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3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings

The simplest workload model

 The application is assumed to consist of ݊ tasks, for ݊ fixed
 All tasks are periodic with known periods

 This defines the periodic workload model
 The tasks are completely independent of each other

 No contention for logical resources; no precedence constraints
 All tasks have a deadline equal to their period ܦ ൌ ܶ

 Each task must complete before it is next released
 All tasks have a single fixed WCET, which can be trusted as 

a safe and tight upper-bound
 Operation modes are not considered

 All system overheads (context-switch times, interrupt 
handling and so on) are assumed absorbed in the WCETs

2017/18 UniPD – T. Vardanega Real-Time Systems 167 of  515

Standard notation

Worst-case blocking time for the task (if :ܤ  applicable)
Worst-case computation time (WCET) of :ܥ  the task (ൌ ݁)
Relative deadline of :ܦ  the task 
The interference time of :ܫ  the task
Release jitter of :ܬ  the task 
ܰ: Number of  tasks in the system 
ܲ: Priority assigned to the task (if  applicable)
ܴ: Worst-case response time of  the task
ܶ: Minimum time between task releases, or task period (ൌ (
ܷ: The utilization of  each task (ൌ 

்⁄ )
a-Z: The name of  a task
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Fixed-priority scheduling (FPS)

 At present, the most widely used approach in industry
 Each task has a fixed (static) priority determined off-line
 In real-time systems, the “priority” of a task is solely derived 

from its temporal requirements 
 The task’s relative importance to the correct functioning of 

the system or its integrity is not a driving factor at this level
 A recent strand of research addresses mixed-criticality systems, with 

scheduling solutions that contemplate criticality attributes
 The ready tasks (jobs) are dispatched to execution in 

the order determined by their (static) priority
 Hence, in FPS, scheduling at run time is fully defined by the 

priority assignment algorithm
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Preemption and non-preemption /1

 With priority-based scheduling, a high-priority task may be 
released during the execution of a lower priority one

 In a preemptive scheme, there will be an immediate switch to 
the higher-priority task

 With non-preemption, the lower-priority task will be allowed 
to complete before the other may execute

 Preemptive schemes (such as FPS and EDF) enable higher-
priority tasks to be more reactive, hence they are preferred
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Preemption and non-preemption /2

 Alternative strategies allow a lower priority task to continue 
executing for a bounded time before being preempted

 Such schemes use either deferred preemption or cooperative 
dispatching

 Value-based scheduling (VBS) is another approach to 
attenuating preemption
 Useful when the system becomes overloaded and some adaptive 

scheme of scheduling is needed to mitigate the risk or the 
consequences of overrun

 VBS assigns a value to each task and then employs an on-line value-
based scheduling algorithm to decide which task to run next

 Analogous to usefulness, but determined off-line
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Rate-monotonic priority assignment

 Each task is assigned a priority based on its period
 The shorter the period, the higher the priority
 Such priorities have to be unique: hence ties must be resolved

 For any two tasks ߬, ߬ : ܶ ൏ ܶ → ܲ  ܲ
 Rate monotonic assignment is optimal under preemptive 

priority-based scheduling (and implicit deadlines)

 Nomenclature
 Priority 1 as numerical value is the lowest (least) priority, but 

the indices are still sorted highest to lowest (!)
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Utilization-based test

 A simple test exists for rate-monotonic scheduling
 It provides a sufficient but not necessary upper-bound 

on the schedulable utilization of FPS
 Only for task sets with ܦ ൌ ܶ

ܷ ൌ
ܥ
ܶ
 ݊ 2

ଵ
 െ 1



ୀଵ

lim
→ஶ

݊ 2
ଵ
 െ 1 ൌ ln 2 ൌ 0.69
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Critique of utilization-based tests

 These tests are sufficient but not necessary
 As such, they fall in the class of schedulability tests

 These tests are not exact and also not general
 But they are Ω ݊ , which makes them interesting 

for some users
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Example: task set A

 The combined utilization is 0.82 (or 82%)
 Above the threshold for three tasks (0.78)

