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3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings
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| The simplest workload model

m The application is assumed to consist of 1 tasks, for n fixed
m All tasks are periodic with known periods

a This defines the periodic workload model

The tasks are completely independent of each other

o No contention for logical resources; no precedence constraints

All tasks have a deadline equal to their period (D = T)

o Each task must complete before it is next released

All tasks have a single fixed WCET, which can be trusted as
a safe and tight upper-bound

o Operation modes are not considered

All system overheads (context-switch times, interrupt
handling and so on) are assumed absorbed in the WCETSs
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| Fixed-priority scheduling (FPS)

At present, the most widely used approach in industry

Each task has a fixed (static) priority determined off-line

In real-time systems, the “priotity” of a task is solely derived

from its temporal requirements o

-

o A recent strand of research addresses mixed-criticality systems, with
scheduling solutions that contemplate criticality attributes

0 The task’s relative importance to the correct functioning of
the system or its integrity is not a driving factor at this level

The ready tasks (jobs) are dispatched to execution in

the order determined by their (static) priority

Hence, in FPS, scheduling at run time is fully defined by the
priority assighment algorithm
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| Preemption and non-preemption /1

m With priority-based scheduling, a high-priority task may be
released during the execution of a lower priority one

m In a preemptive scheme, there will be an immediate switch to
the higher-priority task

n With non-preemption, the lower-priority task will be allowed
to complete before the other may execute

m Preemptive schemes (such as FPS and EDF) enable higher-
ptiority tasks to be more reactive, hence they are preferred
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Rate-monotonic priority assignment

m Each task is assigned a priority based on its period
0 The shorter the period, the higher the priority
a Such priorities have to be unique: hence ties must be resolved
m Forany two tasks 7;, 7; : T; < Tj = P; > P;
a Rate monotonic assignment is optimal under preemptive
priority-based scheduling (and implicit deadlines)
= Nomenclature

0 Priority 1 as numerical value is the lowest (least) priority, but
the indices are still sorted highest to lowest (!)
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| Preemption and non-preemption /2

m Alternative strategies allow a lower priority task to continue
executing for a bounded time before being preempted

m Such schemes use either deferred preemption ot cooperative
dispatching

m Value-based scheduling (VBS) is another approach to
attenuating preemption

a Useful when the system becomes overloaded and some adaptive
scheme of scheduling is needed to mitigate the risk or the
consequences of overrun

o VBS assigns a value to each task and then employs an on-line value-
based scheduling algorithm to decide which task to run next

a Analogous to usefulness, but determined off-line
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Utilization-based test

m A simple test exists for rate-monotonic scheduling

w It provides a sufficient but not necessary upper-bound
on the schedulable utilization of FPS

0 Only for task sets with D =T

Uziznl%Sn(Z%—l)

lim n(Z% — 1) =In2 = 0.69

n—>00
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| Critique of utilization-based tests | Timeline for task set A
Task
m These tests are sufficient but not necessary t
0 As such, they fall in the class of schednlability tests a ‘ | U T sk Reease Time
Task Completion Time
m These tests are not exact and also not general © Deadline Met
b -
: : : Task Completion Time
m But they are U(n), which makes them interesting L I
for some users : j
C I:l Preempted
Time E ti
0 10 20 30 0 50 6|t
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| Example: task set A ‘ Example: task set B
Task | Period Computation Time Priority Utilization Task | Period Computation Time Priority Utilization
T C P U T C P U
a 50 12 1 (low) 0.24 a 80 32 1 (low) 0.40
b 40 10 2 0.25 b 40 5 2 0.125
c 30 10 3 (high) 033 c 16 4 3 (high) 0.25
m The combined utilization is 0.82 (or 82%) m The combined utilization is 0.775
m Above the threshold for three tasks (0.78) m Below the threshold for three tasks (0.78)
0 This task set fails the utilization test 0 This task set passes the utilization test
m Hence we have no a-priori answer on its feasibility m Hence this task set will meet all its deadlines
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| Example: task set C ‘ Response time analysis /1
Task | Period Computation Time Priority Utilization m The worst-case response time Ri of task T is first
T ¢ ul v calculated and then checked (trivially) with its
a 80 40 1 (low) 0.50 deadline
b 40 10 2 0.25 . e iff R < D
. ” 5 3 tigh) 0 m T; is feasible iff R; < D;

m R; = C; + I, where [; is the interference that T;

