
2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 1

3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings

The simplest workload model

 The application is assumed to consist of ݊ tasks, for ݊ fixed
 All tasks are periodic with known periods

 This defines the periodic workload model
 The tasks are completely independent of each other

 No contention for logical resources; no precedence constraints
 All tasks have a deadline equal to their period ܦ ൌ ܶ

 Each task must complete before it is next released
 All tasks have a single fixed WCET, which can be trusted as 

a safe and tight upper-bound
 Operation modes are not considered

 All system overheads (context-switch times, interrupt 
handling and so on) are assumed absorbed in the WCETs

2017/18 UniPD – T. Vardanega Real-Time Systems 167 of  515

Standard notation

Worst-case blocking time for the task (if :ܤ  applicable)
Worst-case computation time (WCET) of :ܥ  the task (ൌ ݁)
Relative deadline of :ܦ  the task 
The interference time of :ܫ  the task
Release jitter of :ܬ  the task 
ܰ: Number of  tasks in the system 
ܲ: Priority assigned to the task (if  applicable)
ܴ: Worst-case response time of  the task
ܶ: Minimum time between task releases, or task period (ൌ (݌
ܷ: The utilization of  each task (ൌ ஼

்⁄ )
a-Z: The name of  a task

2017/18 UniPD – T. Vardanega Real-Time Systems 168 of  515

Fixed-priority scheduling (FPS)

 At present, the most widely used approach in industry
 Each task has a fixed (static) priority determined off-line
 In real-time systems, the “priority” of a task is solely derived 

from its temporal requirements 
 The task’s relative importance to the correct functioning of 

the system or its integrity is not a driving factor at this level
 A recent strand of research addresses mixed-criticality systems, with 

scheduling solutions that contemplate criticality attributes
 The ready tasks (jobs) are dispatched to execution in 

the order determined by their (static) priority
 Hence, in FPS, scheduling at run time is fully defined by the 

priority assignment algorithm

2017/18 UniPD – T. Vardanega Real-Time Systems 169 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 2

Preemption and non-preemption /1

 With priority-based scheduling, a high-priority task may be 
released during the execution of a lower priority one

 In a preemptive scheme, there will be an immediate switch to 
the higher-priority task

 With non-preemption, the lower-priority task will be allowed 
to complete before the other may execute

 Preemptive schemes (such as FPS and EDF) enable higher-
priority tasks to be more reactive, hence they are preferred

2017/18 UniPD – T. Vardanega Real-Time Systems 170 of  515

Preemption and non-preemption /2

 Alternative strategies allow a lower priority task to continue 
executing for a bounded time before being preempted

 Such schemes use either deferred preemption or cooperative 
dispatching

 Value-based scheduling (VBS) is another approach to 
attenuating preemption
 Useful when the system becomes overloaded and some adaptive 

scheme of scheduling is needed to mitigate the risk or the 
consequences of overrun

 VBS assigns a value to each task and then employs an on-line value-
based scheduling algorithm to decide which task to run next

 Analogous to usefulness, but determined off-line

2017/18 UniPD – T. Vardanega Real-Time Systems 171 of  515

Rate-monotonic priority assignment

 Each task is assigned a priority based on its period
 The shorter the period, the higher the priority
 Such priorities have to be unique: hence ties must be resolved

 For any two tasks ߬௜, ௝߬ : ௜ܶ ൏ ௝ܶ → ௜ܲ ൐ ௝ܲ
 Rate monotonic assignment is optimal under preemptive 

priority-based scheduling (and implicit deadlines)

 Nomenclature
 Priority 1 as numerical value is the lowest (least) priority, but 

the indices are still sorted highest to lowest (!)

