3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings

The simplest workload model

- The application is assumed to consist of \(n \) tasks, for \(n \) fixed
- All tasks are periodic with known periods
 - This defines the periodic workload model
- The tasks are completely independent of each other
 - No contention for logical resources; no precedence constraints
- All tasks have a deadline equal to their period (\(D = T \))
 - Each task must complete before it is next released
- All tasks have a single fixed WCET, which can be trusted as a safe and tight upper-bound
 - Operation modes are not considered
- All system overheads (context-switch times, interrupt handling and so on) are assumed absorbed in the WCETs

Standard notation

- \(B \): Worst-case blocking time for the task (if applicable)
- \(C \): Worst-case computation time (WCET) of the task (\(= e \))
- \(D \): Relative deadline of the task
- \(I \): The interference time of the task
- \(J \): Release jitter of the task
- \(N \): Number of tasks in the system
- \(P \): Priority assigned to the task (if applicable)
- \(R \): Worst-case response time of the task
- \(T \): Minimum time between task releases, or task period (\(= p \))
- \(U \): The utilization of each task (\(= C/T \))
- \(a-Z \): The name of a task

Fixed-priority scheduling (FPS)

- At present, the most widely used approach in industry
- Each task has a fixed (static) priority determined off-line
- In real-time systems, the “priority” of a task is solely derived from its temporal requirements
 - The task’s relative importance to the correct functioning of the system or its integrity is not a driving factor at this level
 - A recent strand of research addresses mixed-criticality systems, with scheduling solutions that contemplate criticality attributes
- The ready tasks (jobs) are dispatched to execution in the order determined by their (static) priority
- Hence, in FPS, scheduling at run time is fully defined by the priority assignment algorithm
Preemption and non-preemption /1

- With priority-based scheduling, a high-priority task may be released during the execution of a lower priority one
- In a preemptive scheme, there will be an immediate switch to the higher-priority task
- With non-preemption, the lower-priority task will be allowed to complete before the other may execute
- Preemptive schemes (such as FPS and EDF) enable higher-priority tasks to be more reactive, hence they are preferred

Rate-monotonic priority assignment

- Each task is assigned a priority based on its period
 - The shorter the period, the higher the priority
 - Such priorities have to be unique; hence ties must be resolved
- For any two tasks $\tau_i, \tau_j: T_i < T_j \rightarrow P_i > P_j$
 - Rate monotonic assignment is optimal under preemptive priority-based scheduling (and implicit deadlines)

Nomenclature
- Priority 1 as numerical value is the lowest (least) priority, but the indices are still sorted highest to lowest (!)

Preemption and non-preemption /2

- Alternative strategies allow a lower priority task to continue executing for a bounded time before being preempted
- Such schemes use either deferred preemption or cooperative dispatching
- Value-based scheduling (VBS) is another approach to attenuating preemption
 - Useful when the system becomes overloaded and some adaptive scheme of scheduling is needed to mitigate the risk or the consequences of overrun
 - VBS assigns a value to each task and then employs an on-line value-based scheduling algorithm to decide which task to run next
 - Analogous to usefulness, but determined off-line

Utilization-based test

- A simple test exists for rate-monotonic scheduling
- It provides a sufficient but not necessary upper-bound on the schedulable utilization of FPS
 - Only for task sets with $D = T$
 \[U = \sum_{i=1}^{n} \frac{C_i}{T_i} \leq n \left(\frac{1}{2^n} - 1 \right) \]
 - \(\lim_{n \to \infty} n \left(\frac{1}{2^n} - 1 \right) = \ln 2 = 0.69 \)
Critique of utilization-based tests

- These tests are sufficient but not necessary
 - As such, they fall in the class of schedulability tests
- These tests are not exact and also not general
- But they are $\Omega(n)$, which makes them interesting for some users

Example: task set A

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Computation Time</th>
<th>Priority</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>50</td>
<td>12</td>
<td>1 (low)</td>
<td>0.24</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>c</td>
<td>30</td>
<td>10</td>
<td>3 (high)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

