2017/18 UniPD - T. Vardanega 14/03/2018

‘ Common approaches /2

2 S Ch e duh n g 1 ssues n Weighted round-robin scheduling

a With basic round-robin (which requires preemption)
= All ready jobs are placed in a FIFO queue
s CPU time quantized, that is, allotted in #me shices
m The job at head of queue is allowed to execute for one quantum

0 If not complete by end of quantum, it goes to the tail of the queue

0 Hence all jobs in the queue are given one quantum per round
0 Not good for jobs with precedence relations
0 Fine for producer-consumer pipelines that proceed in continual increments
o With weighted correction (as for the scheduling of network traffic)
= Jobs are assigned CPU time according a ‘weight’ (fractionary) attribute

= Job J; gets w; time slices per round — one round is },; @; of ready jobs

2017/18 UniPD — T. Vardanega Real-Time Systems 116 of 515
| Common approaches /1 ‘ Common approaches /3
m Clock-driven (time-driven) scheduling » Priority-driven (event-driven) scheduling
0 Scheduling decisions are made beforehand (off line) and actuated at 0 This class of algorithms is greedy
fixed time instants m Never leave available processing resources unutilized
m The time instants occur at intetvals signaled by clock via intertupts m An available resource may stay unused iff there is no job ready to use it
m The scheduler first dispatches to execution the job due in the current u A clairvoyant alternative may instead defer access to the CPU to incur

time period and then suspends itself until then next schedule time less contention and thus reduce job response time

m The scheduled job is supposed to complete before the next schedule ® Anomalies may occur when job parameters change dynamically

time > this scheme requites no preemption 0 Scheduling decisions are made at run time when changes occur to
. the “ready queue”, hence on local knowledge

o All parameters that matter must be known in advance)) o . . e

]) m The event causing a scheduling decision is called “dispatching point

0 The schedule is computed offline and fixed forever

a Itincludes algorithms also used in non real-time systems

0 The run-time overhead incurred in its execution is minimal ® FIFO, LIFO, SETF (shortest e.t. first), LETF (longest e.t. first)

2017/18 UniPD — T. Vardanega Real-Time Systems 115 of 515 2017/18 UniPD — T. Vardanega Real-Time Systems 117 of 515

DAAl Tivrva~s OuvvAatAarmAas A

2017/18 UniPD - T. Vardanega

| Predictability of execution

m Initial intuition
0 The execution of job set] under a given scheduling algorithm
is predictable if the actual start time and the actual response
time of every job in] vary within the bounds of the maximal
and minimal schedule

w Maxcimal schedule: the schedule created by the scheduling
algorithm under worst-case conditions

w Minimal schedule: analogously for best-case
m Theorem: the execution of independent jobs with given

release times under preemptive priority-driven scheduling
on a single processor /s predictable

2017/18 UniPD — T. Vardanega Real-Time Systems 118 of 515

| Preemption vs. non preemption /1

= Can we compare preemptive scheduling with
non-preemptive scheduling for performance?
0 There is no single response that is valid in general
0 When all jobs have same release time and preemption overhead is
negligible (1?) then preemptive scheduling is provably better
0 It would be interesting to know whether the improvement of the
last finishing time (aka minimum makespan) under preemptive
scheduling pays off the time overhead of preemption
m For 2 CPUs we do know that the minimum makespan for
non-preemptive scheduling is never worse than /3 of that
for preemptive

2017/18 UniPD — T. Vardanega Real-Time Systems 120 of 515

Classification of Scheduling Algorithms

All scheduling algorithms

static scheduling dynamic scheduling

(or offline, or clock driven) (or online, or priority driven)
static-priority dynarnic-priority
scheduling scheduling
Jum Anderson Feal-Time Systems Intduction - 30
2017/18 UniPD — T. Vardanega Real-Time Systems 119 of 515

DAAl Tivrva~s OuvvAatAarmAas

Preemption vs. non preemption /2

m The processor speed-up factor determines the increase in
processor speed that a scheduling algorithm would
require to equalize an optimal algorithm of the
same class for any task set

Exact = 2 [15] EDF-P
FP-P Mo e o e {uniprocessor
optimal)
/ I
- |
N , s 1
Upper Bound = . . .
| Exact=24 (‘—- Exact= 2.4 Com Exact= 1+ (.'A
Lower Bound =,f3 D - s i i
// |
- +
L
FP-NP e EDF-NP
Exact = 2 [15]
T e s R R TIPS 2015
[|
2017/18 UniPD —T. Vardanega Real-Time Systems 121 of 515