2017/18 UniPD – T. Vardanega Real-Time Systems 172 of  515

Utilization-based test

 A simple test exists for rate-monotonic scheduling
 It provides a sufficient but not necessary upper-bound 

on the schedulable utilization of FPS
 Only for task sets with ܦ ൌ ܶ

ܷ ൌ෍
௜ܥ
௜ܶ
൑ ݊ 2

ଵ
௡ െ 1

௡

௜ୀଵ

lim
௡→ஶ

݊ 2
ଵ
௡ െ 1 ൌ ln 2 ൌ 0.69

2017/18 UniPD – T. Vardanega Real-Time Systems 173 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 3

Critique of utilization-based tests

 These tests are sufficient but not necessary
 As such, they fall in the class of schedulability tests

 These tests are not exact and also not general
 But they are Ω ݊ , which makes them interesting 

for some users

2017/18 UniPD – T. Vardanega Real-Time Systems 174 of  515

Example: task set A

 The combined utilization is 0.82 (or 82%)
 Above the threshold for three tasks (0.78)

 This task set fails the utilization test

 Hence we have no a-priori answer on its feasibility

Task Period Computation Time Priority Utilization

T C P U

a 50 12 1 (low) 0.24

b 40 10 2 0.25

c 30 10 3 (high) 0.33

2017/18 UniPD – T. Vardanega Real-Time Systems 175 of  515

Timeline for task set A

0 10 20 30 40 50 60

Task

a

b

c

Task Release Time

Task Completion Time
Deadline Met
Task Completion Time
Deadline Missed

Executing

Preempted

Time

2017/18 UniPD – T. Vardanega Real-Time Systems 176 of  515

Example: task set B

 The combined utilization is 0.775 
 Below the threshold for three tasks (0.78)

 This task set passes the utilization test

 Hence this task set will meet all its deadlines

Task Period Computation Time Priority Utilization

T C P U

a 80 32 1 (low) 0.40

b 40 5 2 0.125

c 16 4 3 (high) 0.25

2017/18 UniPD – T. Vardanega Real-Time Systems 177 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 4

Example: task set C

 The combined utilization is 1.0
 Above the threshold for three tasks (0.78)

 Again, this task set does not pass the utilization test

 Yet the timeline shows the task set will meet all its deadlines

Task Period Computation Time Priority Utilization

T C P U

a 80 40 1 (low) 0.50

b 40 10 2 0.25

c 20 5 3 (high) 0.25

2017/18 UniPD – T. Vardanega Real-Time Systems 178 of  515

Timeline for task set C

2017/18 UniPD – T. Vardanega Real-Time Systems 179 of  515

0 10 20 30 40 50 60

Task

a

b

c

70 80
Time

Response time analysis /1

 The worst-case response time ܴ௜ of task ߬௜ is first 
calculated and then checked (trivially) with its 
deadline

 ߬௜ is feasible iff ܴ௜ ൑ ௜ܦ
 ܴ௜ ൌ ௜ܥ ൅ ௜ܫ , where ܫ௜ is the interference that ߬௜

suffers from higher-priority tasks

2017/18 UniPD – T. Vardanega Real-Time Systems 180 of  515

Calculating R

 Within ܴ௜, each higher priority task ௝߬ will execute at 
most ோ೔

்ೕ
times

 The ceiling function ݂ gives the smallest integer greater than 
the fractional number ݂ on which it acts
 E.g., the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2

 Using the ceiling reflects the fact that ߬௜ will be preempted for 
a full execution of a higher-priority released exactly at ߬௜’s end

 The total interference suffered by ߬௜ from ௝߬ in ܴ௜
where ௜ܲ ൏ ௝ܲ, is given by ோ೔

்ೕ
௝ܥ

2017/18 UniPD – T. Vardanega Real-Time Systems 181 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 5

Response time equation

 Where ݄݌ሺ݅ሻ is the set of tasks with priority higher than ߬௜
 Solved by forming a recurrence relationship

 The set of values                                   is monotonically non-decreasing
 When                  the solution to the equation has been found
 must not be greater than      (e.g. 0 or     )

2017/18 UniPD – T. Vardanega Real-Time Systems 182 of  515

Response time algorithm
for i in 1..N loop -- for each task in turn
n := 0

loop
calculate new
if         then

exit value found
end if
if then
exit value not found

end if
n := n + 1

end loop
end loop

If	the	recurrence	does	not	converge
before	Ti we	can	still	set	a	termination	
condition	that	attempts	to	determine
how	long	past	Ti job	i completes