- The combined utilization is 0.82 (or 82%)
- Above the threshold for three tasks (0.78)
- This task set fails the utilization test
- Hence we have no a-priori answer on its feasibility

Example: task set B

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Computation Time</th>
<th>Priority</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>80</td>
<td>32</td>
<td>1 (low)</td>
<td>0.40</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>5</td>
<td>2</td>
<td>0.125</td>
</tr>
<tr>
<td>c</td>
<td>16</td>
<td>4</td>
<td>3 (high)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- The combined utilization is 0.775
- Below the threshold for three tasks (0.78)
- This task set passes the utilization test
- Hence this task set will meet all its deadlines
Example: task set C

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Computation Time</th>
<th>Priority</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>80</td>
<td>40</td>
<td>1 (low)</td>
<td>0.50</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>5</td>
<td>3 (high)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- The combined utilization is 1.0
- Above the threshold for three tasks (0.78)
 - Again, this task set does not pass the utilization test
 - Yet the timeline shows the task set will meet all its deadlines

Timeline for task set C

Response time analysis /1

- The worst-case response time R_i of task τ_i is first calculated and then checked (trivially) with its deadline
- τ_i is feasible iff $R_i \leq D_i$
- $R_i = C_i + I_i$, where I_i is the interference that τ_i suffers from higher-priority tasks

Calculating R

- Within R_i, each higher priority task τ_j will execute at most $\left\lceil \frac{R_i}{T_j} \right\rceil$ times
 - The ceiling function $[f]$ gives the smallest integer greater than the fractional number f on which it acts
 - E.g., the ceiling of $1/3$ is 1, of $6/5$ is 2, and of $6/3$ is 2
 - Using the ceiling reflects the fact that τ_i will be preempted for a full execution of a higher-priority released exactly at τ_i’s end
- The total interference suffered by τ_i from τ_j in R_i where $P_i < P_j$, is given by $\left\lceil \frac{R_i}{T_j} \right\rceil C_j$
Response time equation

\[R_i = C_i + \sum_{j \in hp(i)} \left(\frac{R_j}{T_j} \right) C_j \]

- Where \(hp(i) \) is the set of tasks with priority higher than \(r_i \)
- Solved by forming a recurrence relationship
 \[w_i^{n+1} = C_i + \sum_{j \in hp(i)} \frac{w_j^n}{T_j} C_j \]
- The set of values \(w_i^n, w_i^1, w_i^0, \ldots \) is monotonically non-decreasing
- When \(w_i^n = w_i^{n+1} \), the solution to the equation has been found
- \(w_i^0 \) must not be greater than \(C_i \) (e.g. 0 or \(C_i \))

Response time algorithm

```
for i in 1..N loop -- for each task in turn
    n := 0
    w_i^0 := C_i
end loop

calculate new \( w_i^{n+1} \)
if \( w_i^{n+1} = w_i^n \) then
    R_i = w_i^n
    exit value found
end if
if \( w_i^{n+1} > \frac{C_i}{T_i} \) then
    exit value not found
end if
n := n + 1
end loop
```

Example: task set D

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Computation Time</th>
<th>Priority</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>7</td>
<td>3</td>
<td>3 (high)</td>
<td>0.4285…</td>
</tr>
<tr>
<td>b</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>5</td>
<td>1 (low)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
R_a &= 3 \\
R_c &= 6
\end{align*}
\]

Example (cont'd)

\[
\begin{align*}
w_b^6 &= 3 \\
w_b^6 &= 3 + \left[\frac{7}{6} \right] 3 = 6 \\
w_b^5 &= 3 + \left[\frac{7}{6} \right] 3 = 6 \\
R_c &= 6
\end{align*}
\]
Revisiting task set C

The combined utilization is 1.0, above the utilization threshold for three tasks (0.78)
- Hence the utilization test fails
- But RTA shows that the task set will meet all its deadlines
 - Cf. the impasse we had at pages 178-179

