
2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 1

8.a Multicore systems –
initial reckoning

Credits to A. Burns and A. Wellings

to B. Andersson and J. Jonsson for their work in Proc. of
the the IEEE Real-Time Systems Symposium, WiP Session,
2000, pp. 53–56
and to a student of this class from a few years back

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a
much simpler problem

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2016/17 UniPD / T. Vardanega Real-Time Systems 358 of 449

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status
 There usually is a dispatcher / scheduler per processor

2016/17 UniPD / T. Vardanega Real-Time Systems 359 of 449

Understanding the hardware /3

2016/17 UniPD / T. Vardanega

Instruction
cache

Data
cache

Caches

Courtesy of

Real-Time Systems 360 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 2

Hardware interference /1

 Parallel execution on a multiprocessor causes vast
opportunities of contention for hardware resources
that are shared among the cores

 This phenomenon increases the execution time of
running threads by causing them to hold the CPU
without progressing (!)
 Unlike software interference, which prevents a ready

thread from running

2016/17 UniPD / T. Vardanega Real-Time Systems 361 of 449

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of a simple
single-path program
running alone does not
stay the same when
other programs happen
to execute on other
CPUs

2016/17 UniPD / T. Vardanega

Courtesy of

Real-Time Systems 362 of 449

A big anomaly

2016/17 UniPD / T. Vardanega

Single-core alone Multicore alone on CPU w/o SW interaction

ൈ 2.75

Courtesy of

Real-Time Systems 363 of 449

State of the art: what a loss!

 Some task sets may be deemed unschedulable even though they
have low utilization
 Much less than linear with the number of processors
 This is known as the Dhall’s effect [Dhall & Liu, 1978]

 The exact schedulability tests (those in the state of the art) have
exponential time complexity
 The known sufficient tests have more affordable polynomial time

complexity but (obviously) are pessimistic

 Rate-monotonic priority assignment is not optimal
 No optimal priority assignment scheme with polynomial time

complexity has been found yet

2016/17 UniPD / T. Vardanega Real-Time Systems 364 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 3

Simplifying assumptions

 Processor (CPU) identity
 All processors are equivalent

 Task independence
 Tasks are logically independent of one another

 Task unity
 Tasks can run only on one CPU at any one time

 Task migration
 Tasks can run on different CPUs at different times

 No overhead
 Context switch and migration costs are in WCET estimates

2016/17 UniPD / T. Vardanega Real-Time Systems 365 of 449

Predictability [Ha & Liu, 1994]

 For arbitrary job sets on multiprocessors, if the scheduling
algorithm is work-conserving1), preemptive, global (with
migration), with fixed job priorities is predictable

 Job completion times monotonically related to job execution times

 Hence it is safe to consider only upper bounds for job
execution times in schedulability tests

 This is not true for non-preemptive scheduling
1) A global multicore scheduling algorithm is work conserving if

processors are not idle while tasks eligible for execution are not
able to execute on other processors

2016/17 UniPD / T. Vardanega Real-Time Systems 366 of 449

The solution space for scheduling

2016/17 UniPD / T. Vardanega

Global Partitioned

Clustered Hybrid (semi-partitioned)

Real-Time Systems 367 of 449

Software interference /1

 We know what is the interference ܫ suffered by a
task ߬ for single-processor scheduling
 How does this change for multiprocessors?

 For global multiprocessor scheduling with ݉
processors, interference only occurs for tasks
߬ , ݆ ݉

 Multiprocessor interference can be computed as the
sum of all intervals when ݉ higher-priority tasks
execute in parallel on all ݉ processors

2016/17 UniPD / T. Vardanega Real-Time Systems 368 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 4

Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

 ܴ௫ ൌ ܥ
ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
ܥ ሻఛೕ∈ሺሻ݆ܥ

 This naive bound can be improved, and has been,
but for great computational complexity and still
without becoming exact

2016/17 UniPD / T. Vardanega Real-Time Systems 369 of 449

Dhall’s effect /1

 Under global scheduling, EDF and FPS would run tasks
a and b first on each of the 2 processors

 But this would leave no time for task c to complete
 7 time units on each processor, 14 in total, but 8 on neither

 Even if the total system is underutilized (!)