2017/18 UniPD – T. Vardanega Real-Time Systems 183 of  515

Example: task set D
Task Period Computation Time Priority Utilization

T C P U

a 7 3 3 (high) 0.4285…
b 12 3 2 0.25
c 20 5 1 (low) 0.25

2017/18 UniPD – T. Vardanega Real-Time Systems 184 of  515

Example (cont’d)

2017/18 UniPD – T. Vardanega Real-Time Systems 185 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 6

Revisiting task set C

 The combined utilization is 1.0, above the utilization threshold 
for three tasks (0.78) 
 Hence the utilization test fails

 But RTA shows that the task set will meet all its deadlines 
 Cf. the impasse we had at pages 178-179

Task Period Computation Time Priority Response Time

T C P R

a 80 40 1 (low) 80

b 40 10 2 15

c 20 5 3 (high) 5

2017/18 UniPD – T. Vardanega Real-Time Systems 186 of  515

Response time analysis /2

 RTA is a feasibility test
 Exact, hence necessary and sufficient

 If the task set passes the test then all its tasks will 
meet all their deadlines

 If it fails the test then, at run time, some tasks will 
miss their deadline and FPS tells us exactly which 
 Unless the computation time estimations (the WCET) 

themselves turn out to be pessimistic

2017/18 UniPD – T. Vardanega Real-Time Systems 187 of  515

Sporadic tasks

 Sporadic tasks have a minimum inter-arrival time
 Which should be preserved at run time if schedulability is 

to be ensured, but how can it ?
 They also require D ൑ ܶ
 The RTA for FPS works perfectly for D<T as long as 

the stopping criterion becomes

 Interestingly this also works perfectly well with any
priority ordering as long as the indices reflect it

2017/18 UniPD – T. Vardanega Real-Time Systems 188 of  515

Hard and soft tasks

 In many situations the WCET given for sporadic 
tasks are considerably higher than the average case

 Interrupts often arrive in bursts and an abnormal 
sensor reading may lead to significant additional 
computation

 Measuring feasibility with WCET may lead to very 
low processor utilization being observed at run time
 We need some common sense to contain pessimism

2017/18 UniPD – T. Vardanega Real-Time Systems 189 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 7

General common-sense guidelines

 Rule 1 : All tasks (hard and soft) should be schedulable using 
average execution times and average arrival rates for both 
periodic and sporadic tasks
 There may therefore be situations in which it is not possible 

to meet all current deadlines
 This condition is known as a transient overload

 Rule 2 : All hard real-time tasks should be schedulable using 
WCET and worst-case arrival rates of all tasks (including soft)
 No hard real-time task will therefore miss its deadline
 If Rule 2 incurs unacceptably low utilizations for non-worst-

case jobs then WCET values or arrival rates must be reduced

2017/18 UniPD – T. Vardanega Real-Time Systems 190 of  515

Handing aperiodic tasks /1

 They do not have minimum inter-arrival times
 And consequently no deadline
 We may be interested in the system being responsive to them

 We can run aperiodic tasks at a priority below the priorities 
assigned to hard tasks
 In a preemptive system, they won’t steal resources from hard tasks

 But this does not provide adequate support to soft tasks which 
would often miss their deadlines

 To improve the situation for soft tasks, a server can be employed 
to bound  the execution of aperiodic tasks

 With servers, hard tasks will always have the processing 
resources they need, and soft tasks will run as soon as possible

2017/18 UniPD – T. Vardanega Real-Time Systems 191 of  515

Handing aperiodic tasks /2

 Besides preserving hard tasks and giving fair opportunities 
to soft tasks, we still would like a solution that minimizes
 The response time of the job at the head of the aperiodic queue
 Or the average response time of all aperiodic jobs for a given 

queuing discipline

 Possible solutions
 Execute the aperiodic jobs in the background
 Execute the aperiodic jobs by interrupting the periodic jobs
 Use slack stealing
 Use dedicated servers

2017/18 UniPD – T. Vardanega Real-Time Systems 192 of  515

Handing aperiodic tasks /3

 Slack stealing
 Difficult to implement for preemptive systems 

 For them, the slack ߪሺݐሻ is a not a constant, but it is a function of the 
time ݐ at which it is computed

 The slack stealer is ready when the aperiodic queue is not 
empty; it is suspended otherwise

