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4.b Implementation details

Context switch

 The time and space overheads incurred by preemption 
should be accounted for in schedulability analysis

 Under preemption, every single job incurs at least two 
context switches
 One at activation, to install its execution context
 One at completion, to clean up

 The resulting costs should be charged to the job
 Which requires knowing the internal timing behavior of the 

run-time system
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Priority levels /1

 The scheduling techniques that we have studied 
assume jobs to have distinct priorities
 Concrete systems may not always have sufficient priorities
 In that case, jobs may have to share priority levels
 For jobs at the same level of priority, dispatching may be 

FIFO or round-robin: the former is more fit for real-time
 If priority levels are shared, we have a worst-case 

situation to contemplate in the analysis
 That job ܬ be released immediately after all other jobs at its 

level of priority
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Example: FIFO within priorities
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Priority levels /2

 Let ܵሺ݅ሻ denote the set of jobs ܬ௝ with ߨ௝ ൌ  ,௜ߨ
excluding ܬ௜ itself

 The time demand equation for ܬ௜ to study in the 
interval 0 ൏ ݐ ൑ min	ሺܦ௜, ௜ሻ݌ becomes 

߱௜భ ݐ ൌ ݁௜ ൅ ௜ܤ ൅෍ ௝݁∈ௌ ௜ ൅
ௌሺ௜ሻ

෍
߱௜భሺݐሻ
௞௞ୀଵ,..,௜ିଵ݌

݁௞

 This obviously worsens ܬ௜ ’s response time
 But the impact in terms of schedulability loss at system 

level may not be as bad (wait and see …)
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Priority levels /4

 When the number 1, . . , Ω௡ of assigned priorities is larger 
than the number ߨଵ, . . , ஐೞߨ of available priorities (aka 
priority grid), we need some Ω௡:Ω௦ mapping function
 All assigned priorities ൒ ଵߨ will take value ߨଵ
 For 1 ൏ ݇ ൑ Ω௦, the assigned priorities in the range 
ሺߨ௞ିଵ, ௞ሿߨ will take value ߨ௞

 Two main techniques exist to solve this problem
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]
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Priority levels /5

 Uniform mapping

 ܳ ൌ ஐ೙
ஐೞ
	ߨ௞ ← ݇,… , ݇ܳ , ௞ାଵߨ ← ݇ܳ ൅ 1,… , ሺ݇ ൅ 1ሻܳ

 Example: Ω௡ ൌ 9, Ω௦ ൌ ଵߨ) ,3 ൌ 1, ଶߨ ൌ 2, ଷߨ ൌ 3)

ܳ ൌ
9
3 ൌ 3		ߨଵ ← 1. . 3 , ←ଶߨ	 4. . 6 , ଷߨ ← 7. . 9

 Constant ratio mapping

 Spaces the ߨ௜ values by keeping the ratio ݃ ൌ ሺగ೔షభାଵሻ
గ೔

constant for 
݅ ൌ 2, . . , Ω௦, for the better good of higher-priority jobs

 Same example as above: for g ൌ ଵ
ଶ

and ߨଵ ൌ 1 (top) then 
ଶߨ ൌ 4, ଷߨ ൌ 10 ଵߨ ← 1 , ଶߨ ← 2. . 4 , ଷߨ ← 5. . 9
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Priority levels /6
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Priority levels /7

 Lehoczky & Sha showed that constant ratio mapping 
degrades the schedulable utilization of RMS gracefully
 For large ݊, with ܦ௜ ൌ ݃ ∀݅, and	௜݌ ൌ ݉݅݊ଶஸ௝ஸஐೞ

ሺగೕషభାଵሻ
గೕ

, 
the CRM’s schedulable utilization approximates

݂ ݃ ൌ ቐ
݈݊ 2݃ ൅ 1 െ ݃, 	݃ ൐ ଵ

ଶ

݃, 																										݃ ൑ ଵ
ଶ

 The ௙ሺ௚ሻ
௟௡ሺଶሻ

ratio represents the relative schedulability of 
CRM in relation to RMS’ utilization bound
 Example: for Ω௦ ൌ 256,Ω௡ ൌ 100,000, and the corresponding 
݃ with CRM, its relative schedulability is 0.9986

