
2016/17 UniPD / T. Vardanega 20/05/2017

Real Time Systems 1

8.b A stint of Deadline-
Partitioning

Credits to Greg Levin et al. (ECRTS 2010)

Greg Levin’s original presentation

 From a different slide deck

 The material that follows proceeds from the past 
exam of a student of this class
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DP-Fair motivation

 Focus on periodic, independent task sets with implicit 
deadlines (ܦ௜ ൌ (௜݌
 Scheduling overhead costs subsumed in task’s WCET
 ∑ ௜ܷ௜ ൑ ݉	and ௜ܷ ൑ 1∀݅
 Migration allowed

 With unlimited context switches and migrations, any 
task set meeting the above conditions will be feasible
 This problem is “easy”
 Much harder is to find a schedule that minimises migrations
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 Partition time into slices demarcated by the deadlines of 
all tasks in the system
 All jobs are allocated a workload in each slide and these 

workload share the same deadline

 Why is DP so effective?

Theorem 2 (Hong and Leung)
No optimal on-line scheduler can exist for a set of jobs with 
two or more distinct deadlines on any ݉ multiprocessor 
system, where ݉	 ൐ 	1

Deadline partitioning
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DP-Correct /1

 The time slice scheduler will execute all jobs’ 
allocated workload within the end of the time slice 
whenever it is possible to do so

 Jobs are allocated workloads for each slice so that it 
is possible to complete this work within the slice

 Completion of these workloads causes all tasks’ 
actual deadlines to be met
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DP-Correct /2
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Notation

 ଴ݐ ൌ 0, ௜ݐ ∶ ݅ ൐ 0 denote distinct deadlines of all tasks in ܶ
 ௝ߪ is the ݆݄ݐ time slice in ሾݐ௝ିଵ, ௝ሻݐ
 ௝ܮ ൌ ௝ݐ െ ௝ିଵݐ
 Local execution remaining ݈௜,௧ is the amount of time that ߬௜

must execute before the next slice boundary
 Local utilization ௝,௧ݎ ൌ ݈௜,௧/ሺݐ௝ െ ሻݐ
 ்ܮ ൌ ∑ ݈௜௜ is the ler of the whole task set
 ்ܴ ൌ ∑ ௜௜ݎ is the lu of the whole task set
 Slack ܵ ܶ ൌ ݉ െ ܷሺܶሻ and represents a dummy job
 ܽ௜,௛ is the arrival time of the ݄݄ݐ job of ߬௜
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DP-Fair rules for periodic tasks set

 DP-Fair allocation
 All tasks hit their fluid rate curve at the end of each slice by 

assigning each task a workload proportional to its utilization
 At every ߪ௝ assign ݈௜,௧ೕషభ ൌ ௜ܷ ൈ ௝ܮ to ߬௜

 DP-Fair scheduling for time slices
 A slice-scheduling algorithm is DP-Fair if it schedules jobs 

within a time slice ߪ௜ according to the following rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵሺ߬ሻ ൈ ௝ܮ units of idle time to occur in ߪ௜

before time ݐ
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DP-Fair optimality – Proof

 Lemma 3

 If tasks in ܶ are scheduled within a time slice by DP-Fair
scheduling and ்ܴ ൑ ݉ at all times ݐ ∈ ௜ߪ , then all tasks in ܶ
will meet their local deadline at the end of the slice

 Lemma 4

 If a task set ܶ of periodic tasks with implicit deadlines is 
scheduled in ߪ௜ using DP-Fair algorithm, then ்ܴ ൑ ݉ will hold 
at all times ݐ ∈ ௜ߪ

Theorem 5
Any DP-Fair scheduling algorithm for periodic task sets 
with implicit deadlines is optimal 
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A DP-Fair algorithm: DP-Wrap /1

 Make blocks of length ߜ௜ for each ߬௜ and line these 
blocks up along a number line (in any order), starting at 
zero

 Split this stack of blocks into chunks of length 1 at 
1,2,...,m − 1
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A DP-Fair algorithm: DP-Wrap /2

 Use deadline partitioning to divide time into slices
 Assign each chunk to its own processor and multiply each 

chunk’s length (1) by the length of the segment (ܮ௜)

