
This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Putting RUN into practice
Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega
University of Padua, Italy

26th EUROMICRO Conference on Real-time Systems (ECRTS)
Madrid, 9 July 2014

Outline
 Motivation
 Brief recap of Reduction to UNiprocessor
 RUN implementation and evaluation
 Conclusions and future work

2 09/07/2014

Multiprocessor scheduling requisites

3 09/07/2014

 Seeking balance between theoretical properties and viability
 Low runtime overhead and high system utilization
 Standard RTOS support and reasonable scheduling overheads

Multiprocessor scheduling state-of-the-art

4 09/07/2014

Partitioned approaches Global approaches Hybrid approaches

Reduce to single-core
scheduling with

well-known solutions

Work-conserving
Sustain relatively
higher utilizations

Flexibility to attenuate
the drawbacks of

P- and G- approaches

Bin-packing NP-hard

In general cannot
guarantee high

utilization (50% bound)

Large shared
scheduling structures

Larger scheduling
overheads

(e.g., job migration)

More difficult
to implement

May require
non-standard
RTOS support

 Reduction to UNiprocessor (RUN)
 Optimal for implicit-deadline periodic independent tasks
 Low interference with few job migrations
 Reduces to P-EDF when a perfect partitioning exists

Recap of the RUN algorithm
 Reduction to UNiprocessor (RTSS’11)

 Semi-partitioned algorithm (for lack of better term)
 Optimal without resorting to proportionate fairness

 Reduction principles
 Duality

 Fixed-rate tasks and servers

 Scheduling decision taken on reduction tree
 Questions

 Can it be implemented on standard RTOS support?
 What is the cost of maintaining the reduction tree at run time?

5 09/07/2014

Scheduling on RUN

6 09/07/2014

 Off-line: reduction tree
 Dual + Pack

 On-line: EDF rules
 Virtual scheduling of servers

- Virtual jobs
- Proportionate execution

(dual)

(pack)

RUN implementation
 For real

 On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
 Thus relying on an abstraction of standard RTOS support

 Main implementation choices and challenges
 Scheduling on the reduction tree

- How to organize the data structure
- How to perform virtual scheduling and trigger tree updates
- Intrinsic influence of the packing policy

 Mixing global and local scheduling
- Global release event queue vs. local level-0 ready queue
- Handling simultaneous scheduling events

• Job release, budget exhaustion (possibly from different sub-trees)

 Meeting the full-utilization requirement
- Variability of tasks’ WCET and lower utilization

7 09/07/2014

Empirical evaluation
 Empirical evaluation instead of simulation-based

 Focus on scheduling interference
 Cost of scheduling primitives
 Incurred preemptions and migrations

 RUN compared against P-EDF and G-EDF
 RUN shares something in common with both
 Way better than Pfair (S-PD2 in LITMUSRT)

- RUN has superior performance for preemptions and migrations

8 09/07/2014

Experimental setup
 LITMUSRT on an 8-core AMD OpteronTM 2356

 Collected measurements for RUN, P-EDF, G-EDF
 Hundreds of automatically generated task sets
 Harmonic and non-harmonic, with global utilization @ 50%-100%
 Representative of small up to large tasks

 Two-step process
 Preliminary empirical determination of overheads

9 09/07/2014

Collect
measurements
on overheads

Determine
per-job

upper bound

Perform
actual

evaluation

Primitive overheads and empirical bound

10 09/07/2014

 Expectations confirmed
 P-EDF needs lighter-weight scheduling primitives

 Tree update (TUP) triggered upon
 Budget exhaustion event
 Job release REL includes TUP

 Empirical upper bound on RUN scheduling overhead

and

Empirical schedulability

11 09/07/2014

 Task sets exhibiting at least one miss
 RUN suffered no misses

 Optimality and tailored overhead

Kernel interference
 Observing average preemptions and migrations

12 09/07/2014

Scheduling cost
 Average cost of core scheduling primitives

13 09/07/2014

Average job release

Average schedule

Per-job scheduling overhead

14 09/07/2014

Harmonic task set Non-harmonic task set

Conclusions and future work
 Good news on RUN from this evaluation

 It can be practically and efficiently implemented
 It may exhibit very modest kernel overhead

- Acceptable even on non-harmonic task sets
 It causes a tiny amount of migrations

- Hence low inter-task interference

 Essential improvements
 Handle sporadic task sets
 Allow sharing of logical resources

 Further work
 Better understanding of the role of packing policies

- Affecting the reduction tree, hence preemptions/migrations
 Further comparisons against other optimal solutions

- High interest in Quasi-Partitioned Scheduling (QPS)

15 09/07/2014

Evaluation against S-PD2

16 09/07/2014

Per-job kernel overhead

Observed preemptions and migrations

Reduction tree at run time

17 09/07/2014