Task T D C U

a 10 10 5 0.5

b 10 10 5 0.5

c 12 12 8 0.67

On 2 processors

 ܷ ൌ 1.67 ൏ 2

2016/17 UniPD / T. Vardanega Real-Time Systems 370 of 449

Dhall’s effect /2

 Partitioned scheduling does not work here either
 After tasks d and e are allocated, task f cannot reside on just one

processor
 It needs to migrate from one to the other to find room for execution

 And it also needs that tasks d and e are willing to use
cooperative scheduling for it complete in time

Task T D C U

d 10 10 9 0.9

e 10 10 9 0.9

f 10 10 2 0.2

On 2 processors

 ܷ ൌ 2

2016/17 UniPD / T. Vardanega Real-Time Systems 371 of 449

Global scheduling anomalies

 In single-processor real-time scheduling the deadline
miss ratio often highly depends on the system load
 This suggests that increasing the period should decrease the

utilization and thus decrease the deadline miss ratio

 Anomaly 1
 A decrease in processor demand from higher-priority tasks can

increase the interference on lower-priority tasks because of the
change in the time when tasks execute

 Anomaly 2
 A decrease in processor demand of a task causes an increase in

the interference suffered by that task

2016/17 UniPD / T. Vardanega Real-Time Systems 372 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 5

Anomaly 1: decrease in ݄ demand

Task T D C U

a 3 3 2 0.67
b 4 4 2 0.50
c 12 12 8 0.67

݉ ൌ 2 processors and ∑ ܷ ൌ 1.83 but
߬ is saturated because ܥ ܫ ൌ ܦ
hence any increase in ܫ would make it
unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2016/17 UniPD / T. Vardanega Real-Time Systems 373 of 449

Anomaly 1 (cont’d)

 If we reduce ܶ to 4 we decrease system load to ܷ ൌ 1.67
 But in this way ܫ increases from 4 to 6 and ߬ misses its

deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2016/17 UniPD / T. Vardanega Real-Time Systems 374 of 449

Anomaly 2: decrease in own demand

Task T D C U

a 4 4 2 0.5
b 5 5 3 0.6
c 10 10 7 0.7

݉ ൌ 2 processors and ܷ ൌ 1.8 but
߬ with ܫ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2016/17 UniPD / T. Vardanega Real-Time Systems 375 of 449

Anomaly 2 (cont’d)

 If we extend ܶ to 11 we decrease system load to ܷ ൌ 1.74
 But in this way ܫ increases from 3 to 5 (!) as it becomes

visible in the second job of ߬

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2016/17 UniPD / T. Vardanega Real-Time Systems 376 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 6

The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and
implement
 They work very well on single-core processors
 EDF [1] and LLF [2] are optimal for single-core processors

 They collapse the urgency of a job into a single value and use it to
greedily schedule jobs

 Unfortunately (and surprisingly) greedy algorithms fail
when used on multiprocessors where computation and
parallelism are distinct dimensions
 There, EDF and LLF are no longer optimal

2016/17 UniPD / T. Vardanega Real-Time Systems 377 of 449

Theorem	1	(stating	the	obvious)
When	the	total	utilization	of	a	periodic	task	set	is	equal	to	the	
number	of	processors,	then	no	feasible	schedule	can	allow	any	
processor	to	remain	idle	for	any	length	of	time

Why do greedy schedulers fail?

2016/17 UniPD / T. Vardanega Real-Time Systems 378 of 449

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness
also known as P-fairness
 Each task ߬ is assigned resources in proportion to its weight

ܹ ൌ 		

்

so that it progresses steadily

 Useful, e.g., for real-time multimedia applications

 At every time ݐ, task ߬ must have been scheduled
either ܹ ൈ ݐ or ܹ ൈ ݐ time units
 Without loss of generality, preemption is assumed to only

occur at integral time units
 The workload model is assumed to be periodic

2016/17 UniPD / T. Vardanega Real-Time Systems 379 of 449

P-fair scheduling /2

 ,ሺܵࢍࢇ ߬, ሻݐ is the difference between the total
resource allocation that task ߬ should have received
in ሾ0, ሻݐ and what it received under schedule ܵ

 For a P-fair schedule ܵ	at time ݐ
 ߬ is ahead iff ,ሺܵࢍࢇ ߬, ሻݐ ൏ 0
 ߬ is behind iff ,ሺܵࢍࢇ ߬, ሻݐ 0
 ߬ is punctual iff ,ሺܵࢍࢇ ߬, ሻݐ ൌ 0

2016/17 UniPD / T. Vardanega Real-Time Systems 380 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 7