Time

Time

Time
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DP-Wrap features

 A very simple algorithm that meets all DP-Fair rules
 Almost all calculations can be done in a 

preprocessing step (with static task sets)
 No computational overhead at secondary events
 ݊ െ 1 context switches and ݉ െ 1 migrations per 

slice with mirroring
 Heuristics may exist to improve performance
 Less migration and context switches
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Mirroring

 For tasks that spill across two slices
 If ߬௜ and ߬௞ are split and ߬௜ executes at the beginning and ߬௞

executes at the end of the slice ߪ௝ then revert the schedule in 
slice ߪ௝ାଵ so that ߬௞ executes at the beginning and ߬௜ at the end

߬௜

߬௞

Time

Time

Not-mirrored schedule

Mirrored schedule
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Sporadic tasks and ܦ௜ ൑ ௜݌

 DP-Fair algorithms are still optimal when ∆ሺܶሻ ൑ ݉
and ߜ௜ ൑ 1	∀݅

 Definitions
 Freeing slack: unused capacity ሺܽ௜,௛ିଵ ൅ ௜,௔೔,೓ሻܦ
 Active: ሺܽ௜,௛, ௝ܽ,௛ ൅ ௜ሻܦ
 ሻݐሻ, ௜݂,௝ሺݐ௜,௝ሺߙ : amounts of time that task ߬௜ has been active 

or freeing slack during slice ߪ௝ as of time ݐ
 Local capacity: ܿ௜,௧ೕషభ ൌ ௜ߜ ൈ ௜ܮ ൌ ௜,௝ߙ௜ሺߜ ൅ ௜݂,௝ሻ
 Freed slack in ߪ௝ as of time ܨ :ݐ௝ሺݐሻ ൌ ∑ ሺߜ௜ ൈ ௜݂,௝ሺݐሻሻ௡

௜ୀଵ
 Slack: ܵ ܶ ൌ ݉ െ ∆ሺܶሻ
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DP-Fair scheduling for time slices /1

 A slice-scheduling algorithm is DP-Fair if it schedules 
jobs within a time slice ߪ௜ according to the following 
rules:
1. Always run a job with zero local laxity
2. Never run a job with no remaining local work
3. Do not allow more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time 

to occur in ߪ௜ before time ݐ
4. Initialize ݈௜,௧ೕషభ to 0. At the start time ݐ′ of any active time 

segment for ߬௜ in ߪ௝ (either ݐ′ ൌ ௝ିଵݐ or ܽ௜,௛) that ends at 
time ݐ" ൌ ݉݅݊ ܽ௜,௛ ൅ ௜,௧ೕܦ , increment ݈௜,௧ by ߜ௜ሺݐ" െ ሻ′ݐ
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DP-Fair scheduling for time slices /2

 Rules continued …
5. When a task ߬௜ arrives in a slice ߪ௝ at time ݐ and its 

deadline falls within ߪ௝
 Split the remainder of ߪ௝ after ݐ into two secondary slices ߪ௝ଵ, ௝ଶߪ

so that the deadline of ߬௜ coincides with the end of ߪ௝ଶ

 Divide the remaining local execution (and capacity) of all jobs in 
௝ଵߪ (as well as the slack allotment from RULE 3) proportionally 
to the lengths of ߪ௝ଵ, ௝ଶߪ

 This step may be invoked recursively for any ߬௞ within ߪ௝
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DP-Fair scheduling for time slices /3
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Proof
Lemma 7
A DP-Fair algorithm cannot cause more than ܵ ܶ ൈ ௝ܮ ൅ ሻݐ௝ሺܨ units of idle time in slice ߪ௝
prior to time ݐ
Lemma 8
If a set ܶ of sporadic tasks with constrained deadlines is scheduled in ߪ௝ using a DP-Fair algorithm, 
then ܴ௧ ൑ ݉	will hold at all times ݐ ∈ ௝ߪ

Theorem 9
Any DP-Fair scheduling algorithm is optimal for sporadic 
task sets with constrained deadlines where ∆ሺܶሻ ൑ ݉ and 
௜ߜ ൑ 1	∀݅

Correctness
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DP-Wrap modified