= The combined utilization is 1.0 suffers from higher-priority tasks

m Above the threshold for three tasks (0.78)
0 Again, this task set does not pass the utilization test

m Yet the timeline shows the task set will meet all its deadlines
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| Timeline for task set C | Calculating R
Task
m Within R;, each higher priority task 7; will execute at
Ri| ..
a most |—|tumes
Tj
1 0 The ceiling function [f7] gives the smallest integer greater than
b the fractional numbet f on which it acts
m B, the ceiling of 1/3is 1, of 6/5is 2, and of 6/3 is 2
0 Using the ceiling reflects the fact that 7; will be preempted for
c j) j EL a full execution of a higher-priority released exactly at 7;’s end
» The total interference suffered by 7; from 7; in R;
i i I i Time —— . . &
0 10 2 30 4 50 6 70 80 where P; < Pj, is given by T, Cj
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| Response time equation ‘ Example: task set D
R Task Period Computation Time Priority Utilization
. . T C P U
R=C+ X C, :
semon| T a 7 3 3 (high) 0.4285...
/ b 12 3 2 0.25
m Where hp (i) is the set of tasks with priority higher than T; . 20 5 1 (ow) 025
= Solved by forming a recurrence relationship o 3
w, =
" b

wh=C+ ¥ | e
! ! J’-:%[FJ T; 4 wﬁ—3+(3—‘3:6

. 0 12 . . .
m The set of values W, W, W, ..., W',.. is monotonically non-decreasing
+1 .
When W' = W' the solution to the equation has been found L2
0 St be opeater than € (e.o 0 op C Wy
B W, mustnot be greater than i leg Oorl))

Il

[FS]

+
- 1
-4|c\
SE—

WS )

I

o
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. . 5
| Response time algorithm | Example (cont’d)
o } w! =3
for i in 1..N loop -- for each task in turn 5 5
n:=0 u‘;:5+’7——‘3+’7——‘3—]1
w'=C 7 12
i If the recurrence does not converge _ _
loop . before T, we can still set a termination wi=54 11 34 11 3 = 14
?alCU|ate new w; condition that attempts to determine 7 12
if w=w then how long past T; job i completes " 14 14
R =w’ wl=5+ —]1 + —% =17
exit value found | 7 12
end if r 17 B 17
if w*>7 then w! =5+ —“3 + —]3 =20
exit value not found |- 7 12
end if B 20 [ 20
n -=n + 1 w:=5+ —]34— —“3220
end loop 7 1
end loop
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Revisiting task set C

Task | Period Computation Time Priority Response Time
T C P R
a 80 40 1 (low) 80
b 40 10 2 15
c 20 5 3 (high) 5

m The combined utilization is 1.0, above the utilization threshold
for three tasks (0.78)

o Hence the utilization test fails
m But RTA shows that the task set will meet all its deadlines
o Cf. the impasse we had at pages 178-179
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| Sporadic tasks

m Sporadic tasks have a minimum inter-arrival time

0 Which should be preserved at run time if schedulability is
to be ensured, but how can it ?

m They also requite D < T

m The RTA for FPS works perfectly for D<T as long as
the stopping criterion becomes

W;JHI > D_,.

m Interestingly this also works perfectly well with azy
priority ordering as long as the indices reflect it
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| Response time analysis /2

m RTA is a feasibility test
o Exact, hence necessary and sufficient

m If the task set passes the test then all its tasks will
meet all their deadlines

m If it fails the test then, at run time, some tasks will
miss their deadline and FPS tells us exactly which

o Unless the computation time estimations (the WCET)
themselves turn out to be pessimistic
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Hard and soft tasks

m In many situations the WCET given for sporadic
tasks are considerably higher than the average case

m Interrupts often arrive in bursts and an abnormal
sensor reading may lead to significant additional
computation

m Measuring feasibility with WCET may lead to very
low processor utilization being observed at run time

o We need some common sense to contain pessimism
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| General common-sense guidelines

m Rule 1: All tasks (hard and soft) should be schedulable using
average execution times and average arrival rates for both
periodic and sporadic tasks

0 There may therefore be situations in which it is not possible
to meet all current deadlines

0 This condition is known as a #ransient overload

m Rule 2 : All hard real-time tasks should be schedulable using
WCET and worst-case arrival rates of all tasks (including soft)

o No hard real-time task will therefore miss its deadline

o If Rule 2 incurs unacceptably low utilizations for non-worst-
case jobs then WCET values or arrival rates must be reduced
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| Handing aperiodic tasks /2

m Besides preserving hard tasks and giving fair opportunities
to soft tasks, we still would like a solution that minimizes
0 The response time of the job a7 #he head of the aperiodic queue
a Or the average response time of a// aperiodic jobs for a given

queuing discipline

m Possible solutions
o Execute the aperiodic jobs in the background
o Execute the aperiodic jobs by interrupting the periodic jobs &

a Use slack stealing

a Use dedicated servers | ** )
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Handing aperiodic tasks /1

m They do #ot have minimum inter-arrival times
o And consequently no deadline
o We may be interested in the system being responsive to them

m We can run aperiodic tasks at a priority below the priorities
assigned to hard tasks
0 Ina preemptive system, they won’t steal resources from hard tasks

m But this does not provide adequate support to soft tasks which
would often miss their deadlines

m To improve the situation for soft tasks, a server can be employed
to bound the execution of aperiodic tasks

m With servers, hard tasks will always have the processing
resources they need, and soft tasks will run as soon as possible
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| Handing aperiodic tasks /3

m Slack stealing

o Difficult to implement for preemptive systems

m  For them, the slack a(t) is a not a constant, but it is a function of the
time t at which it is computed

