2016/17 UniPD / T. Vardanega

8.e Global resource sharing

| Multiprocessor PCP /1

m Partitioned FPS with resources bound to processors

[Sha, Rajkumar, Lehoczky, 1988]

a The processor that hosts a resource is the synchronization
processor (SP) for that resource
m It knows all the use requirements of all of its resources

o The critical sections of a resource execute on the
processor that hosts that resource
m Jobs that use remote resources employ “distributed transactions”

0 The processor to which a task is assigned is the /oca/
processor (LP) for all of the jobs of that task

2016/17 UniPD / T. Vardanega Real-Time Systems 429 of 449

| Contention and blocking

were based fall apart

cycles

m The premises on which single-runner solutions

shared resource € parallelism gets in the way

o Suspending is no longer conducive to earlier release of

o Priotity boosting the lock holder does not help either €
per-CPU priorities may not have global meaning

o Having local and global resources causes suspending to
become dangerous € local priority inversions may occur

0 Spinning protects against that hazard but wastes CPU

2016/17 UniPD / T. Vardanega Real-Time Systems

428 of 449

| Multiprocessor PCP /2

m A task may need local and global resources
0 Local resources reside on the local processor of that task

o Resources are global when their SP differs from the
task’s LP

m Resource access control protocols need actual locks
to protect against parallel contention
0 Hence lock-free algorithms become attractive again

m SPs use M-PCP to control access to their global
resources

2016/17 UniPD / T. Vardanega Real-Time Systems 430 of 449

DAAl Tivrva~s OuvvAatAarmAas

27/05/2017

2016/17 UniPD / T. Vardanega

| Multiprocessor PCP /3

m The task that holds a global lock should not be
preempted locally

o All global critical sections are executed at higher ceiling
priorities than local tasks on the SP and any other
tasks in the system Kthis breaks independence!)]

m A task Ty that is denied access to a global shared
resource Py suspends and waits in a priority-based
queue for that resource

o Any task 7; with lower-priority than Tp, on its LP may
thus acquite global resources that have higher ceiling

2016/17 UniPD / T. Vardanega Real-Time Systems 431 of 449

| Blocking under M-PCP 0

m With M-PCP, task 7; is blocked by lower-priority tasks in 5 ways

0 Local blocking (once per release): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;’s
suspension on access to a global resource

Q Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP

a Local preemption: when global critical sections are executed on T;’s
processor by remote tasks of any priority (multiple times) and by local
tasks of lower priority (once)

a Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

Q Deferred interference as local higher-priority tasks suspend on access to global
resources because of blocking effects

2016/17 UniPD / T. Vardanega Real-Time Systems 433 of 449

| Multiprocessor PCP /4

m [f the global resource pg, being acquired by 7,
resides on the same SP as pg then T, suffers an
anomalous form of priority inversion

0 The execution in pg, delays the release of pg

suspension,[M—PCP suffers the risk of deadloc

o With global resources hosted on > 1 SPs, nesting global
resources may lead to deadlock and must be disallowed

m As contention for a global resource involves
10

m This is why other protocols prefer Tp, to spin

2016/17 UniPD / T. Vardanega Real-Time Systems 432 of 449

DAAl Tivrva~s OuvvAatAarmAas

‘ Multiprocessor SRP

m Partitioned EDF with resources bound to
processors [Gai, Lipari, Di Natale, 2001]
o SRP is used for controlling access to local resources
o Tasks that lock a global resource cannot be preempted
m They become preemptable again when releasing the resource

0 Tasks that request a global resource that is already locked
are held in a FIFO queue on the SP and spin on their LP

m When released by the lock holder, the global resource is assigned
to the request at the head of the wait queue

2016/17 UniPD / T. Vardanega Real-Time Systems 434 of 449

27/05/2017

2016/17 UniPD / T. Vardanega

| In general ...

With lock-based resource control protocols, locks can
use either suspension or spinning

With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue

o To bound blocking time, priority-inversion avoidance
algorithms have to be used

= With spinning, the task busy-waits
o To bound blocking time, the spinning task becomes
non-preemptable and its request is placed in FIFO queue
m The lock owner may also run non-preemptively
2016/17 UniPD / T. Vardanega Real-Time Systems 435 of 449

| O (m) locking protocols : P-sched

r]
5 1,—| T1 L !
,’i‘ PRIO |:‘§' Py 'i
fo i
mo 1______________ _________ i
resg Jrro I
\ ropartition - —— - - - - - - - — - —— - —— -~

binary semaphore \

1
e\ | NN
and prio boosting] _~E
NS s ()
suspend! 3
1 e _/:
|

o limiting access to global resources: per-partition contention token.
Must be acquired before requesting any global resource (token +
PRIO queue shared for all global resources)

o releasing resources as soon as possible: priority boosting for tasks
queued in global resources (at most 1 per partition)

2016/17 UniPD / T. Vardanega Real-Time Systems 437 of 449

| O (m) locking protocols : G-sched

r—taskset- —
suspend|

Fom o

resp <rrod PRIO [

suspend] ————— ' P D
JLFP scheduler

@ blocking suffered only by tasks using resources

e per-request blocking is b = 2(m — 1)w;., w; length of max critical
section for res;.
@ all resources are global resources

