
2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 1

8.e Global resource sharing

Contention and blocking

 The premises on which single-runner solutions
were based fall apart
 Suspending is no longer conducive to earlier release of

shared resource  parallelism gets in the way
 Priority boosting the lock holder does not help either 

per-CPU priorities may not have global meaning
 Having local and global resources causes suspending to

become dangerous  local priority inversions may occur
 Spinning protects against that hazard but wastes CPU

cycles

2016/17 UniPD / T. Vardanega Real-Time Systems 428 of 449

Multiprocessor PCP /1

 Partitioned FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is the synchronization

processor (SP) for that resource
 It knows all the use requirements of all of its resources

 The critical sections of a resource execute on the
processor that hosts that resource
 Jobs that use remote resources employ “distributed transactions”

 The processor to which a task is assigned is the local
processor (LP) for all of the jobs of that task

2016/17 UniPD / T. Vardanega Real-Time Systems 429 of 449

Multiprocessor PCP /2

 A task may need local and global resources
 Local resources reside on the local processor of that task
 Resources are global when their SP differs from the

task’s LP

 Resource access control protocols need actual locks
to protect against parallel contention
 Hence lock-free algorithms become attractive again

 SPs use M-PCP to control access to their global
resources

2016/17 UniPD / T. Vardanega Real-Time Systems 430 of 449

2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 2

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections are executed at higher ceiling

priorities than local tasks on the SP and any other
tasks in the system (this breaks independence!)

 A task ߬௛ that is denied access to a global shared
resource ߩ௚ suspends and waits in a priority-based
queue for that resource
 Any task ߬௟ with lower-priority than ߬௛	on its LP may

thus acquire global resources that have higher ceiling
2016/17 UniPD / T. Vardanega Real-Time Systems 431 of 449

Multiprocessor PCP /4

 If the global resource ߩ௚ᇱ being acquired by ߬௟
resides on the same SP as ߩ௚	then ߬௛ suffers an
anomalous form of priority inversion
 The execution in ߩ௚ᇱ delays the release of ߩ௚

 As contention for a global resource involves
suspension, M-PCP suffers the risk of deadlock
 With global resources hosted on ൐ 1 SPs, nesting global

resources may lead to deadlock and must be disallowed

 This is why other protocols prefer ߬௛ to spin

2016/17 UniPD / T. Vardanega Real-Time Systems 432 of 449

Blocking under M-PCP

 With M-PCP, task ߬௜ is blocked by lower-priority tasks in 5 ways
 Local blocking (once per release): when finding a local resource held by a

local lower-priority task that got running as a consequence of ߬௜’s
suspension on access to a global resource

 Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP

 Local preemption: when global critical sections are executed on ߬௜’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

 Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where ߬௜’s global resource resides

 Deferred interference as local higher-priority tasks suspend on access to global
resources because of blocking effects

2016/17 UniPD / T. Vardanega Real-Time Systems 433 of 449

Multiprocessor SRP

 Partitioned EDF with resources bound to
processors [Gai, Lipari, Di Natale, 2001]
 SRP is used for controlling access to local resources
 Tasks that lock a global resource cannot be preempted

 They become preemptable again when releasing the resource

 Tasks that request a global resource that is already locked
are held in a FIFO queue on the SP and spin on their LP
 When released by the lock holder, the global resource is assigned

to the request at the head of the wait queue

2016/17 UniPD / T. Vardanega Real-Time Systems 434 of 449

2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 3

In general …

 With lock-based resource control protocols, locks can
use either suspension or spinning

 With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
 To bound blocking time, priority-inversion avoidance

algorithms have to be used

 With spinning, the task busy-waits
 To bound blocking time, the spinning task becomes

non-preemptable and its request is placed in FIFO queue

 The lock owner may also run non-preemptively

2016/17 UniPD / T. Vardanega Real-Time Systems 435 of 449

ܱሺ݉ሻ locking protocols : G-sched

2016/17 UniPD / T. Vardanega Real-Time Systems 436 of 449

ܱሺ݉ሻ locking protocols : P-sched

2016/17 UniPD / T. Vardanega Real-Time Systems 437 of 449

Three sources of blocking for P-sched

 Priority boosting for earlier release of resource
 All pay for it as contending tasks may be on any CPU
 ௜௕௢௢௦௧ߚ ൌ ௞ሺ߱௞ሻݔܽ݉