 If task ߬௜ issues a job at time ݐ in slice ߪ௝ and ݐ ൅
௜ܦ ൐ ௝ݐ then allocate execution time ݈௜,௧ ൌ ௝ݐ௜ሺߜ െ
ሻݐ following RULE 4

 If instead ݐ ൅ ௜ܦ ൏ ௝ݐ then split the remainder of ߪ௝
following RULE 5
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Arbitrary deadlines /1

 Task set ܶ below is not feasible on 2 processors
 ݉ ൌ 2,	ܶ ൌ ߬ଵ ൌ 6,4 , ߬ଶ ൌ ߬ଷ ൌ ߬ସ ൌ ߬ହ ൌ ሺ3,1,6ሻ

 ∆ ܶ ൌ ସ
଺
൅ 4 ൈ ଵ

ଷ
ൌ 2

 12 units of work to be completed by time 6

2016/17 UniPD / T. Vardanega Real-Time Systems 407 of  449



2016/17 UniPD / T. Vardanega 20/05/2017

Real Time Systems 6

Arbitrary deadlines /2

 Is there a cure to this problem?
 If task ߬௜ has ܦ௜ ൐ ௜݌ we simply impose an artificial 

deadline ܦ′௜ ൌ ௜݌
 Density is not increased hence if ܦ′௜ is met, ܦ௜ will 

also be
 But this increases the number of context switches 

and migrations!
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Is DP-Fair scheduling sustainable? /1

 Consider model with sporadic tasks and 
arbitrary deadline

 Two cases may occur
 The new value of the relaxed parameter is not used in 

the scheduling and allocation policies
 The new value of the relaxed parameter becomes 

known a priori/at job arrival and it is used in the 
scheduling and allocation policies
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Is DP-Fair scheduling sustainable? /2

 Shorter execution time
 Case 1 (shorter ܿ, same density)

 Task set ܶ is schedulable and the system allocates ߜ௜ ൈ ௝ܮ
workload per each task in each slice

 If ܿ′௜ ൑ ܿ௜ then task ߬௜ uses part of assigned workload and surely 
completes before its deadline

 Case 2 (shorter ܿ, lesser density)
 As DP-Fair is optimal when ∆ሺܶሻ ൑ ݉ and ߜ௜ ൑ 1	∀݅ ൌ 1, . . ݊

a DF-Fair feasible schedule exists for ܶ
 A feasible schedule for ܶᇱ exists as ܿ′௜ ൏ ܿ௜ ⇒ ௜′ߜ ൏ ௜ߜ ⇒

∆ሺܶᇱሻ ൏ ሺܶሻܦ

2016/17 UniPD / T. Vardanega Real-Time Systems 410 of  449

Is DP-Fair scheduling sustainable? /3

 Longer inter-arrival time
 Case 1 (longer ݌, same density)

 Simply a less demanding instance of sporadic task
 The allocation and scheduling rules cover this case

 Case 2 (longer ݌, lesser density)
 If ݌′௜ ൐ ௜′ߜ	݀݊ܽ	௜݌ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible
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Is DP-Fair scheduling sustainable? /4

 Longer deadline
 Case 1 (longer ݀, same density)

 ݀௜ ൏ ݀′௜
 Task ߬′௜ completes its workload at time t ൌ min	ሺ݀௜, ௜ሻ݌

 Case 2 (longer ݀, lesser density)
 If ݀′௜ ൐ ݀௜	ܽ݊݀	ߜ′௜ ൏ ሺܶᇱሻ∆	݄݊݁ݐ	௜ߜ ൏ ∆ሺܶሻ whereby ܶᇱ is 

feasible if ܶ was feasible

 We may therefore conclude that DP-Fair 
scheduling is sustainable
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Related work: Boundary Fair /1

 Very similar to P-Fair
 It still uses a function and a characteristic string to evaluate 

the fairness of tasks [4] with per-quantum task allocation

 It uses deadline partitioning
 It uses a less strict notion of fairness

 At the end of every slice the absolute value of the allocation 
error for any task ߬௜ is less than one time unit

 Scheduling decisions made at the start of every slice
 It reduces context switches packing two or more allocated 

time units of processor to the same task into consecutive units
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Related work: Boundary Fair /2

 Not DP-Fair but DP-Correct
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Related work: LLREF [5] /1