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>Computation Time</th>
<th>Priority</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>80</td>
<td>40</td>
<td>P</td>
<td>80</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>10</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>5</td>
<td>P</td>
<td>5</td>
</tr>
</tbody>
</table>

Response time analysis /2

- RTA is a feasibility test
 - Exact, hence necessary and sufficient
 - If the task set passes the test then all its tasks will meet all their deadlines
 - If it fails the test then, at run time, some tasks will miss their deadline and FPS tells us exactly which
 - Unless the computation time estimations (the WCET) themselves turn out to be pessimistic

Sporadic tasks

- Sporadic tasks have a minimum inter-arrival time
 - Which should be preserved at run time if schedulability is to be ensured, but how can it?
 - They also require \(D \leq T \)
 - The RTA for FPS works perfectly for \(D < T \) as long as the stopping criterion becomes
 \[
 W_{i+1} > D_i
 \]
 - Interestingly this also works perfectly well with any priority ordering as long as the indices reflect it

Hard and soft tasks

- In many situations the WCET given for sporadic tasks are considerably higher than the average case
- Interrupts often arrive in bursts and an abnormal sensor reading may lead to significant additional computation
- Measuring feasibility with WCET may lead to very low processor utilization being observed at run time
 - We need some common sense to contain pessimism
General common-sense guidelines

- **Rule 1**: All tasks (hard and soft) should be schedulable using average execution times and average arrival rates for both periodic and sporadic tasks
 - There may therefore be situations in which it is not possible to meet all current deadlines
 - This condition is known as a transient overload
- **Rule 2**: All hard real-time tasks should be schedulable using WCET and worst-case arrival rates of all tasks (including soft)
 - No hard real-time task will therefore miss its deadline
 - If Rule 2 incurs unacceptably low utilizations for non-worst-case jobs then WCET values or arrival rates must be reduced

Handing aperiodic tasks /1

- They do **not** have minimum inter-arrival times
 - And consequently no deadline
 - We may be interested in the system being responsive to them
- We can run aperiodic tasks at a priority below the priorities assigned to hard tasks
 - In a preemptive system, they won’t steal resources from hard tasks
- But this does not provide adequate support to soft tasks which would often miss their deadlines
- To improve the situation for soft tasks, a server can be employed to bound the execution of aperiodic tasks
- With servers, hard tasks will always have the processing resources they need, and soft tasks will run as soon as possible

Handing aperiodic tasks /2

- Besides preserving hard tasks and giving fair opportunities to soft tasks, we still would like a solution that minimizes
 - The response time of the job at the head of the aperiodic queue
 - Or the average response time of all aperiodic jobs for a given queuing discipline
- Possible solutions
 - Execute the aperiodic jobs in the background
 - Execute the aperiodic jobs by interrupting the periodic jobs
 - Use slack stealing
 - Use dedicated servers

Handing aperiodic tasks /3

- **Slack stealing**
 - Difficult to implement for preemptive systems
 - For them, the slack $\sigma(t)$ is not a constant, but it is a function of the time t at which it is computed
 - The slack stealer is ready when the aperiodic queue is not empty; it is suspended otherwise
 - When ready and $\sigma(t) > 0$, the slack stealer is assigned the highest priority; the lowest when $\sigma(t) = 0$
 - Static computation of $\sigma(t)$ for some t is useful but only when the release jitter in the system is very low
 - Under EDF, $\sigma(t = 0) = \min_i \{\sigma_i(0)\}$ where $\sigma_i(0) = D_i - \sum_{k=1}^{i-1} e_k$ for all jobs released in the hyperperiod starting at $t = 0$
Computing the slack under EDF

The slack of periodic jobs of \(\tau_i \) should be computed based on their effective deadline \(D^e_i \).