 This task set fails the utilization test

 Hence we have no a-priori answer on its feasibility

Task Period Computation Time Priority Utilization

T C P U

a 50 12 1 (low) 0.24

b 40 10 2 0.25

c 30 10 3 (high) 0.33
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Timeline for task set A

0 10 20 30 40 50 60

Task

a

b

c

Task Release Time

Task Completion Time
Deadline Met
Task Completion Time
Deadline Missed

Executing

Preempted

Time
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Example: task set B

 The combined utilization is 0.775 
 Below the threshold for three tasks (0.78)

 This task set passes the utilization test

 Hence this task set will meet all its deadlines

Task Period Computation Time Priority Utilization

T C P U

a 80 32 1 (low) 0.40

b 40 5 2 0.125

c 16 4 3 (high) 0.25
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Example: task set C

 The combined utilization is 1.0
 Above the threshold for three tasks (0.78)

 Again, this task set does not pass the utilization test

 Yet the timeline shows the task set will meet all its deadlines

Task Period Computation Time Priority Utilization

T C P U

a 80 40 1 (low) 0.50

b 40 10 2 0.25

c 20 5 3 (high) 0.25
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Timeline for task set C
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0 10 20 30 40 50 60

Task

a

b

c

70 80
Time

Response time analysis /1

 The worst-case response time ܴ of task ߬ is first 
calculated and then checked (trivially) with its 
deadline

 ߬ is feasible iff ܴ  ܦ
 ܴ ൌ ܥ  ܫ , where ܫ is the interference that ߬

suffers from higher-priority tasks
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Calculating R

 Within ܴ, each higher priority task ߬ will execute at 
most ோ

்ೕ
times

 The ceiling function ݂ gives the smallest integer greater than 
the fractional number ݂ on which it acts
 E.g., the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2

 Using the ceiling reflects the fact that ߬ will be preempted for 
a full execution of a higher-priority released exactly at ߬’s end

 The total interference suffered by ߬ from ߬ in ܴ
where ܲ ൏ ܲ, is given by ோ

்ೕ
ܥ
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Response time equation

 Where ݄ሺ݅ሻ is the set of tasks with priority higher than ߬
 Solved by forming a recurrence relationship

 The set of values                                   is monotonically non-decreasing
 When                  the solution to the equation has been found
 must not be greater than      (e.g. 0 or     )
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Response time algorithm
for i in 1..N loop -- for each task in turn
n := 0

loop
calculate new
if         then

exit value found
end if
if then
exit value not found

end if
n := n + 1

end loop
end loop

If	the	recurrence	does	not	converge
before	Ti we	can	still	set	a	termination	
condition	that	attempts	to	determine
how	long	past	Ti job	i completes
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Example: task set D
Task Period Computation Time Priority Utilization

T C P U

a 7 3 3 (high) 0.4285…
b 12 3 2 0.25
c 20 5 1 (low) 0.25
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Example (cont’d)
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Revisiting task set C

 The combined utilization is 1.0, above the utilization threshold 
for three tasks (0.78) 
 Hence the utilization test fails

 But RTA shows that the task set will meet all its deadlines 
 Cf. the impasse we had at pages 178-179

Task Period Computation Time Priority Response Time

T C P R

a 80 40 1 (low) 80

b 40 10 2 15

c 20 5 3 (high) 5
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Response time analysis /2

 RTA is a feasibility test
 Exact, hence necessary and sufficient

 If the task set passes the test then all its tasks will 
meet all their deadlines

 If it fails the test then, at run time, some tasks will 
miss their deadline and FPS tells us exactly which 
 Unless the computation time estimations (the WCET) 

themselves turn out to be pessimistic

2017/18 UniPD – T. Vardanega Real-Time Systems 187 of  515

Sporadic tasks

 Sporadic tasks have a minimum inter-arrival time
 Which should be preserved at run time if schedulability is 

to be ensured, but how can it ?
 They also require D  ܶ
 The RTA for FPS works perfectly for D<T as long as 

the stopping criterion becomes

 Interestingly this also works perfectly well with any
priority ordering as long as the indices reflect it
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Hard and soft tasks

