
This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Putting RUN into practice
Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega
University of Padua, Italy

26th EUROMICRO Conference on Real-time Systems (ECRTS)
Madrid, 9 July 2014

Outline
 Motivation
 Brief recap of Reduction to UNiprocessor
 RUN implementation and evaluation
 Conclusions and future work

2 09/07/2014

Multiprocessor scheduling requisites

3 09/07/2014

 Seeking balance between theoretical properties and viability
 Low runtime overhead and high system utilization
 Standard RTOS support and reasonable scheduling overheads

Multiprocessor scheduling state-of-the-art

4 09/07/2014

Partitioned approaches Global approaches Hybrid approaches

Reduce to single-core
scheduling with

well-known solutions

Work-conserving
Sustain relatively
higher utilizations

Flexibility to attenuate
the drawbacks of

P- and G- approaches

Bin-packing  NP-hard

In general cannot
guarantee high

utilization (50% bound)

Large shared
scheduling structures

Larger scheduling
overheads

(e.g., job migration)

More difficult
to implement

May require
non-standard
RTOS support

 Reduction to UNiprocessor (RUN)
 Optimal for implicit-deadline periodic independent tasks
 Low interference with few job migrations
 Reduces to P-EDF when a perfect partitioning exists

Recap of the RUN algorithm
 Reduction to UNiprocessor (RTSS’11)

 Semi-partitioned algorithm (for lack of better term)
 Optimal without resorting to proportionate fairness

 Reduction principles
 Duality

 Fixed-rate tasks and servers

 Scheduling decision taken on reduction tree
 Questions

 Can it be implemented on standard RTOS support?
 What is the cost of maintaining the reduction tree at run time?

5 09/07/2014

Scheduling on RUN

6 09/07/2014

 Off-line: reduction tree
 Dual + Pack

 On-line: EDF rules
 Virtual scheduling of servers

- Virtual jobs
- Proportionate execution

(dual)

(pack)

RUN implementation
 For real

 On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
 Thus relying on an abstraction of standard RTOS support

 Main implementation choices and challenges
 Scheduling on the reduction tree

- How to organize the data structure
- How to perform virtual scheduling and trigger tree updates
- Intrinsic influence of the packing policy

 Mixing global and local scheduling
- Global release event queue vs. local level-0 ready queue
- Handling simultaneous scheduling events

• Job release, budget exhaustion (possibly from different sub-trees)

 Meeting the full-utilization requirement
- Variability of tasks’ WCET and lower utilization

7 09/07/2014

Empirical evaluation
 Empirical evaluation instead of simulation-based

 Focus on scheduling interference
 Cost of scheduling primitives
 Incurred preemptions and migrations

 RUN compared against P-EDF and G-EDF
 RUN shares something in common with both
 Way better than Pfair (S-PD2 in LITMUSRT)

- RUN has superior performance for preemptions and migrations

8 09/07/2014

Experimental setup
 LITMUSRT on an 8-core AMD OpteronTM 2356

 Collected measurements for RUN, P-EDF, G-EDF
 Hundreds of automatically generated task sets
 Harmonic and non-harmonic, with global utilization @ 50%-100%
 Representative of small up to large tasks

 Two-step process
 Preliminary empirical determination of overheads

9 09/07/2014

Collect
measurements
on overheads

Determine
per-job

upper bound

Perform
actual

evaluation

Primitive overheads and empirical bound

10 09/07/2014

 Expectations confirmed
 P-EDF needs lighter-weight scheduling primitives

 Tree update (TUP) triggered upon
 Budget exhaustion event
 Job release  REL includes TUP

 Empirical upper bound on RUN scheduling overhead


and

Empirical schedulability

11 09/07/2014

 Task sets exhibiting at least one miss
 RUN suffered no misses

 Optimality and tailored overhead

Kernel interference
 Observing average preemptions and migrations

12 09/07/2014

Scheduling cost
 Average cost of core scheduling primitives

13 09/07/2014

Average job release

Average schedule

Per-job scheduling overhead

14 09/07/2014

Harmonic task set Non-harmonic task set

Conclusions and future work
 Good news on RUN from this evaluation

 It can be practically and efficiently implemented
 It may exhibit very modest kernel overhead

- Acceptable even on non-harmonic task sets
 It causes a tiny amount of migrations

- Hence low inter-task interference

 Essential improvements
 Handle sporadic task sets
 Allow sharing of logical resources

 Further work
 Better understanding of the role of packing policies

- Affecting the reduction tree, hence preemptions/migrations
 Further comparisons against other optimal solutions

- High interest in Quasi-Partitioned Scheduling (QPS)

15 09/07/2014

Evaluation against S-PD2

16 09/07/2014

Per-job kernel overhead

Observed preemptions and migrations

Reduction tree at run time

17 09/07/2014