- For a job of \(\tau_i \) it should be computed at the beginning of the level-\(i - 1 \) busy period that precedes \(D_i \) so that \(D^e_i \leq D_i \).
- Hence the initial slack \(\sigma_{i,j}(0) \) of every periodic job \(J_{i,j} \) in the hyperperiod is determined as

\[
\max \left(0, D^e_i - \sum_{k=1}^{l} \left[\frac{D^e_{i,k}}{t_k} \right] C_k \right)
\]

Computing the slack under FPS / 1

- The amount of slack an FPS system has in a time interval may depend on when the slack is used.
- To minimise the response time of an aperiodic job \(J_A \) the decision on when to schedule it must obviously consider the execution time of \(J_A \).
- No slack stealing algorithm under FPS can minimise the response time of every aperiodic job even with prior knowledge of their arrival and execution times.
- Better not be greedy in using the available slack.

Slack stealing defeats optimality

- Greed is no good: to minimize the response time of an aperiodic job, it may be necessary to schedule it later, even if slack is currently available.
- For any periodic task set, under any FPS, and any aperiodic queuing policy, no valid algorithm exists that minimizes the response time of all aperiodic jobs.
- Similarly, no valid algorithm exists that minimizes the average response time of the aperiodic jobs.
Handing aperiodic tasks /4

Periodic server (PS) – general model

- A notional \((T_{ps}, C_{ps}) \) periodic task scheduled at the highest priority to only execute aperiodic jobs
 - The server has a **budget** of \(C_{ps} \) time units and a **replenishment period** of length \(T_{ps} \)
 - When the PS is scheduled and executes aperiodic jobs, it consumes its budget at the rate of 1 unit per unit of time
 - Budget is exhausted when \(C_{ps} = 0 \) and replenished periodically
- The PS is **backlogged** when the aperiodic job queue is nonempty and it is idle otherwise
 - Eligible for execution only when ready, backlogged and \(C_{ps} > 0 \)

Handing aperiodic tasks /6

Deferrable Server (DS), a bandwidth-preserving PS

- DS retains its budget if no aperiodic tasks require execution
 - If an aperiodic job requires execution during the DS period, it can be served immediately: when idle, the DS stays ready (not idle)
- The budget is replenished at the start of the new period (！)
 - If an aperiodic job arrives \(E \) time units before the end of \(T_{ds} \), the request begins to be served and blocks periodic tasks
 - When the budget is replenished, new aperiodic jobs may then be served for the full budget
- If that happens, in \(\omega(t) \), DS contributes a solid interference of \(C_{ds} + \frac{E}{E_{ds}} C_{ds} \), longer than \(1 \times C_{ds} \) per busy period

Handing aperiodic tasks /5

Polling server, a simple (naive) kind of PS

- It is given a fixed budget that it uses to serve aperiodic task requests that is replenished at every period
- The server is immediately consumed if the server is scheduled while idle
 - Ready periodic tasks – if any – execute instead
- It is **not bandwidth preserving**
 - An aperiodic job that arrives just after the server has been scheduled while idle, must wait until the next replenishment time
- Bandwidth-preserving servers need additional rules for consumption and replenishment of their budget

Handing aperiodic tasks /7

Priority Exchange (PE), similar in principle to DS

- If PE is idle when scheduled, it exchanges its own priority with that of the pending periodic task with priority lower than itself and higher of all other pending periodic tasks
- The selected periodic task inherits PE’s higher priority until an aperiodic task arrives or PE’s ready period ends
Handing aperiodic tasks /8

- **Sporadic Server** (SS), fixes the bug in DS
 - The budget is replenished only when exhausted and at a minimum guaranteed distance from its earlier execution
 - Hence no longer at a fixed rate
 - This places a tighter bound on its interference and makes schedulability analysis simpler and less pessimistic
 - This is the default server policy in POSIX

SS rules under FPS

- **Consumption rules**
 - At time $t > t_f$ (the latest replenishment time), a backlogged SS consumes budget only if executing, hence when no higher-priority task is ready
 - The replenishment is limited to the quantity of actual consumption