 In many situations the WCET given for sporadic 
tasks are considerably higher than the average case

 Interrupts often arrive in bursts and an abnormal 
sensor reading may lead to significant additional 
computation

 Measuring feasibility with WCET may lead to very 
low processor utilization being observed at run time
 We need some common sense to contain pessimism
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General common-sense guidelines

 Rule 1 : All tasks (hard and soft) should be schedulable using 
average execution times and average arrival rates for both 
periodic and sporadic tasks
 There may therefore be situations in which it is not possible 

to meet all current deadlines
 This condition is known as a transient overload

 Rule 2 : All hard real-time tasks should be schedulable using 
WCET and worst-case arrival rates of all tasks (including soft)
 No hard real-time task will therefore miss its deadline
 If Rule 2 incurs unacceptably low utilizations for non-worst-

case jobs then WCET values or arrival rates must be reduced
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Handing aperiodic tasks /1

 They do not have minimum inter-arrival times
 And consequently no deadline
 We may be interested in the system being responsive to them

 We can run aperiodic tasks at a priority below the priorities 
assigned to hard tasks
 In a preemptive system, they won’t steal resources from hard tasks

 But this does not provide adequate support to soft tasks which 
would often miss their deadlines

 To improve the situation for soft tasks, a server can be employed 
to bound  the execution of aperiodic tasks

 With servers, hard tasks will always have the processing 
resources they need, and soft tasks will run as soon as possible

2017/18 UniPD – T. Vardanega Real-Time Systems 191 of  515

Handing aperiodic tasks /2

 Besides preserving hard tasks and giving fair opportunities 
to soft tasks, we still would like a solution that minimizes
 The response time of the job at the head of the aperiodic queue
 Or the average response time of all aperiodic jobs for a given 

queuing discipline

 Possible solutions
 Execute the aperiodic jobs in the background
 Execute the aperiodic jobs by interrupting the periodic jobs
 Use slack stealing
 Use dedicated servers
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Handing aperiodic tasks /3

 Slack stealing
 Difficult to implement for preemptive systems 

 For them, the slack ߪሺݐሻ is a not a constant, but it is a function of the 
time ݐ at which it is computed

 The slack stealer is ready when the aperiodic queue is not 
empty; it is suspended otherwise

 When ready and ߪ ݐ  0, the slack stealer is assigned the 
highest priority; the lowest when ߪ ݐ ൌ 0

 Static computation of ߪሺݐሻ for some ݐ is useful but only when 
the release jitter in the system is very low
 Under EDF, ߪሺݐ ൌ 0ሻ ൌ ݉݅݊ ሺ0ሻߪ where ߪ 0 ൌ ܦ െ

∑ ݁ୀଵ,.., for all jobs released in the hyperperiod starting at ݐ ൌ 0
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Computing the slack under EDF

ܪ ൌ 12

ଵ,ଵߪ 0 ൌ ଵܦ െ ଵܥ ൌ 4 െ 2 ൌ 
ଶ,ଵߪ 0 ൌ ଶܦ െ ଵܥ െ ଶܥ ൌ 6 െ 2 െ 2.75 ൌ . 
ଵ,ଶߪ 0 ൌ ଵమܦ െ 2 ൈ ଵܥ െ ଶܥ ൌ 8 െ 2 ൈ 2 െ 2.75 ൌ . 
ଶ,ଶߪ 0 ൌ ଶమܦ െ 2 ൈ ଵܥ െ 2 ൈ ଶܥ ൌ 12 െ 2 ൈ 2 െ 2 ൈ 2.75 ൌ . 
ଵ,ଷߪ 0 ൌ ଵయܦ െ 3 ൈ ଵܥ െ 2 ൈ ଶܥ ൌ 12 െ 3 ൈ 2 െ 2 ൈ 2.75 ൌ . 
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, ,࣌ 

Computing the slack under FPS /1

 The amount of slack an FPS system has in a time 
interval may depend on when the slack is used