14/03/2018

2017/18 UniPD - T. Vardanega

| Optimality /1

m Priorities assigned dynamically after absolute deadlines
0 Ready queue reordering on job release and job completion

» FEarliest Deadline First scheduling is optimal for single
CPU systems with independent jobs and preemption
o For any job set, EDF produces a feasible schedule if one exists

0 The optimality of EDF breaks under other hypotheses (e.g., no
preemption, multicore processing)

oo 3 d; dy d
___Absolute deadline d; = 1; + D; z
time
Ready queue: | 11| [100] [1:000]]
2017/18 UniPD — T. Vardanega Real-Time Systems 122 0f 515

| Optimality /3

m If the goal is that jobs just make their deadlines, then there
is little point in having jobs complete any earlier
a The Latest Release Time algorithm (converse of EDF)

follows this logic and schedules jobs backwards from the
latest deadline

m LRT operates backward treating deadlines as release times and
release times as deadlines

m LRT is not greedy: it may leave the CPU unused with ready tasks

m Greedy scheduling algorithms may cause jobs to suffer
larger interference

2017/18 UniPD — T. Vardanega Real-Time Systems 124 of 515

| Optimality /2

costly to implement

€

The; T2 €2 o d,

m Priorities assigned dynamically after Jaxizy L(t)
a Li(t) = (r; + D;) — t — R;(t), where R;(t) is the residual execution time
needed for T; at time ¢
0 Scheduling occurs on job release and job completion
o Jobs’ priority, L(t), vaties with t: more dynamic than EDF and more

m Least Laxity First scheduling is optimal under the same
hypotheses as for EDF optimality

Li(®) = (1 + D) —t—(ex—ey,) e

time

Ly(t) = (p;=D2) —t — (Ez‘:,Q) ,,,,,,,,
e

Ready queue:

t
Jo)i

2017/18 UniPD — T. Vardanega

Real-Time Systems 123 of 515

DAAl Tivrva~s OuvvAatAarmAas

Latest Release Time scheduling

Job scheduling (execution goes the other way)

l:l Time

Tl
T1|T2|T3 20 18 11 9
A |0 |11)12
CcC |4 |3 |4 |—| I_‘
T2
D [20(18 |17 - 18 17 13 11

(D=absolute deadline)
T3 &
N 17 13 T

Needs preemption and off line decisions

2017/18 UniPD — T. Vardanega Real-Time Systems 125 of 515

14/03/2018

2017/18 UniPD - T. Vardanega 14/03/2018

| Ramifications for dynamic scheduling ‘ Clock-dtiven scheduling /2

Input: stored schedule S(t) for k = {0,.., N — 1}; H (hyperperiod)
SCHEDULER:
dynamic scheduling i = 0;k = 0; set timer to expire at ty ;
do forever :
o sleep until timer interrupt;
static priority . L. . .
if an apetiodic job is executing
dynamic priority preempt;

fixed priority per task end if;
current task T = S(ty) ;
i=i+1;k=imodN;
set timer to expire at [i/N| X H + ty 5 — at time ty, in all H forever
if current task T = [

execute job at head of apetiodic queue;
else execute job of task T;
FPS EDF LLF il 2

end do;
end SCHEDULER

fixed priority per job dynamic priority per job

2017/18 UniPD — T. Vardanega Real-Time Systems 126 of 515 2017/18 UniPD — T. Vardanega Real-Time Systems 128 of 515

| Clock-driven scheduling /1 ‘ Clock-dtiven scheduling /3
Task dispatch
n Workload model St assign :I'J—‘ H
o N periodic tasks, for N constant and statically defined 2 - T X % e
m In Jim Anderson’s definition of periodic (not Jane Liu’s) E ¢ L w_:.(- ‘;} }ljj
1 3
o The (@;, i, €;, D;) parameters of every task T; are constant 8
and statically known : . I
m The schedule is static and committed off line before system t; 1 '
start to a table S of decision times tj t
o S[tx] = 7; if a job of task 7; must be dispatched at time tj, , ,
i R K A We need an interval timer
a S[tr] = I (idk) if no job is due
o Schedule computation can be as sophisticated as we like since L ts, Ty
we pay for it only once and before execution t, o
0 Jobs cannot overrun otherwise the system is in error
2017/18 UniPD — T. Vardanega Real-Time Systems 127 of 515 2017/18 UniPD — T. Vardanega Real-Time Systems 129 of 515