 FIFO queuing for the contending tasks
 ௜,௞ߚ ൌ ሺ݉ െ 1ሻ߱௞

 Contention token
 Round-robin across CPUs
 ௜௧௢௞௘௡ߚ ൌ ሺ݉ െ 1ሻ݉ܽݔ௞ሺ߱௞ሻ

2016/17 UniPD / T. Vardanega Real-Time Systems 438 of 449

2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 4

ܱሺ݉ሻ independence preservation /1

2016/17 UniPD / T. Vardanega

݉
ܿ െ 1

ܿ െ 1

ݒ ൌ
݉
ܿ

Real-Time Systems 439 of 449

௜,௞ൌߚ	
݉
ܿ െ 1 ൅

݉
ܿ ൈ ܿ െ 1 ߱௞ ൌ ݉ െ 1 ߱௞

ܱሺ݉ሻ independence preservation /2

 Clusters of size 1 ൑ ܿ ൑ ݉
 Suspension-based
 Head of per-cluster FIFO participates in global FIFO
 The per-cluster queue is FIFO+PRIO

 Independence preserved by inter-cluster migration
 Head of global FIFO (if pre-empted) can migrate to any

CPU along the global FIFO and inherit the priority of a
waiting task

 Blocking is per request: ߚ௜,௞ ൌ ሺ݉ െ 1ሻ߱௞

2016/17 UniPD / T. Vardanega Real-Time Systems 440 of 449

ܱሺ݉ሻ independence preservation /3

2016/17 UniPD / T. Vardanega Real-Time Systems 441 of 449

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (for cluster size ܿ ൏ ݉) it is

impossible for a resource access control protocol to
simultaneously:
 Prevent unbounded priority-inversion (PI) blocking
 Be independence-preserving

 Tasks don’t suffer PI blocking from resources that they don’t use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration (!)

2016/17 UniPD / T. Vardanega Real-Time Systems 442 of 449

2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 5

MrsP [Burns, Wellings, 2013] /1

 Want RTA for a partitioned multiprocessor to be
identical to the single-processor case
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 The property that once a task starts executing, its

resources are available, is intrinsic to RTA
 It should therefore be supported by global resource

control protocols
 Cannot live with suspension-based solutions!

2016/17 UniPD / T. Vardanega Real-Time Systems 443 of 449

MrsP [Burns, Wellings, 2013] /2

 Spinning non-preemptively may decrease feasibility
 More urgent tasks would suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP, at most one task per

processor may contend globally
 Access requests are served in FIFO order

 To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it
 Lock-holder job migrates to the processor of a spinning task

and runs in its stead until it either completes or migrates again

2016/17 UniPD / T. Vardanega Real-Time Systems 444 of 449

MrsP [Burns, Wellings, 2013] /3

2016/17 UniPD / T. Vardanega Real-Time Systems 445 of 449

MrsP [Burns, Wellings, 2013] /4

 For partitioned scheduling (ܿ ൌ 1)
 Spinning-based
 Local wait spinning at local ceiling

 Allows using uniprocessor-style RTA
 Blocking is per resource, increased by parallelism

 ௜ߚ ൌ ௞ሺ߱௞ெ௥௦௉ሻݔܽ݉ ൌ ௞ݔܽ݉ ሺ݉ െ 1ሻ߱௞ ൌ ሺ݉ െ 1ሻ ൈ݉ܽݔ௞ ߱௞

 Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in
the global FIFO is currently spinning

2016/17 UniPD / T. Vardanega Real-Time Systems 446 of 449

2016/17 UniPD / T. Vardanega 27/05/2017

Real Time Systems 6

MrsP [Burns, Wellings, 2013] /5

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

2016/17 UniPD / T. Vardanega Real-Time Systems 447 of 449

MrsP [Burns, Wellings, 2013] /6

2016/17 UniPD / T. Vardanega Real-Time Systems 448 of 449

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions: DP-Fair and RUN
 Incorporating global resource sharing

2016/17 UniPD / T. Vardanega Real-Time Systems 449 of 449