 256 priority levels should then suffice for RMS
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Real-time operating systems /1

 The RTOS knows all tasks: their jobs are the unit of CPU 
assignment
 Tasks issue jobs: scheduling and dispatching applies to them
 The scheduler decides which task’s job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 One Task Control Block per task is stored in RAM
 The insertion of a task in a state queue (e.g., ready) is made by 

placing a pointer from the queue to the corresponding TCB
 The end-of-life disposal of a task requires removing its TCB and 

releasing all of its memory (its stack and its globals in the heap)
 This is onerous and suggests preferring infinite tasks
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Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority
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Real-time operating systems /2

 Tasks may be realized as specialized primitive entities 
that live within the RTOS

 Then the model of computation is determined by the RTOS
 Outside or inside of the programming language, dependent on 

the binding of it with the RTOS
 Inside, for the Ada Ravenscar Profile

 Otherwise, the MoC may be defined at the application 
level using with generic support from the RTOS API 
(e.g., pthread_*)

 Then it is user responsibility to ensure that the eventual 
execution semantics conforms with assumptions made 
in schedulability analysis
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Real-time operating systems /3

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release it executes the application-code of the job and then 
makes a suspensive call

 Sporadic task
 An RTOS thread whose suspension point is not released 

periodically but with guaranteed minimum distance
 After release it executes the job and then makes a suspensive call

 Aperiodic task
 Indistinguishable from the rest other than its being placed in a 

server’s backlog queue and not in the ready queue
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Task states /1
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Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least	overhead
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Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on 

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the 
distinct forms of suspension
 A time-based queue for periodic suspensions
 An event-based queue for sporadic suspensions

 But “someone” (IoC in the OOD solution we saw earlier) shall assure 
minimum separation between subsequent releases (!)
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The scheduler /1

 This is a distinct part of the RTOS that does not
execute in response to explicit application invocations
 Other than when using cooperative scheduling

 The scheduler acts every time the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming 
language and the RTOS is MoC-agnostic, scheduler 
“activation” is periodic in response to clock interrupts
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The scheduler /2

 At every clock interrupt, the scheduler must
 Increment the execution time budget counter of the running 

job to support time-based scheduling policy (e.g., LLF)
 Manage the queue of time-based events pending
 Manage the ready queue

 The ൒ ݏ݉	10 period (aka tick size) typical of general-
purpose operating systems is too coarse for RTOS
 But higher frequency incurs larger overhead

 The scheduler should also support event-driven 
execution, with minimum latency
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Tick scheduling /1

 The scheduler can be event-driven only if the MoC is 
defined within the application programming language
 The scheduler always immediately executes on the occurrence 

of a scheduling event (aka dispatching point)
 If it was so then we could assume that a job is placed in the 

ready queue exactly at its release time

 Several schedulers are time-driven instead
 They make scheduling decisions upon the arrival of periodic 

clock interrupts, with no relation to application events
 This mode of operation is termed tick scheduling
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Tick scheduling /2

 The tick scheduler may acknowledge a job’s release 
time up to one tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release 

time arrived but not yet acknowledged” state are held
 The time and space overhead of transferring jobs from 

that logical place to the ready queue is not null and must 
be accounted for in the schedulability test together with 
the time and space overhead of handling clock interrupts
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Example
ࢀ ൌ ࣎૚ ൌ ૙. ૚, ૝, ૚, ૝ , ࣎૛ ൌ ૙. ૚, ૞, ૚. ૡ, ૞ , ࣎૜ ൌ ૙, ૛૙, ૞, ૛૙

࣎૜ with	a	first	not‐preemptable section	of	duration	૚. ૚
With	RTA	and	event‐driven	scheduling	ࡾ૚ ൌ ૛. ૚, ૛ࡾ ൌ ૜. ૢ, ૜ࡾ ൌ ૚૝. ૝ ሺOKሻ

What	with	tick	scheduling,	clock	period	૚ and	
time	overhead	૙. ૙૞ ൅ ૙. ૙૟ ൈ ࢔ per	tick	handling	and	queue	movement?