DAAl Tivrva~s OuvvAatAarmAas A

2017/18 UniPD - T. Vardanega

| Example

(¢, v, €0, Dy)

€;
Z—=0.76
— Pi
13
2

U=
H=20 4 & t & ty

4t 3 l It l t) 4 1) It

J={t1=(0,4,1,4),t;, =(0,5,1.8,5),t3 = (0,20,1,20),t, = (0,20,2,20)}

19.8

0 4 8 12 16
0 ty
1 t
m The schedule table S for | would need 17 entries - o
a That’s too many and the schedule too fragmented! :8 tll
19.8 1
20 Goto t mod (H)

2017/18 UniPD — T. Vardanega Real-Time Systems

130 of 515

20

| Clock-driven scheduling /5

m Constraint 1: Every job J must complete within f
o f = max;_(1,n)(€;) so that overruns can be detected

m Constraint 2: f must be an integer divisor of the
hyperperiod
o H:H = Nf where NeN
o It suffices that f be an integer divisor of at least one task petiod p;
o The hyperperiod beginning at minor cycle kf for k = 0, N —

1,2N — 1 is termed major cycle

m Constraint 3: There must be one fu// frame f between
J’s release time t” and its deadline: t' + Dj = t + 2f
a So that J can be scheduled in that frame
o This can be expressed as: 2f — ged(p;, f) < D; for every task T;

2017/18 UniPD — T. Vardanega Real-Time Systems 132 of 515

| Clock-dtiven scheduling /4

the cyclic schedule (table S)

m Reasons of complexity control suggest minimizing the size of

0 The scheduling point tj should occur at regular intervals
m Each such interval is termed minor cycle (frame) and has duration f
m We need a (cheaper, more standard) periodic timer instead of a (more costly)
interval timer
m Within minor cycles there is no preemption, but a single frame may allow
the execution of multiple (run-to-completion) jobs
o For every task T;, @; must be a non-negative integer multiple of f
m Forcedly, the first job of every task has its release time set at the start edge

of a minor cycle

m To build such a schedule, we must enforce some constraints

2017/18 UniPD — T. Vardanega Real-Time Systems 131 of 515

| Understanding constraint 3

pj
t+D ,-l
@ t' t'+ pj
Constraint 3
f
l
©) ¢t t,+Dit’+pjT

©

This is the frame in which job

must be scheduled

t t+f t+2f

l

¢t t +D; f

t'+p;

.

t+2f§t’+Dj]
t'—t =gcd(p), f)

2f —ged(pj, f) < D;

2017/18 UniPD — T. Vardanega

Real-Time Systems

133 of 515

DAAl Tivrva~s OuvvAatAarmAas

14/03/2018

2017/18 UniPD - T. Vardanega

| Example

T ={0,4,1,4),(0,5,2,5), (0, 20, 2, 20)}

m H=20

[c1]: f = max(e;): f>2

(2] : |p:/fl —pi/f =0:£={2,4,5, 10, 20}

[c3]:2f —gcd(p;, f) <D;:f<2

f=2:4—-gcd(42) <40K f=5:10—gcd(4,2) < 4KO

4 —ged(5,2) <5 OK — 1090 <
i bdom <200k S =10:20 ged(4,2) < 4KO

f=4:8—gcd(44) <40K f =20:40—-gcd(4,2) <4KO
8 —gcd(54) <5 KO

2017/18 UniPD — T. Vardancga Real-Time Systems 134 of 515

| Clock-driven scheduling /6

m To construct a cyclic schedule we must therefore
make three design decisions
o Fixan f
a Slice (the large) jobs
o Assign (jobs and) slices to minor cycles

m There is a very unfortunate inter-play among these
decisions

a Cyclic scheduling thus is very fragile to any change in
system parameters

2017/18 UniPD — T. Vardanega Real-Time Systems 136 of 515

| Clock-driven scheduling /5

m It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given fsimultaneously

m In that case we must decompose task 7;’s jobs by
slicing their (WCET) e}” into fragments small
enough to artificially yield a “good” f