2016/17 UniPD / T. Vardanega Real-Time Systems 436 of 449

DAAl Tivrva~s OuvvAatAarmAas

| Three sources of blocking for P-sched

<

m Priority boosting for eatlier release of resource
o All pay for it as contending tasks may be on any CPU
a BP0t = maxy (wy)

w FIFO quening for the contending tasks
9 Bik = (M= Doy

w Contention token

0 Round-robin across CPUs

token __
f = (m — D)maxy(wy)
2016/17 UniPD / T. Vardanega Real-Time Systems 438 of 449

27/05/2017

2016/17 UniPD / T. Vardanega

0 (m) independence preservation /1

PoClusSter) — - = - - e e e e — o

v
S

\ e

Y
)
- Gl

reclustery = = = = s s ccm e m e — -
[
1
I
I
[

Bix= [(% - 1) 1 % x (c— 1)] wr = (m— Dy

2016/17 UniPD / T. Vardanega Real-Time Systems 439 of 449

| O (m) independence preservation /3

O | = t 7 T

executing holding res busy wait release request res. completion

prio

clusters { g !
ry | e —— —

cluster;, | ¢
'y | == ==

e t = 3: task 7 suspends and task 7 resumes execution

o t = 4: task 73 migrates to cluster; and preempts task 71

2016/17 UniPD / T. Vardanega Real-Time Systems 441 of 449

0 (m) independence preservation /2

m Clusters of sizel1 < c <m
u Suspension-based
o Head of per-cluster FIFO participates in global FIFO
o The per-cluster queue is FIFO+PRIO
m Independence preserved by inter-cluster migration

0 Head of global FIFO (if pre-empted) can migrate to any
CPU along the global FIFO and inherit the priotity of a
waiting task

» Blocking is per request: i, = (m — 1wy,

2016/17 UniPD / T. Vardanega Real-Time Systems 440 of 449

DAAl Tivrva~s OuvvAatAarmAas

| [Brandenburg, 2013]

m Theorem

o Under non-global scheduling (for cluster size ¢ < m) it is
impossible for a resource access control protocol to
simultaneously:

m Prevent unbounded priority-inversion (PI) blocking
m Be independence-preserving
0 Tasks don’t suffer PI blocking from resources that they don’t use

= Avoid inter-cluster job migration

w Secking independence preservation and bounded PI-blocking
requires inter-cluster job migration (1)

2016/17 UniPD / T. Vardanega Real-Time Systems 442 of 449

27/05/2017

2016/17 UniPD / T. Vardanega

| MrsP [Burns, Wellings, 2013] /1

m Want RTA for a partitioned multiprocessor to be
identical to the single-processor case

0 The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention

m The property that once a task starts executing, its
resources are available, is intrinsic to RTA

o It should therefore be supported by global resource
control protocols

o Cannot live with suspension-based solutions!

2016/17 UniPD / T. Vardanega Real-Time Systems 443 of 449

| MrsP [Burns, Wellings, 2013] /3

r-partitiony - - - ——---------—
1
1
1

sp'lnnin‘g‘at / -\ /P\

own cellmg

|—m—|

spinning at
own ceiling

e
\i .
% 4

2016/17 UniPD / T. Vardanega Real-Time Systems 445 of 449

| MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
0 More urgent tasks would suffer longer blocking
m Spinning at the /oca/ ceiling priority is better

o With all processots using PCP/SRP, at most one task per
processor may contend globally

0 Access requests are served in FIFO order
m To bound blocking from preemption of the lock-holder
task, spinning tasks should “donate” their cycles to it

o Lock-holder job migrates to the processor of a spinning task
and runs in its stead until it either completes or migrates again

2016/17 UniPD / T. Vardanega Real-Time Systems 444 of 449

DAAl Tivrva~s OuvvAatAarmAas

| MrsP [Burns, Wellings, 2013] /4

m For partitioned scheduling (¢ = 1)
w Spinning-based
o Local wait spinning at local ceiling
m Allows using uniprocessor-style RTA

m Blocking is per resource, increased by parallelism

Py = max((m — Dwy) = (m — 1) X maxy(wy)

o B; = maxg(wy'
m Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in

the global FIFO is currently spinning

2016/17 UniPD / T. Vardanega Real-Time Systems 446 of 449

27/05/2017

2016/17 UniPD

/ T. Vardanega

MrsP [Burns, Wellings, 2013] /5

m Resource nesting can be supported with either grousp
locking or static ordering of resources

o With static ordering, resource access is allowed only with
order number greater than any currently held resources

0 The implementation should provide an «out of order»
exception to prevent run-time €rrors
m The ordering solution is better than banning nesting
and has less penalty than group locking

2016/17 UniPD / T. Vardanega Real-Time Systems 447 of 449

‘ Summary

Issues and state of the art

Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing

2016/17 UniPD / T. Vardanega Real-Time Systems 449 of 449

MrtsP [Burns, Wellings, 2013] /6

O | = t T
executing haolding res busy wait release request res completion
2
Ps . 1
. i:—. e |
.................... ' ﬂ e cmcccecmemmcemmmmmmmm—————
™ TZE _——
IJ
v, |]
] 1 2 3 1 5] T]] 10 11 12 13 14 ti;“e
o t = 3: task 7 start spinning at ceiling priority
o t = 4: task T3 migrates to P and executes in place of

2016/17 UniPD / T. Vardanega Real-Time Systems 448 of 449

DAAl Tivrva~s OuvvAatAarmAas

27/05/2017