0 1 2 3 4 5 6

࣎૚

࣎૜

Deadline	miss

Release	
at	tick

yield࣎૛

࣎૜

࣎૚, ࣎૛ ࣎૚ ࣎૛

1‐tick	delay
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Tick scheduling /3

 The effect of tick scheduling is captured in RTA for job ܬ௜ by
 Introducing a notional task ߬଴ ൌ ሺ݌଴, ݁଴ሻ with highest priority, to 

account for the ݁଴ cost of handling clock interrupts with period ݌଴
 For all jobs ܬ௞ ∶ ௞ߨ ൒ ௜, adding to ݁௞ߨ the time overhead ݉଴ due to 

moving each of them to the ready queue
 ሺܭ௞ ൅ 1ሻ times for the ܭ௞ times that job ܬ௞ may self suspend

 For every individual job ܬ௟: ௟ߨ ൏  ௜, introducing a distinct notional taskߨ
߬ఊ ൌ ሺ݌௟,݉଴ሻ to account for the time overhead of moving ܬ௟ to the 
ready queue

 Computing ܤ௜ሺ݊݌ሻ as function of ݌଴:  ܬ௜ may suffer up to ݌଴ units of 
delay after becoming ready even without non-preemptable execution 

 ሻ݌௜ሺ݊ܤ ൌ ሺ ௞ሺݔܽ݉
ఏೖ
௣బ
ሻ ൅ 1ሻ݌଴ before including non-preemption

 Where ߠ௞ is the maximum time of non-preemptable execution by any job ܬ௞
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System calls /1

 The most part of RTOS services are executed in 
response to direct or indirect invocations by tasks
 These invocations are termed system calls

 For safety reasons, the system call APIs are not directly 
visible to the application
 System calls are normally hidden in procedures exported to 

the programming language by compiler libraries
 Those library procedures do all of the preparatory work for 

correct invocation of the designated system call on behalf of 
the application

 Thanks to that “hiding”, the OS does not share memory 
with the application
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System calls /2
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System calls /3

 In embedded systems instead, the RTOS and the 
application often share memory

 Real-time embedded applications are more 
trustworthy
 Hence, we do not want to pay the space and time 

overhead arising from address space separation
 The RTOS must then protect its own data 

structures from the risk of race condition
 RTOS services must therefore be non-preemptable
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I/O issues

 The I/O subsystem of a real-time system may require 
its own scheduler
 It may be an active resource, after the taxonomy we saw in the 

introductory classes
 Simple methods to access an I/O resource use

 Run-to-completion non-preemptive FIFO semantics
 Or some kind of time-division scheme 

 Non-preemptive quantized

 Or else use priority-driven scheduling as for CPU 
scheduling
 RM, EDF, LLF can be used to schedule I/O requests
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Interrupt handling /1

 HW interrupts are the most efficient manner for the 
processor to notify the application about the 
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated 

to external units like DMA (direct memory access)
 Frequency and computational load of the interrupt 

handling activities vary with the interrupt source
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Interrupt handling /2

 For better efficiency, the interrupt handling service 
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt 

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which 
code to associate to either part
 Interrupt service can also have a device-independent part and 

a device-specific part
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Interrupt handling /3

 When the HW interface asserts an interrupt, the 
processor saves state registers (e.g., PC, PSW) in the 
interrupt stack and jumps to the address of the needed 
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions 

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending 

(depending on the HW)

 Interrupts operate at an assigned level of priority so 
that interrupt service incurs scheduling if interrupts nest