2017/18 UniPD — T. Vardanega Real-Time Systems 135 of 515

DAAl Tivrva~s OuvvAatAarmAas

| Clock-driven scheduling /7

Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:
t:=0;k=0;
do forever:
sleep until clock interrupt @ time t x f;
currentBlock = S(k);
t:=t+1; k:= tmod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute aperiodic job at top of queue;
end do;
end do;
end SCHEDULER

2017/18 UniPD — T. Vardanega Real-Time Systems 137 of 515

14/03/2018

2017/18 UniPD -

T. Vardanega

| Example (slicing) — 1/2

(@i pirei D)
J={r1=(0,4,1,4),7, =(0,5,2,7),t3 = (0,20,5,20)}, H = 20
T3 causes disruption since we need e3 < f < 4 to satisfy ¢3
We must therefore slice €3 : how many slices do we need?

f=4 S(t=4)

Y

4 8 12 16

We first look at the schedule with f =4 and F = (?) =5

without T3, to see what least-disruptive opportunities we have ...

2017/18 UniPD — T. Vardancga Real-Time Systems 138 of 515

‘ Design issues /1

s Completing a job much ahead of its deadline is of no use

m If we have spare time we might give aperiodic jobs more
opportunity to execute hence make the system more responsive
m The principle of slack stealing allows aperiodic jobs to execute
in preference to periodic jobs when possible
o Every minor cycle include some amount of slack time not used for
scheduling periodic jobs
m The slack is a szatic attribute of each minor cycle
m A scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
0 However, this value-added provision requires a fine-grained interval timer
(again!) to signal the end of the slack time for each minor cycle

2017/18 UniPD — T. Vardanega Real-Time Systems 140 of 515

| Example (slicing) — 2/2

.. then we observe that e3 = {1, 3, 1} is a good choice
‘/'.: M{\n'\.\
P W .
_ / \ S
‘/‘/ ./ - =
] 3

Y

t, ty | fizp ty t, ty t, ty t, i

4 8 12 16

T3 = {1 = (0,20,1,%), 7§ = (0,20,3,y), 75 = (0,20,1,20)}

where x <y < 20 represent the precedence constraints that
must hold between the slices (could have used phases instead)

2017/18 UniPD — T. Vardanega

Real-Time Systems 139 of 515

Design issues /2

m What can we do to handle overruns?
o Halt the job found running at the start of the new minor cycle
= But that job may not be the one that overrun!
= Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual wzility
a Defer halting until the job has completed all its “critical actions”

= To avoid the risk that a premature halt may leave the system in an
inconsistent state

a Allow the job some extra time by delaying the start of the next
minor cycle
m Plausible if producing a late result still had uzlity

2017/18 UniPD — T. Vardanega Real-Time Systems 141 of 515

DAAl Tivrva~s OuvvAatAarmAas

14/03/2018

2017/18 UniPD - T. Vardanega

| Design issues /3

m What can we do to handle mode changes?

o A mode change is when the system incurs some
reconfiguration of its function and workload parameters

m Two main axes of design decisions
o With or without deadline during the transition

o With or without overlap between outgoing and incoming
operation modes

2017/18 UniPD — T. Vardanega Real-Time Systems 142 of 515

‘ Priority-driven scheduling

m Base principle

a Every job is assigned a priority

0 The job with the highest priority is selected for execution
» Dynamic-priority scheduling

o Distinct jobs of the same task may have distinct priorities
m Static-priority scheduling

o All jobs of the same task have one and same priority

2017/18 UniPD — T. Vardanega Real-Time Systems 144 of 515

Overall evaluation

= Pro
o Comparatively simple design
o Simple and robust implementation

o Complete and cost-effective verification

= Con
o Very fragile design

m Construction of the schedule table is a NP-hard problem
= High extent of undesirable architectural coupling

o All parameters must be fixed a priori at the start of design
m Choices may be made arbitrarily to satisfy the constraints on
m Totally inapt for sporadic jobs

2017/18 UniPD — T. Vardanega Real-Time Systems 143 of 515

Dynamic-priority scheduling

m T'wo main algorithms are champions of that category
a Earliest Deadline First (EDF)

o Least Laxity First (LLF)

Theorem [Liu, Layland: 1973] EDF is optimal for
independent jobs with preemption

o Also true for task sets that sporadic jobs

0 The relative deadline for periodic tasks may be arbitrary with the
respect to period (<, =, >)

Result trivially applicable to LLF

EDF is not optimal for jobs that do 7oz allow preemption
a Preemption is an aid to optimality f.’