0 The slack stealer is ready when the aperiodic queue is not
empty; it is suspended otherwise

0 When ready and o (t) > 0, the slack stealer is assigned the
highest priority; the lowest when a(t) = 0

0 Static computation of ¢ (t) for some t is useful but only when
the release jitter in the system is very low

[ = Under EDF, o(t = 0) = min;{0;(0)} where 0;(0) = D; — ]

Yk=1,.i €xfor all jobs released in the hypetperiod starting at t = 0
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| Computing the slack under EDF

T,=(4,2), T,=(6,2.75) - EDF scheduling:

v, g 5 - 5 i
L ] L ], L L L

0 1 2 3 4 5 6 T 8 9 10 1" 12

o2 J T.‘.a Jya f} L

! I [ | L I

T 1 2 3 4 6 7 8 9 1 1 T

011(0)=D;—C,=4-2=2

031(0) =Dy —C, —C, =6—-2—2.75=1.25

012(0) =Dy, —2XC; —C, =8—-2x2—275=1.25
022(0) =Dy, —2XC; —2XCy=12-2x2—-2x275=2.5

01,3(0)=D13—3><C1—2><C2:12—3><2—2><@:
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| Computing the slack under FPS /2

m The slack of periodic jobs of 7; should be
computed based on their effective deadline D
a For a job of 7; it should be computed at the beginning of
the level-i — 1 busy period that precedes D; so that
Df < D;
m Hence the initial slack 0 ;(0) of every periodic job
Jij in the hyperperiod is determined as

, DE.
max <0, Dfj — Xi=1 [# Ck>
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| Computing the slack under FPS /1

m The amount of slack an FPS system has in a time
interval may depend on when the slack is used

m To minimise the response time of an aperiodic job
Ja the decision on when to schedule it must
obviously consider the execution time of [,

0 No slack stealing algorithm under FPS can minimise the

response time of every aperiodic job even with prior
knowledge of their arrival and execution times

0 Better not be greedy in using the available slack
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| Slack stealing defeats optimality

m Greed is no good: to minimize the response time of
an aperiodic job, it may be necessary to schedule it
later, even if slack is currently available
o For any periodic task set, under any FPS, and any

aperiodic queuing policy, no valid algorithm exists that
minimizes the response time of all aperiodic jobs

o Similarly, no valid algorithm exists that minimizes the
average response time of the aperiodic jobs

s and Optimality of Scheduling
yatems,” Journal of Real-Time
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| Handing aperiodic tasks /4

m Periodic server (PS) — general model

o A notional (Tps, Cps) periodic task scheduled at the
highest priority to only execute aperiodic jobs
m The PS has a budget of Cyg time units and a replenishment
period of length T

m When the PS is scheduled and executes aperiodic jobs, it
consumes its budget at the rate of 1 unit per unit of time

m Budget is exhausted when Cp,g = 0 and replenished periodically
0 The PS is backlogged when the aperiodic job queue is

nonempty and it is idle otherwise

m FEligible for execution only when ready, backlogged and Cps > 0
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| Handing aperiodic tasks /6

m Deferrable Server (DS), a bandwidth-preserving PS

a DS retains its budget if no aperiodic tasks requite execution
= If an aperiodic job requites execution during the DS period, it can be
served immediately: when idle, the DS stays ready (not idle)
0 The budget is replenished at the start of the new period (1)

= If an aperiodic job atrives € time units before the end of Ty, the
request begins to be setved and blocks periodic tasks

m When the budget is replenished, new apetiodic jobs may then be
served for the full budget

o If that happens, in w(t), DS contributes a solid interference

of Cgqs + [t_zzsl Cgs, longer than 1 X Cyg per busy period

T,
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| Handing aperiodic tasks /5

m Polling server, a simple (naive) kind of PS

o Itis given a fixed budget that it uses to serve aperiodic
task requests that is replenished at every period

