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8.a Multicore systems –
initial reckoning

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of 
the the IEEE Real-Time Systems Symposium, WiP Session, 
2000, pp. 53–56
and to a student of this class from a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a 
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned
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Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor
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Understanding the hardware /3
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Hardware interference /1

 Parallel execution on a multiprocessor causes vast 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to hold the CPU 
without progressing (!)
 Unlike software interference, which prevents a ready 

thread from running
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Hardware interference /2

 The WCET of a simple 
single-path program 
running alone does not
stay the same when 
other programs happen 
to execute on other 
CPUs
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A big anomaly
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State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they 
have low utilization 
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The exact schedulability tests (those in the state of the art) have 
exponential time complexity
 The known sufficient tests have more affordable polynomial time 

complexity but (obviously) are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time 

complexity has been found yet
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Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks can run only on one CPU at any one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are in WCET estimates 
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Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling 
algorithm is work-conserving1), preemptive, global (with 
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job 
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A global multicore scheduling algorithm is work conserving if 

processors are not idle while tasks eligible for execution are not 
able to execute on other processors
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The solution space for scheduling
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Global Partitioned

Clustered Hybrid (semi-partitioned)
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Software interference /1

 We know what is the interference ܫ suffered by a 
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors, interference only occurs for tasks 
߬ , ݆  ݉

 Multiprocessor interference can be computed as the 
sum of all intervals when ݉ higher-priority tasks 
execute in parallel on all ݉ processors
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Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௫ ൌ ܥ 
ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
ܥ  ሻఛೕ∈ሺሻ݆ܥ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact
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Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks 
a and b first on each of the 2 processors

 But this would leave no time for task c to complete 
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2
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Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one 

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use 
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2
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Global scheduling anomalies

 In single-processor real-time scheduling the deadline 
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the 

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can 

increase the interference on lower-priority tasks because of the 
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in 

the interference suffered by that task
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Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ  ܫ ൌ ܦ
hence any increase in ܫ would make it 
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its 

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4
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Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes 

visible in the second job of ߬

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18
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The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and 
implement 
 They work very well on single-core processors
 EDF [1] and LLF [2] are optimal for single-core processors

 They collapse the urgency of a job into a single value and use it to 
greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail 
when used on multiprocessors where computation and 
parallelism are distinct dimensions
 There, EDF and LLF are no longer optimal
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Theorem	1	(stating	the	obvious)
When	the	total	utilization	of	a	periodic	task	set	is	equal	to	the	
number	of	processors,	then	no	feasible	schedule	can	allow	any	
processor	to	remain	idle	for	any	length	of	time

Why do greedy schedulers fail?
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task ߬ is assigned resources in proportion to its weight

ܹ ൌ 		

்

so that it progresses steadily

 Useful, e.g., for real-time multimedia applications

 At every time ݐ, task ߬ must have been scheduled 
either ܹ ൈ ݐ or ܹ ൈ ݐ time units
 Without loss of generality, preemption is assumed to only 

occur at integral time units
 The workload model is assumed to be periodic
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P-fair scheduling /2

 ,ሺܵࢍࢇ ߬, ሻݐ is the difference between the total 
resource allocation that task ߬ should have received 
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is ahead iff ,ሺܵࢍࢇ ߬, ሻݐ ൏ 0
 ߬ is behind iff ,ሺܵࢍࢇ ߬, ሻݐ  0
 ߬ is punctual iff ,ሺܵࢍࢇ ߬, ሻݐ ൌ 0
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P-fair scheduling /3

 ሻݔሺࢻ is the characteristic (infinite) string of task ߬௫
over ሼെ, 0, ሽ for ݐ ∈ Գ with
 ௧ࢻ ݔ ൌ ࢍ࢙ ௫ܹ · ݐ  1 െ ௫ܹ · ݐ െ 1

 Distance from the integral approximation of fluid rate curve

 ,ݔሺࢻ ሻݐ is the characteristic substring
௧ାଵࢻ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ… ݔ of task ߬௫ at time ݐ
where ݐ′ ൌ ݉݅݊ ݅: ݅  :ݐ ሻݔሺࢻ ൌ 0

 For a P-fair schedule ܵ	at time ݐ, task ߬ is
 Urgent iff ߬ is behind and ࢚ࢻ ߬ ് െ
 Tnegru iff ߬ is ahead and ࢚ࢻ ߬ ് 
 Contending otherwise
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Fluid Rate Curve
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Properties of a P-fair schedule ܵ

 For task ߬	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ then ߬ is ahead at ݐ  1
 If ࢚ࢻ ߬ ൌ 0 and ߬ not scheduled at ݐ then ߬ is punctual at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ not scheduled at ݐ	then ߬ is behind at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ scheduled at t then ߬ is ahead at ݐ  1

 For task ߬	behind at time ݐ under ܵ
 If ࢚ࢻ ߬ ൌ െ and ߬ scheduled at ݐ	then ߬ is ahead at ݐ  1
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ  1
 If ࢚ࢻ ߬ ൌ 0 and ߬ scheduled at ݐ	then ߬ is punctual at ݐ  1
 If ࢚ࢻ ߬ ൌ  and ߬ scheduled at ݐ	then ߬ is behind at ݐ  1urgent

tnegru

2016/17 UniPD / T. Vardanega Real-Time Systems 383 of  449

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ so that P-

fairness can be preserved
 No task tnegru at time ݐ can be scheduled at ݐ without breaking 

P-fairness

 Breakage with ݊ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at 
time ݐ, with ݉ resources and ݊ ൌ ݊  ݊ଵ  ݊ଶ tasks
 If ݊ଶ  ݉, the scheduling algorithm cannot schedule all urgent

tasks  some of them will never be able to catch back
 If ݊  ݊ െ݉, the scheduling algorithm is forced to schedule 

some tnegru tasks and consequently waste CPU time on them
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P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ  ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ 

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

Task C T W

࢜࣎ 1 3 0.333…
࢝࣎ 2 4 0.5
࢞࣎ 5 7 0.714…
࢟࣎ 8 11 0.727…
ࢠ࣎ 335 462 3‐U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top 

system utilization up
 In general, its period is set to 

the system hyperperiod
 This time we halved it

 With PF we always have 
݊ଶ  ݉ and ݊  ݊ െ݉
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Example (PF scheduling) /2
These tasks are scheduled and they become ahead
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