-

dw

DAAl Tivrva~s OuvvAatAarmAas

2017/18 UniPD — T. Vardanega Real-Time Systems 145 of 515

14/03/2018

2017/18 UniPD - T. Vardanega

| Static (fixed)-priority scheduling (FPS)

m Two main variants with respect to the strategy for
priority assignment
0 Rate monotonic
m A task with lower period (faster rate) gets higher priority
0 Deadline monotonic
m A task with higher urgency (shorter deadline) gets higher priority

a What about “execution-monotonic”?

m Before looking at those strategies in more detail we
need to fix some basic notions

Dynamic scheduling: compatison criteria /2

m Theorem [Liu, Layland: 1973] for single processors
the schedulable utilization of EDF is 1

m FPor arbitrary deadlines, the density
ex
min(py, D)

feasibility
o As A=)}, 8 > U when D; < p; for some T;, then
A< 1 becomes a sufficient schedulability test for EDF

O = becomes an important factor to

2017/18 UniPD — T. Vardanega Real-Time Systems 146 of 515

2017/18 UniPD — T. Vardanega Real-Time Systems 148 of 515

Dynamic scheduling: compatison criteria /1

m Priority-driven scheduling algorithms that disregard
job urgency (deadline) perform poorly
o The WCET is not a factor of interest for priority!

m How to compare the performance of scheduling
algorithms?

m Schedulable utilization is a useful criterion

0 A scheduling algorithm can produce a feasible schedule
for a task set T on a single processor if U(T) does not
exceed its schedulable utilization

Dynamic scheduling: compatison criteria /3

m The schedulable utilization criterion alone is not
sufficient: we must also consider predictability
0 Recall its intuition at page 118

= On transient overload the behavior of static-priority
scheduling can be determined a-priori and is reasonable

a The overrun of any job of a given task T does not harm the
tasks with higher priority than T

m Under transient ovetload EDF becomes instable

a A job that missed its deadline is #ore urgent than a job with a
deadline in the future: one lateness may cause many morel!

2017/18 UniPD — T. Vardanega Real-Time Systems 147 of 515

2017/18 UniPD — T. Vardanega Real-Time Systems 149 of 515

DAAl Tivrva~s OuvvAatAarmAas

14/03/2018

2017/18 UniPD - T. Vardanega

Dynamic scheduling: compatison criteria /4

m Other figures of merit for comparison exist
0 Normalized Mean Response Time (NMRT)

m Ratio between the job response time and the CPU time actually
consumed for its execution

m The larger the NMRT value, the larger the task idle time
0 Guaranteed Ratio (GR)

= Number of tasks (jobs) whose execution can be guaranteed
versus the total number of tasks that request execution

o Bounded Tardiness (BT)

m Number of tasks (jobs) whose tardiness can be guaranteed to
stay within given bounds
m With BT, soft real-time systems can have some utility

2017/18 UniPD — T. Vardanega Real-Time Systems 150 of 515

| Example (EDF) /2

(¢ipirei, Dy)

T={4=00,212,4=0,535 V@) =1+2=11

T has no feasible schedule: what job suffers most under EDF?

t
oo fa] ¢ Jala] - __ (M
0 2 4 5 6 8§\ 1o -

Which job is dispatched here?

T = {t;= (0,2, 0.8,2), ,= (0, 5,3.5,5)} 2 U(t) = ;—1 + ;—2 =11

T has no feasible schedule: what job suffers most under EDF?