 When ready and ߪ ݐ ൐ 0, the slack stealer is assigned the 
highest priority; the lowest when ߪ ݐ ൌ 0

 Static computation of ߪሺݐሻ for some ݐ is useful but only when 
the release jitter in the system is very low
 Under EDF, ߪሺݐ ൌ 0ሻ ൌ ݉݅݊௜ ௜ሺ0ሻߪ where ߪ௜ 0 ൌ ௜ܦ െ

∑ ݁௞௞ୀଵ,..,௜ for all jobs released in the hyperperiod starting at ݐ ൌ 0

2017/18 UniPD – T. Vardanega Real-Time Systems 193 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 8

Computing the slack under EDF

ܪ ൌ 12

ଵ,ଵߪ 0 ൌ ଵܦ െ ଵܥ ൌ 4 െ 2 ൌ ૛
ଶ,ଵߪ 0 ൌ ଶܦ െ ଵܥ െ ଶܥ ൌ 6 െ 2 െ 2.75 ൌ ૚. ૛૞
ଵ,ଶߪ 0 ൌ ଵమܦ െ 2 ൈ ଵܥ െ ଶܥ ൌ 8 െ 2 ൈ 2 െ 2.75 ൌ ૚. ૛૞
ଶ,ଶߪ 0 ൌ ଶమܦ െ 2 ൈ ଵܥ െ 2 ൈ ଶܥ ൌ 12 െ 2 ൈ 2 െ 2 ൈ 2.75 ൌ ૛. ૞
ଵ,ଷߪ 0 ൌ ଵయܦ െ 3 ൈ ଵܥ െ 2 ൈ ଶܥ ൌ 12 െ 3 ൈ 2 െ 2 ൈ 2.75 ൌ ૙. ૞

2017/18 UniPD – T. Vardanega Real-Time Systems 194 of  515

࢐,࢏࢔࢏࢓ ࢐,࢏࣌ ૙

Computing the slack under FPS /1

 The amount of slack an FPS system has in a time 
interval may depend on when the slack is used

 To minimise the response time of an aperiodic job 
௔ܬ the decision on when to schedule it must 
obviously consider the execution time of ܬ௔
 No slack stealing algorithm under FPS can minimise the 

response time of every aperiodic job even with prior 
knowledge of their arrival and execution times 

 Better not be greedy in using the available slack

2017/18 UniPD – T. Vardanega Real-Time Systems 195 of  515

Computing the slack under FPS /2

 The slack of periodic jobs of ߬௜ should be 
computed based on their effective deadline ௜௘ܦ

 For a job of ߬௜ it should be computed at the beginning of 
the level-݅ െ 1 busy period that precedes ܦ௜ so that 
௜௘ܦ ൑ ௜ܦ

 Hence the initial slack ߪ௜,௝ሺ0ሻ of every periodic job 
௜,௝ܬ in the hyperperiod is determined as 

ݔܽ݉ 0, ௜,௝௘ܦ െ ∑
஽೔,ೕ
೐

்ೖ
௞௜ܥ

௞ୀଵ

2017/18 UniPD – T. Vardanega Real-Time Systems 196 of  515

Slack stealing defeats optimality

 Greed is no good: to minimize the response time of 
an aperiodic job, it may be necessary to schedule it 
later, even if slack is currently available
 For any periodic task set, under any FPS, and any 

aperiodic queuing policy, no valid algorithm exists that 
minimizes the response time of all aperiodic jobs

 Similarly, no valid algorithm exists that minimizes the 
average response time of the aperiodic jobs

2017/18 UniPD – T. Vardanega Real-Time Systems 197 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 9

Handing aperiodic tasks /4

 Periodic server (PS) – general model
 A notional ( ௣ܶ௦,  ௣௦) periodic task scheduled at theܥ

highest priority to only execute aperiodic jobs
 The PS has a budget of ܥ௣௦ time units and a replenishment 

period of length ௣ܶ௦
 When the PS is scheduled and executes aperiodic jobs, it 

consumes its budget at the rate of 1 unit per unit of time
 Budget is exhausted when ܥ௣௦ ൌ 0 and replenished periodically