- **Replenishment rules**
 - t_r records the time that SS' budget was last replenished
 - t_s records the time when SS first begins to execute since t_r
 - $t_s > t_f$ is the latest time at which a lower-priority task than SS executes
 - The next replenishment time is set to $t_s + T_{SS}$

- **Exception**
 - If only higher-priority tasks had been busy since t_f, then $t_s + T_{SS} > t_f + T_{SS}$ and SS is late: hence, budget fully replenished as soon as exhausted

Handing aperiodic tasks /9

- SS is more complex than PS or DS
 - Its rules require keeping tab of lots of data
 - Several cases to consider when making scheduling decisions
 - This complexity is acceptable because the schedulability of a SS is easy to demonstrate
 - Under FPS, SS equates to a periodic task t_p with (p, e)
 - EDF and LLF use a dynamic variant of SS as well as other bandwidth-preserving server algorithms known as
 - Constant utilization server
 - Total bandwidth server
 - Weighted fair queuing server

SS rules unveiled

- Let t_a be the time at which SS has full budget and becomes backlogged, and $t_f \geq t_a$ the time at which SS becomes idle
- In the $[t_a, t_f]$ interval, when SS is continuously active, three cases are possible
 1. SS has consumed no capacity: $t_{next} = t_f + T_{SS}$ \rightarrow No replenishment, and no interference in that interval
 2. SS has consumed all capacity: $t_{next} = t_a + T_{SS}$ \rightarrow Full replenishment, and bounded interference in that interval
 3. SS has consumed fractional capacity: $t_{next} = t_f + T_{SS}$ \rightarrow Fractional replenishment, and interference lower than allowed in that interval

Task sets with $D < T$

- For $D = T$, Rate Monotonic priority assignment (a.k.a. ordering) is optimal
- For $D < T$, **Deadline Monotonic** priority ordering is optimal
 \[D_i < D_j \Rightarrow P_i > P_j \]

DMPO is optimal /1

- Deadline monotonic priority ordering (**DMPO**) is optimal
 - Any task set Q that is schedulable by priority-driven scheme W is also schedulable by DMPO
 - The proof of optimality of DMPO involves transforming the priorities of Q as assigned by W until the ordering becomes as assigned by DMPO
 - Each step of the transformation will preserve schedulability

DMPO is optimal /2

- Let τ_i, τ_j be two tasks with adjacent priorities in Q such that under W we have $P_k > P_j \land D_i > D_j$
- Define scheme W' to be identical to W except that tasks τ_i, τ_j are swapped
- Now consider the schedulability of Q under W'
 - All tasks $\{\tau_k\}$ with priority $P_k > P_j$ will be unaffected
 - All tasks $\{\tau_k\}$ with priority $P_k < P_i$ will be unaffected as they will experience the same interference from τ_j and τ_i
 - Task τ_j which was schedulable under W, now has a higher priority, suffers less interference, and hence must be schedulable under W'

DMPO is optimal /3

- All that is left to show is that task τ_i, which has had its priority lowered, is still schedulable
- Under W we have $R_j \leq D_j, D_j < D_i$ and $R_i \leq T_i$
- Task τ_j only interferes once during the execution of task τ_i hence $R_i' = R_j \leq D_j < D_i$
 - Under W' task τ_j completes at the time task τ_i did under W
 - Hence task τ_i is still schedulable after the switch
- Priority scheme W' can now be transformed to W'' by choosing two more tasks that are in the wrong order for DMPO and switching them
Summary

- A simple (periodic) workload model
- Delving into fixed-priority scheduling
- A (rapid) survey of schedulability tests
- Some extensions to the workload model
- Priority assignment techniques

Selected readings

 Fixed priority pre-emptive scheduling: an historical perspective
 DOI: 10.1007/BF01094342

- D. Faggioli, M. Bertogna, F. Checconi (2010)
 Sporadic Server revisited
 DOI: 10.1145/1774088.1774160