What about
T ={t1=(0,2,0.8,2), 2= (0,5, 4, 5)} with U(t) = ;—1+ ;—2 =1.2?
1 2
2017/18 UniPD — T. Vardanega Real-Time Systems 152 of 515

| Example (EDF) /1

(pi i€ D)
T ={r; =(0,2,0.6,1),7, = (0,5,2.3,5)}
Density N(T) = ;—11 + ;—ZZ =1.06>1

Utilization U(T) = ;—1 + ;—2 =0.76 <1
1 P2
What happens to T under EDF?

|
o - Bl Bl - B - U

T OK
1 2 3 4 5 6 7 8
H=10
2017/18 UniPD - T. Vardanega Real-Time Systems 151 of 515

DAAl Tivrva~s OuvvAatAarmAas

Example (EDF vs FPS) /3

23
T={t; =(0,4,1,4),t; =(0,6,2,6),t3 = (0,8,3,8)},U =5 H=24

With fixed-priority scheduling (FPS), rate-monotonic priority assignment
T
|f1 l Ly l’fs 51 ltz ta t1l

0 4 6 At time 4, with
t3’s (absolute) deadline = 8, fixed priority = low
t1’s (absolute) deadline = 8, fixed priority = high
FPS has t; preempt t3

At time 6, with
t,’s (absolute) deadline = 12, fixed priority = medium
With earliest-deadline fitst (EDF) FPS has t, preempt t3, which misses its deadline

Ul e, A4 |t1 t Itll
&
0 4 6 8
2017/18 UniPD — T. Vardanega Real-Time Systems 153 of 515

14/03/2018

AN

2017/18 UniPD - T. Vardanega

| Critical instant /1

m Feasibility and schedulability tests must consider the
worst case for all tasks
o The worst case for task T; occurs when the worst possible

relation holds between its release time and that of all higher-
priority tasks

0 The actual case may differ depending on the admissible
relation between D; and p;
m The notion of critical instant — if one exists — captures
the worst case

0 The response time R; for a job of task 7; with release time on
the critical instant is the longest possible value for 7;

2017/18 UniPD — T. Vardanega Real-Time Systems 154 of 515

| Time-demand analysis /1

= When ¢ is O for all jobs considered, this equation captures
the absolute worst case for task T;

m This equation stands at the basis of Time Demand
Analysis, which investigates how w varies as a function of
time
a Aslongas w(t) < t for some (important) t for the job of interest, the

supply satisfies the demand, hence the job can complete in time

m Theorem [Lehoczky, Sha, Ding: 1989] condition w(t) < t
is an exact feasibility test (necessary and sufficient)

a The obvious question is for which ‘t” to check

0 The method proposes to check at a// periods of all higher-priority tasks
until the deadline of the task under study

2017/18 UniPD — T. Vardanega Real-Time Systems 156 of 515

| Critical instant /2

m Theorem: under FPS with D; < p; Vi, the critical instant
for task T; occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the set

» We seek max(w; ;) for all jobs {j} of task 7; for

W= e+ Z [(ij T Qi ®k)
(k=1,.,i-1) Pk

For task indices assigned in decreasing order of priority
m The), component captures the interference that any
job j of task T; incurs from jobs of higher-priority tasks
{Tk]] between the release time of the first job of task Ty,
(with phase @) to the response time of job j, which occurs
at @; + wl"j

€ — @i

2017/18 UniPD — T. Vardanega Real-Time Systems 155 of 515

DAAl Tivrva~s OuvvAatAarmAas

Time demand analysis /2

T = {4= (- 3,1,3), 6,5, 5, 15, 5), t,= (-, 7, 1.25,)} (@upu €. Do)
U(T) = ¥;e;/p; = 0.82
8 e 4
This is when the critical-instant job .
of 1, completes, where w(t) =t irpirary
~§6_ i '.'I':'II‘.:l‘..fl".
§
S /
uEa =
I hence supply satisfies demand
2 I at all t of interest
el{ | The supply exceeds the demand |
2 4 6 8 0 Zime supply
2017/18 UniPD — T. Vardanega Real-Time Systems 157 of 515

14/03/2018

A A

2017/18 UniPD - T. Vardanega

| Time demand analysis /3

T = {t,= (- 3,1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}

s
E 6 wy(t) =t
§
3
g4
S
{ .
91{ | | | | | Time supply
2 4 6 8 10
2017/18 UniPD — T. Vardanega Real-Time Systems 158 of 515

| Time demand analysis /5

m It is straightforward to extend TDA to determine
the response time of tasks

The smallest value t that satisfies

t
t=e + Xk=1,i-1) L’_k] ek
is the worst-case response time of task T;

m Solutions methods to calculate this value were
independently proposed by
o [Joseph, Pandia: 1986]
o [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2017/18 UniPD — T. Vardanega Real-Time Systems 160 of 515