 The PS is backlogged when the aperiodic job queue is 
nonempty and it is idle otherwise
 Eligible for execution only when ready, backlogged and ܥ௣௦ ൐ 0

2017/18 UniPD – T. Vardanega Real-Time Systems 198 of  515

Handing aperiodic tasks /5

 Polling server, a simple (naïve) kind of PS
 It is given a fixed budget that it uses to serve aperiodic 

task requests that is replenished at every period
 The budget is immediately consumed if the server is 

scheduled while idle
 Ready periodic tasks – if any – execute instead

 It is not bandwidth preserving
 An aperiodic job that arrives just after the server has been 

scheduled while idle, must wait until the next replenishment time
 Bandwidth-preserving servers need additional rules for 

consumption and replenishment of their budget

2017/18 UniPD – T. Vardanega Real-Time Systems 199 of  515

Handing aperiodic tasks /6

 Deferrable Server (DS), a bandwidth-preserving PS
 DS retains its budget if no aperiodic tasks require execution

 If an aperiodic job requires execution during the DS period, it can be 
served immediately: when idle, the DS stays ready (not idle)

 The budget is replenished at the start of the new period (!)
 If an aperiodic job arrives ߝ time units before the end of ௗܶ௦, the 

request begins to be served and blocks periodic tasks
 When the budget is replenished, new aperiodic jobs may then be 

served for the full budget

 If that happens, in ߱ ݐ , DS contributes a solid interference 
of ܥௗ௦ ൅

೟ష಴೏ೞ
೅೏ೞ

ௗ௦, longerܥ than 1 ൈ ௗ௦ܥ per busy period

2017/18 UniPD – T. Vardanega Real-Time Systems 200 of  515

Handing aperiodic tasks /7

 Priority Exchange (PE), similar in principle to DS 
 If PE is idle when scheduled, it exchanges its own 

priority with that of the pending periodic task with 
priority lower than itself and higher of all other pending 
periodic tasks

 The selected periodic task inherits PE’s higher priority 
until an aperiodic task arrives or PE’s ready period ends

2017/18 UniPD – T. Vardanega Real-Time Systems 201 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 10

Handing aperiodic tasks /8

 Sporadic Server (SS), fixes the bug in DS
 The budget is replenished only when exhausted and at a 

minimum guaranteed distance from its earlier execution
 Hence no longer at a fixed rate

 This places a tighter bound on its interference and makes 
schedulability analysis simpler and less pessimistic

 This is the default server policy in POSIX

2017/18 UniPD – T. Vardanega Real-Time Systems 202 of  515

SS rules under FPS

 Consumption rules
 At time ݐ ൐ ௥ݐ (the latest replenishment time), a backlogged SS consumes 

budget only if executing, hence when no higher-priority task is ready
 The replenishment is limited to the quantity of actual consumption

 Replenishment rules
 ௥ݐ records the time that SS’ budget was last replenished
 ௘ݐ records the time when SS first begins to execute since ݐ௥

 ௘ݐ ൐ ௥ݐ is the latest time at which a lower-priority task than SS executes
 The next replenishment time is set to ݐ௘ ൅ ௦ܶ௦

 Exception
 If only higher-priority tasks had been busy since ݐ௥, then ݐ௘ ൅ ௦ܶ௦ ൐ ௥ݐ ൅

ௌܶௌ and SS is late: hence, budget fully replenished as soon as exhausted

2017/18 UniPD – T. Vardanega Real-Time Systems 203 of  515

SS rules unveiled

 Let ݐ௔ be the time at which SS has full budget and becomes 
backlogged, and ݐ௙ ൒ ௔ݐ the time at which SS becomes idle

 In the ݐ௔, ௙ݐ interval, when SS is continuously active, three 
cases are possible

1. SS has consumed no capacity: ݐ௥೙೐ೣ೟ ൌ ௙ݐ ൅ ௌܶௌ  No replenishment, and 
no interference in that interval

2. SS has consumed all capacity: ݐ௥೙೐ೣ೟ ൌ ௔ݐ ൅ ௌܶௌ  Full replenishment, and 
bounded interference in that interval

3. SS has consumed fractional capacity: ݐ௥೙೐ೣ೟ ൌ ௙ݐ ൅ ௌܶௌ  Fractional 
replenishment, and interference lower than allowed in that interval

