to be added to the task set to top
utilization up

m No problem situation can occur with the PF algorithm

2016/17 UniPD / T. Vardanega Real-Time Systems 385 of 449 2016/17 UniPD / T. Vardanega Real-Time Systems 387 of 449

Example (PF scheduling) /1
m m = 3 processors
Task | C | T w w 7= 4 tasks
T, 1 3 0.333...| ® 7;isadummy task used to top
system utilization up
Tw 2 4 0.5 = In general, its period is set to
Ty 5 7 0.714... the system hyperperiod
T, 8 11 0.727 ... 0 This time we halved it
m With PF we always have
Tz 335462 3-U n, >mandnyg<n—m
2016/17 UniPD / T. Vardanega Real-Time Systems 386 of 449

DAAl Tivrva~s OuvvAatAarmAas (o)