P-fair scheduling /3

 ሻݔሺࢻ is the characteristic (infinite) string of task ߬௫
over ሼെ, 0, ሽ for ݐ ∈ Գ with
 ௧ࢻ ݔ ൌ ࢍ࢙ ௫ܹ · ݐ 1 െ ௫ܹ · ݐ െ 1

 Distance from the integral approximation of fluid rate curve

 ,ݔሺࢻ ሻݐ is the characteristic substring
௧ାଵࢻ ݔ ௧ାଶࢻ ݔ ௧ᇱࢻ… ݔ of task ߬௫ at time ݐ
where ݐ′ ൌ ݉݅݊ ݅: ݅ :ݐ ሻݔሺࢻ ൌ 0

 For a P-fair schedule ܵ	at time ݐ, task ߬ is
 Urgent iff ߬ is behind and ࢚ࢻ ߬ ് െ
 Tnegru iff ߬ is ahead and ࢚ࢻ ߬ ്
 Contending otherwise

2016/17 UniPD / T. Vardanega Real-Time Systems 381 of 449

Fluid Rate Curve

2016/17 UniPD / T. Vardanega Real-Time Systems 382 of 449

time

work
completed

job	release deadlineperiod T
w
orkload

C

Fluid	rate	curve

Utilization ܷ
Slope	ܹ ൌ

்
Actual	work	curve
Slope	=	0	or	1

Ahead
Behind

Contending

Properties of a P-fair schedule ܵ

 For task ߬	ahead at time ݐ under ܵ	
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ then ߬ is ahead at ݐ 1
 If ࢚ࢻ ߬ ൌ 0 and ߬ not scheduled at ݐ then ߬ is punctual at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ scheduled at t then ߬ is ahead at ݐ 1

 For task ߬	behind at time ݐ under ܵ
 If ࢚ࢻ ߬ ൌ െ and ߬ scheduled at ݐ	then ߬ is ahead at ݐ 1
 If ࢚ࢻ ߬ ൌ െ and ߬ not scheduled at ݐ	then ߬ is behind at ݐ 1
 If ࢚ࢻ ߬ ൌ 0 and ߬ scheduled at ݐ	then ߬ is punctual at ݐ 1
 If ࢚ࢻ ߬ ൌ and ߬ scheduled at ݐ	then ߬ is behind at ݐ 1urgent

tnegru

2016/17 UniPD / T. Vardanega Real-Time Systems 383 of 449

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time ݐ must be scheduled at ݐ so that P-

fairness can be preserved
 No task tnegru at time ݐ can be scheduled at ݐ without breaking

P-fairness

 Breakage with ݊ tnegru, ݊ଵ contending, ݊ଶ urgent tasks at
time ݐ, with ݉ resources and ݊ ൌ ݊ ݊ଵ ݊ଶ tasks
 If ݊ଶ ݉, the scheduling algorithm cannot schedule all urgent

tasks some of them will never be able to catch back
 If ݊ ݊ െ݉, the scheduling algorithm is forced to schedule

some tnegru tasks and consequently waste CPU time on them

2016/17 UniPD / T. Vardanega Real-Time Systems 384 of 449

2016/17 UniPD / T. Vardanega 14/05/2017

Real Time Systems 8

P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken
arbitrarily
 ݔ ⊇ ݕ iff ,ݔሺࢻ ሻݐ ,ݕሺࢻ ሻݐ
 And the comparison between the characteristics substrings is resolved

lexicographically with െ൏ 0 ൏

 With PF we have ∑ ௫ܹ ൌ ݉௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top

utilization up
 No problem situation can occur with the PF algorithm

2016/17 UniPD / T. Vardanega Real-Time Systems 385 of 449

Example (PF scheduling) /1

Task C T W

࢜࣎ 1 3 0.333…
࢝࣎ 2 4 0.5
࢞࣎ 5 7 0.714…
࢟࣎ 8 11 0.727…
ࢠ࣎ 335 462 3‐U

 ݉ ൌ 3 processors
 ݊ ൌ 4 tasks
 ߬௭ is a dummy task used to top

system utilization up
 In general, its period is set to

the system hyperperiod
 This time we halved it

 With PF we always have
݊ଶ ݉ and ݊ ݊ െ݉

2016/17 UniPD / T. Vardanega Real-Time Systems 386 of 449

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

2016/17 UniPD / T. Vardanega Real-Time Systems 387 of 449