2017/18 UniPD – T. Vardanega Real-Time Systems 204 of  515

Handing aperiodic tasks /9

 SS is more complex than PS or DS
 Its rules require keeping tab of lots of data
 Several cases to consider when making scheduling decisions
 This complexity is acceptable because the schedulability of a SS is 

easy to demonstrate
 Under FPS, SS equates to a periodic task ߬௦ with ሺ݌௦, ݁௦ሻ

 EDF and LLF use a dynamic variant of SS as well as other 
bandwidth-preserving server algorithms known as
 Constant utilization server
 Total bandwidth server
 Weighted fair queuing server

2017/18 UniPD – T. Vardanega Real-Time Systems 205 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 11

Task sets with D < T

 For ܦ ൌ ܶ, Rate Monotonic priority assignment 
(a.k.a. ordering) is optimal

 For ܦ ൏ ܶ, Deadline Monotonic priority ordering 
is optimal

2017/18 UniPD – T. Vardanega Real-Time Systems 206 of  515

DMPO is optimal /1

 Deadline monotonic priority ordering (DMPO) is optimal

any task set ܳ that is schedulable by priority-driven scheme ܹ
it is also schedulable by DMPO

 The proof of optimality of DMPO involves transforming 
the priorities of ܳ as assigned by ܹ until the ordering 
becomes as assigned by DMPO

 Each step of the transformation will preserve schedulability

2017/18 UniPD – T. Vardanega Real-Time Systems 207 of  515

DMPO is optimal /2

 Let ߬௜, ௝߬ be two tasks with adjacent priorities in ܳ such that 
under ܹ we have ௜ܲ ൐ ௝ܲ 	∧ ௜ܦ	 ൐ ௝ܦ

 Define scheme ܹᇱ to be identical to ܹ except that tasks ߬௜, ௝߬
are swapped

 Now consider the schedulability of ܳ	under ܹᇱ

 All tasks ߬௞ with priority ௞ܲ ൐ ௝ܲ will be unaffected
 All tasks ߬௦ 	with priority ௦ܲ ൏ ௜ܲ	will be unaffected as they will 

experience the same interference from ௝߬ and ߬௜
 Task ௝߬ which was schedulable under ܹ, now has a higher 

priority, suffers less interference, and hence must be schedulable 
under ܹᇱ

2017/18 UniPD – T. Vardanega Real-Time Systems 208 of  515

DMPO is optimal /3

 All that is left to show is that task ߬௜, which has had its priority 
lowered, is still schedulable

 Under ܹ we have ௝ܴ ൑ ,௝ܦ ௝ܦ ൏ ௜ܦ and ܴ௜ ൑ ௜ܶ

 Task ௝߬ only interferes once during the execution of task 
߬௜	hence ܴ௜ᇱ ൌ ௝ܴ ൑ ௝ܦ ൏ ௜ܦ
 Under ܹᇱ	task ߬௜	completes at the time task ௝߬ did under ܹ
 Hence task ߬௜ is still schedulable after the switch

 Priority scheme ܹᇱ can now be transformed to ܹᇱᇱ by choosing 
two more tasks that are in the wrong order for DMPO and 
switching them

2017/18 UniPD – T. Vardanega Real-Time Systems 209 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 12

Summary

 A simple (periodic) workload model
 Delving into fixed-priority scheduling
 A (rapid) survey of schedulability tests
 Some extensions to the workload model
 Priority assignment techniques

2017/18 UniPD – T. Vardanega Real-Time Systems 210 of  515

Selected readings

 N.C. Audsley,  A. Burns, R.I. Davis, K.W. Tindell, 
A.J. Wellings (1995)
Fixed priority pre-emptive scheduling: an historical 
perspective
DOI: 10.1007/BF01094342

 D. Faggioli, M. Bertogna, F. Checconi (2010)
Sporadic Server revisited
DOI: 10.1145/1774088.1774160

2017/18 UniPD – T. Vardanega Real-Time Systems 211 of  515