 To minimise the response time of an aperiodic job 
ܬ the decision on when to schedule it must 
obviously consider the execution time of ܬ
 No slack stealing algorithm under FPS can minimise the 

response time of every aperiodic job even with prior 
knowledge of their arrival and execution times 

 Better not be greedy in using the available slack
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Computing the slack under FPS /2

 The slack of periodic jobs of ߬ should be 
computed based on their effective deadline ܦ

 For a job of ߬ it should be computed at the beginning of 
the level-݅ െ 1 busy period that precedes ܦ so that 
ܦ  ܦ

 Hence the initial slack ߪ,ሺ0ሻ of every periodic job 
,ܬ in the hyperperiod is determined as 

ݔܽ݉ 0, ,ܦ െ ∑
,ೕ


்ೖ
ܥ

ୀଵ
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Slack stealing defeats optimality

 Greed is no good: to minimize the response time of 
an aperiodic job, it may be necessary to schedule it 
later, even if slack is currently available
 For any periodic task set, under any FPS, and any 

aperiodic queuing policy, no valid algorithm exists that 
minimizes the response time of all aperiodic jobs

 Similarly, no valid algorithm exists that minimizes the 
average response time of the aperiodic jobs
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Handing aperiodic tasks /4

 Periodic server (PS) – general model
 A notional ( ܶ௦,  ௦) periodic task scheduled at theܥ

highest priority to only execute aperiodic jobs
 The PS has a budget of ܥ௦ time units and a replenishment 

period of length ܶ௦
 When the PS is scheduled and executes aperiodic jobs, it 

consumes its budget at the rate of 1 unit per unit of time
 Budget is exhausted when ܥ௦ ൌ 0 and replenished periodically

 The PS is backlogged when the aperiodic job queue is 
nonempty and it is idle otherwise
 Eligible for execution only when ready, backlogged and ܥ௦  0
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Handing aperiodic tasks /5

 Polling server, a simple (naïve) kind of PS
 It is given a fixed budget that it uses to serve aperiodic 

task requests that is replenished at every period
 The budget is immediately consumed if the server is 

scheduled while idle
 Ready periodic tasks – if any – execute instead

 It is not bandwidth preserving
 An aperiodic job that arrives just after the server has been 

scheduled while idle, must wait until the next replenishment time
 Bandwidth-preserving servers need additional rules for 

consumption and replenishment of their budget
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Handing aperiodic tasks /6

 Deferrable Server (DS), a bandwidth-preserving PS
 DS retains its budget if no aperiodic tasks require execution

 If an aperiodic job requires execution during the DS period, it can be 
served immediately: when idle, the DS stays ready (not idle)

 The budget is replenished at the start of the new period (!)
 If an aperiodic job arrives ߝ time units before the end of ௗܶ௦, the 

request begins to be served and blocks periodic tasks
 When the budget is replenished, new aperiodic jobs may then be 

served for the full budget

 If that happens, in ߱ ݐ , DS contributes a solid interference 
of ܥௗ௦ 

షೞ
ೞ

ௗ௦, longerܥ than 1 ൈ ௗ௦ܥ per busy period
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Handing aperiodic tasks /7

 Priority Exchange (PE), similar in principle to DS 
 If PE is idle when scheduled, it exchanges its own 

priority with that of the pending periodic task with 
priority lower than itself and higher of all other pending 
periodic tasks

 The selected periodic task inherits PE’s higher priority 
until an aperiodic task arrives or PE’s ready period ends

2017/18 UniPD – T. Vardanega Real-Time Systems 201 of  515



2017/18 UniPD - T. Vardanega 10/03/2018

Real Time Systems 10

Handing aperiodic tasks /8

 Sporadic Server (SS), fixes the bug in DS
 The budget is replenished only when exhausted and at a 

minimum guaranteed distance from its earlier execution
 Hence no longer at a fixed rate

 This places a tighter bound on its interference and makes 
schedulability analysis simpler and less pessimistic

 This is the default server policy in POSIX
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SS rules under FPS