Time demand analysis /4

T={t,= (- 3, 1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}

I — P3
r- wz(t) =t
E 66— For D < p it suffices
g to verify (@(t) < t) at ime
5 instants that are mulvipl(
E Q The supply meets the demand of the period of the
54 —_ exactly at this point: highest-priority tasks
Bl this suffices for t3 to complete(!) - < °
e3 N and = D
e, 2
€1 : | Time supply
2 3 4 5 6 7 8 10
2017/18 UniPD — T. Vardanega Real-Time Systems 159 of 515

DAAl Tivrva~s OuvvAatAarmAas

| Time demand analysis /6

m What changes in the definition of critical instant when D>p ?

m Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991] The first
job of task T; may #ot be the one that incurs the worst-case
response time

m Hence we must consider a/ jobs of task 7; within the so-called
level-i busy period
o The (tg,t) time interval within which the processor is busy executing jobs
with priority 2 I, release time in (tg, t), response time falling within ¢
o The release time in (ty, t) captures the full backlog of interfering jobs

0 The response time of all those jobs falling within t ensures that the busy
period includes their completion

2017/18 UniPD — T. Vardanega Real-Time Systems 161 of 515

14/03/2018

AN

2017/18 UniPD - T. Vardanega

| Example

T, = {-, 70, 26, 70}, T, = {-, 100, 62, 120} (¢i,pirei, D)
Let’s look at the level-2 busy period

Ready queuc:J, 1,), Ready queve: ., I,

Ready queue:],

Time window 1 [0,70) Time window 2 [70,100)

i 8 = Ti indow 3 [100,140]
Time left for J,;: 70-26 = 44 I Time left for ,,: 30-26 = 4 'ime window 3 [’)

5 " - Time left for =40
Sl o e B =1 Still to execute: 18-4 =14 [| | I completesji't' 114 (R = 114)
¢ ! " :
e auencs oo o RE e T o b by Time available for J,.,: 40-14 = 26

Still to execute: 62-26 = 36

Time window 5 [200,210)

i 3 Ready queve: J, 5,
Release time of job J, eady queue:J3)2

Ja, completes at: 202 (R = 102) 41 ‘Time window 4 [140,200)
Time available for J,;:10-2 =8 Time available for J,,: 60-26 = 34

Still to execute: 62-8 = 54 Still to execute: 36-34 = 2

Ready queuc:], J oo
Time window 7 [280,300)

Time available for J,;: 20-20 = 0
Release time of job J, 4

Ready queue: 1, J,5

Time window 6 [210,280)
Time available for J,3: 70-26 = 44 — |
Still to execute: 54-44 = 10

Ready queue: | 5, J5)24
Still in ready queuc J, - -

"The T, busy period Time window 8 [300,350)

extends beyond +———————1 ‘Time available for J,;: 50-6 = 44

this point (1) J2,3 completes at: 300+6+10 = 3 =116, J21 s response time is not worst-case!

2 AN
1A
2017/18 UniPD - T. Vardanega Real-Time Systems 162 of 515

‘ Summary

Initial survey of scheduling approaches

Important definitions and criteria

m Detail discussion and evaluation of main scheduling

algorithms
m Initial considerations on analysis techniques
2017/18 UniPD — T. Vardanega Real-Time Systems 164 of 515

| Level-i busy period

T, = {-, 100, 20, 100}, T, = {-, 150, 40, 150}, T; = {-, 350, 100, 350} = U = 0.75
The same definition of level-i busy period holds also for D < p
but its width is obviously shorter!

"l H v

0 20 100 120 200 220 300 320
2 l | I l
0 20 60 150 180 300

-—— 13 busy peried ————————=

t’l [] [] ll_

[] 60 100 120 150 130200 220 240 3s0

time

2017/18 UniPD — T. Vardanega Real-Time Systems 163 of 515

DAAl Tivrva~s OuvvAatAarmAas

| Selected readings

m T. Baker, A. Shaw
The cyclic excecutive model and Ada
DOL: 10.1109/REAL.1988.51108
m C.L. Liu, J.W. Layland
Scheduling algorithms for multiprogramming in a bard-real-

time environment

DOI: 10.1145/321738.321743 (1973)

2017/18 UniPD — T. Vardanega Real-Time Systems 165 of 515

14/03/2018

AN