0 The budget is immediately consumed if the server is
scheduled while idle
m  Ready periodic tasks — if any — execute instead

o Itis not bandwidth preserving
®  An aperiodic job that arrives just after the server has been

scheduled while idle, must wait until the next replenishment time

o Bandwidth-preserving servers need additional rules for

consumption and replenishment of their budget
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| Handing aperiodic tasks /7

m Priority Exchange (PE), similar in principle to DS
o If PE is idle when scheduled, it exchanges its own
priority with that of the pending periodic task with
priority lower than itself and higher of all other pending
periodic tasks

a The selected periodic task inherits PE’s higher priority
until an aperiodic task arrives or PE’s ready period ends
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| Handing aperiodic tasks /8

m Sporadic Server (SS), fixes the bug in DS

0 The budget is replenished only when exhausted and at a
minimum guaranteed distance from its earlier execution

m  Hence no longer at a fixed rate
o This places a tighter bound on its interference and makes
schedulability analysis simpler and less pessimistic

m This is the default server policy in POSIX
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‘ SS rules unveiled

m Let ty be the time at which SS has full budget a#d becomes
backlogged, and t = t, the time at which SS becomes idle

In the [ta, tf] interval, when SS is continuously active, three

cases are possible

1. SS has consumed no capacity: tr, .. = tr + Tss = No replenishment, and
no interference in that interval

2. SS has consumed all capacity: tr, .. = tq + Tss -> Full replenishment, and
bounded interference in that interval

3. SS has consumed fractional capacity: t,, =ty + Tgg = Fractional

replenishment, and interference lower than allowed in that interval
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| SS rules under FPS

m  Consumption rules
o Attimet > t, (the latest replenishment time), a backlogged SS consumes
budget only if executing, hence when no higher-priority task is ready
0 The replenishment is limited to the quantity of actual consumption
m  Replenishment rules
0 t, records the time that SS” budget was last replenished
0 t, records the time when SS first begins to execute since t,
m  t, > t, is the latest time at which a lower-priority task than SS executes
0 The next replenishment time is set to £ + Tgg
m Exception

o If only higher-priority tasks had been busy since t;., then t, + Tgg > ¢ +
Tss and SS is late: hence, budget fully replenished as soon as exhausted
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| Handing aperiodic tasks /9

m SS is more complex than PS or DS
a Its rules require keeping tab of lots of data
a Several cases to consider when making scheduling decisions
0 This complexity is acceptable because the schedulability of a SS is
easy to demonstrate
m  Under FPS, SS equates to a periodic task T with (ps, e5)
m EDF and LLF use a dynamic variant of SS as well as other
bandwidth-preserving server algorithms known as
a Constant ntilization server
a Total bandwidth server
Q Weighted fair quening server
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| Task sets with D <'T DMPO is optimal /2

m For D = T. Rate Monotonic priotity assignment m Let 7y, Tj be two tasks with adjacent priorities in @ such that
b
under W we have P; > P; A D; > D;

(a.k.a. ordering) is optimal , o
m Define scheme W' to be identical to W except that tasks T;, T;

m For D < T, Deadline Monotonic priority ordering are swapped
is optimal m Now consider the schedulability of Q under W'
m All tasks {7y} with priority P, > P; will be unaffected
Dr_ < D;‘ = R > P; m All tasks {z¢} with priority P; < P; will be unaffected as they will

experience the same interference from 7; and 7;

m Task 7; which was schedulable under W, now has a higher

priority, suffers less interference, and hence must be schedulable
under W'
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DMPO is optimal /1 DMPO is optimal /3

m Deadline monotonic priority ordering (DMPO) is optimal m All that is left to show is that task 7;, which has had its priority
loweted, is still schedulable
any task set Q that is schedulable by priority-driven scheme W = Under W we have R; < Dj,D; < Djand R; < T

it is also schedulable by DMPO

m Task T yi only interferes once during the execution of task
T hence Ri, = R] < Dj < D,:

m The prOOf of Optlmahty of DMPO involves trans{ormlng 0 Under W' task 7; completes at the time task 7; did under W

the priorities of @ as assigned by W until the ordering
becomes as assigned by DMPO

m Each step of the transformation will preserve schedulability

0 Hence task 7; is still schedulable after the switch

m Priority scheme W' can now be transformed to W'’ by choosing
two more tasks that are in the wrong order for DMPO and
switching them

2017/18 UniPD — T. Vardanega Real-Time Systems 207 of 515 2017/18 UniPD — T. Vardanega Real-Time Systems 209 of 515

DAAl Tivrva~s OuvvAatAarmAas A A



2017/18 UniPD - T. Vardanega 10/03/2018

| Summary

m A simple (periodic) workload model

m Delving into fixed-priority scheduling

m A (rapid) survey of schedulability tests

m Some extensions to the workload model

m Priority assignment techniques
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