 Consumption rules
 At time ݐ  ݐ (the latest replenishment time), a backlogged SS consumes 

budget only if executing, hence when no higher-priority task is ready
 The replenishment is limited to the quantity of actual consumption

 Replenishment rules
 ݐ records the time that SS’ budget was last replenished
 ݐ records the time when SS first begins to execute since ݐ

 ݐ  ݐ is the latest time at which a lower-priority task than SS executes
 The next replenishment time is set to ݐ  ௦ܶ௦

 Exception
 If only higher-priority tasks had been busy since ݐ, then ݐ  ௦ܶ௦  ݐ 

ௌܶௌ and SS is late: hence, budget fully replenished as soon as exhausted
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SS rules unveiled

 Let ݐ be the time at which SS has full budget and becomes 
backlogged, and ݐ  ݐ the time at which SS becomes idle

 In the ݐ, ݐ interval, when SS is continuously active, three 
cases are possible

1. SS has consumed no capacity: ݐೣ ൌ ݐ  ௌܶௌ  No replenishment, and 
no interference in that interval

2. SS has consumed all capacity: ݐೣ ൌ ݐ  ௌܶௌ  Full replenishment, and 
bounded interference in that interval

3. SS has consumed fractional capacity: ݐೣ ൌ ݐ  ௌܶௌ  Fractional 
replenishment, and interference lower than allowed in that interval
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Handing aperiodic tasks /9

 SS is more complex than PS or DS
 Its rules require keeping tab of lots of data
 Several cases to consider when making scheduling decisions
 This complexity is acceptable because the schedulability of a SS is 

easy to demonstrate
 Under FPS, SS equates to a periodic task ߬௦ with ሺ௦, ݁௦ሻ

 EDF and LLF use a dynamic variant of SS as well as other 
bandwidth-preserving server algorithms known as
 Constant utilization server
 Total bandwidth server
 Weighted fair queuing server
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Task sets with D < T

 For ܦ ൌ ܶ, Rate Monotonic priority assignment 
(a.k.a. ordering) is optimal

 For ܦ ൏ ܶ, Deadline Monotonic priority ordering 
is optimal
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DMPO is optimal /1

 Deadline monotonic priority ordering (DMPO) is optimal

any task set ܳ that is schedulable by priority-driven scheme ܹ
it is also schedulable by DMPO

 The proof of optimality of DMPO involves transforming 
the priorities of ܳ as assigned by ܹ until the ordering 
becomes as assigned by DMPO

 Each step of the transformation will preserve schedulability
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DMPO is optimal /2

 Let ߬, ߬ be two tasks with adjacent priorities in ܳ such that 
under ܹ we have ܲ  ܲ 	∧ ܦ	  ܦ

 Define scheme ܹᇱ to be identical to ܹ except that tasks ߬, ߬
are swapped

 Now consider the schedulability of ܳ	under ܹᇱ

 All tasks ߬ with priority ܲ  ܲ will be unaffected
 All tasks ߬௦ 	with priority ௦ܲ ൏ ܲ	will be unaffected as they will 

experience the same interference from ߬ and ߬
 Task ߬ which was schedulable under ܹ, now has a higher 

priority, suffers less interference, and hence must be schedulable 
under ܹᇱ
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DMPO is optimal /3

 All that is left to show is that task ߬, which has had its priority 
lowered, is still schedulable

 Under ܹ we have ܴ  ,ܦ ܦ ൏ ܦ and ܴ  ܶ

 Task ߬ only interferes once during the execution of task 
߬	hence ܴᇱ ൌ ܴ  ܦ ൏ ܦ
 Under ܹᇱ	task ߬	completes at the time task ߬ did under ܹ
 Hence task ߬ is still schedulable after the switch

 Priority scheme ܹᇱ can now be transformed to ܹᇱᇱ by choosing 
two more tasks that are in the wrong order for DMPO and 
switching them
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Summary

 A simple (periodic) workload model
 Delving into fixed-priority scheduling
 A (rapid) survey of schedulability tests
 Some extensions to the workload model
 Priority assignment techniques
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