2017/18 UniPD – T. Vardanega Real-Time Systems 363 of  514



2017/18 UniPD - T. Vardanega 08/04/2018

Real Time Systems 8

Interrupt handling /4

 Depending on the HW, the interrupt source is 
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally 

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers 
are restored and interrupts are enabled again
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Interrupt handling /5

 The worst-case latency incurred on interrupt handling is 
determined by the time needed to
1. Complete current instruction
2. Save registers
3. Clear the pipeline
4. Acquire the interrupt vector
5. Activate the trap
6. Disable interrupts (so that the immediate part of the ISR can 

execute at the highest priority)
7. Save the context of the interrupted task
8. Identify the interrupt source and jump to the corresponding ISR
9. Begin execution of the selected ISR
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Interrupt handling /6

 To reduce distributed overhead, the deferred part of 
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data 
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to 

spawn its own tasks for deferred interrupt handling
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Interrupt handling /7

 Using the OOD patterns we saw earlier, the deferred 
part of the ISR would map to a sporadic task released by 
the immediate part of the ISR

 For better responsiveness, schemes such as slack stealing
or bandwidth preservation could be used
 So that total interference from interrupts is bounded, but a 

given quota of them may receive full service within 
replenishment intervals

 During those intervals, bandwidth preservation retains the 
unused reserve of execution budget, which can help serve 
occasional bursts

 These solutions need specialized support from the RTOS
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Time management /1

 A system clock consists of
 A periodic counting register
 Automatically reset to the tick size every time it reaches the 

triggering edge and triggers the clock tick
 Composed of 
 A HW part automatically decremented at every clock pulse 

and a SW part incremented by the handler of the clock tick
 A queue of time events fired in the interval, whose 

treatment is pending
 And an (immediate) interrupt handling service
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Time management /2

 The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock
 The resolution should be an integer divisor of the tick 

size so that the RTOS may perform tick scheduling at 
every N clock ticks

 So that we have more frequent time-service interrupts 
and less frequent (ଵ

ே
) clock interrupts

 Time-service interrupts maintain the system clock
 Clock interrupts are used for scheduling
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Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy and the 

larger the time-service interrupt overhead
 There is delicate balance between the clock accuracy 

needed by the application and the clock resolution that 
can be afforded by the system
 Latency is intrinsic in any query made by a task to the 

software clock
 E.g., 439 clock cycles in ORK for the Leon microprocessor

(cf. www.dit.upm.es/~ork/)
 The resolution cannot be finer-grained than the 

maximum latency incurred in accessing the clock (!)
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Time management /4

 Beside periodic clocks, RTOS may also support 
one-shot timers aka interval timers
 They operate in a programmed (non-repetitive) way

 The RTOS scans the queue of the programmed 
time events to set the time of the next interrupt due 
from the interval timer
 The resolution of the interval timer is limited by the time 

overhead of its handling by the RTOS
 E.g., 7,061 clock cycles in ORK for Leon 
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Time management /5

 The accuracy of time events is the difference between 
the time of event occurrence and the time programmed

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected
 If interval timers were not used, this would correspond to 

the period of time-service interrupts
 The policy used to handle the time-event queues
 LIFO vs. FIFO

 The time overhead cost of handling time events in the queue
 It follows that the release time of periodic tasks is 

exposed to jitter (!)
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Fine-grained response time analysis

Blocking time
(resource access 
protocol or kernel)

“In” context switch “Out” context switch
Interference from 
the clock

Interference from 
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a 
suspension callܴ௜଴ ൌ ௜ܤ ൅ 1ܵܥ ൅ ௜ܥ

ܴ௜ ൌ ܴ௜௡ ൅ ௐܬ

ܴ௜ is a compositional term Its RHS benefits from composable terms
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Summary

 Programming real-time applications
 RTOS design issues
 Context switch
 Priority levels
 Tick scheduling
 System calls
 Interrupt handling
 Time management
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