 It uses deadline partitioning with DP-Wrap task allocation
 In each slice scheduling is made using the notion of T-L Plane

 Each task ௝ܶ is represented by a token within a triangle and its position 
stands for the local remaining work of ௃ܶ at time ݅

 The horizontal cathetus indicates the time
 The length of the vertical cathetus is one processor’s execution capacity
 The hypotenuse represents the-no laxity line
 Token can move in two directions. Horizontally if the task doesn’t 

execute, diagonally down if it does
 When a token hits the horizontal cathetus or the hypotenuse (secondary 

events) a scheduling decision is made
 Tasks are sorted and m tasks with the least laxity are executed

2016/17 UniPD / T. Vardanega Real-Time Systems 415 of  449



2016/17 UniPD / T. Vardanega 20/05/2017

Real Time Systems 8

Related work: LLREF /2

 DP-Fair algorithm but does unnecessary work

2016/17 UniPD / T. Vardanega Real-Time Systems 416 of  449

DP-Fair bibliography

1. C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming in a Hard-Real-Time 
Environment”, Journal of the ACM (JACM), 20(1):46–61, 1973

2. A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time 
environment”, Technical report, Massachusetts Institute of Technology, 1983

3. S. K. Cho, S. Lee, A. Han, and K.-J. Lin, “Efficient Real- Time Scheduling Algorithms for 
Multiprocessor Systems”,  IEICE Transactions on Communications, E85-B(12):2859– 2867, 
2002

4. D. Zhu, D. Mossé́ and R. Melhem, “Multiple-Resource Periodic Scheduling Problem: how much 
fairness is necessary?”, IEEE Real-Time Systems Symposium (RTSS), 2003

5. H. Cho, B. Ravindran and E. Jensen, “An Optimal Real-Time Scheduling Algorithm for 
Multiprocessors”, IEEE Real-Time Systems Symposium (RTSS), 2006

6. B. Andersson and, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, IEEE 
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2006

7. K. Funaoka, S. Kato and N. Yamasaki, “Work-Conserving Optimal Real-Time Scheduling on 
Multiprocessors” Euromicro Conference on Real-Time Systems (ECRTS), 2008

8. S. Funk and V. Nadadur “LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task 
Sets”, Conference on Real-Time and Networked Systems (RTNS), 2009

2016/17 UniPD / T. Vardanega Real-Time Systems 417 of  449

Related work: EKG [6]

 Tasks are divided into heavy and light
 Each heavy task is assigned to a dedicate processor
 Every light task is assigned to one group of ܭ processors and it shares 

them with other light tasks

 Some light tasks are split in two processors and they are executed 
either before ݐ௔ or after ݐ௕

 Light tasks that are not split are executed between ݐ௔ or and 
and they are scheduled by EDF	௕ݐ

 Heavy tasks start executing when they become ready
 EDF is not a DP-Fair allocation but the DP-Fair rules are 

satisfied
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8.c More theoretical results
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More theoretical results /1

 For the simplest workload model made of 
independent periodic and sporadic tasks

 A P-fair scheme can sustain ܷ ൌ ݉ for ݉
processors but its run-time overheads are excessive
 Tasks incur very many preemptions and are frequently 

required to migrate  maddeningly disruptive
 Partitioned FPS first-fit (on decreasing task utilization) 

can sustain ܷ ൑ ݉ሺ 2 െ 1ሻ
 Sufficient test [Oh & Baker, 1998]
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More theoretical results /2

 Partitioned EDF first-fit can sustain

 For high ܷ௠௔௫ this bound gets rapidly lower than 
0.6 ൈ ݉, but can get close to ݉ for some examples
 Sufficient test [Lopez et al., 2004]

Per task
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More theoretical results /3

 Global EDF can sustain

 For high ܷ௠௔௫ this bound can be as low as 
0.2 ൈ ݉ but also close to ݉ for other 
examples
 Sufficient test [Goossens et al., 2003]
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More theoretical results /4

 Combinations
 FPS (higher band) to those tasks with ௜ܷ ൐ 0.5
 EDF for the rest

 Sufficient test [Baruah, 2004]
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8.d A stint on RUN

Credits to E. Mezzetti and D. Compagnin
(ECRTS 2014)

Implementation experience /1
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Implementation experience /2
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