
2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 1

6.b WCET analysis

Credits to Enrico Mezzetti, PhD
(enrico.mezzetti@bsc.es)

Worst-case execution time (WCET)

 For any input data and all initial logical states
 So that all execution paths of the program are covered

 For any hardware state
 So that the worst-case execution conditions are in effect

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator
 The high-watermark value can be ≪ WCET

 Static WCET analysis
 Uses an abstract model of the HW and of the program

2017/18 UniPD – T. Vardanega Real-Time Systems 396 of 594

2017/18 UniPD – T. Vardanega

Computing the WCET /1

 Why not measure the WCET of a task on its real HW?

 Triggering the WCET by test is very difficult
 Supplying input data that cover all possible program executions is

intractable in practice
 Worst-case initial state on modern HW is very difficult to determine

 Complex pipelines (out-of-order execution)
 Caches
 Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state
Logic analyser,
oscilloscope,

etc.
WCET ?

Real-Time Systems 397 of 594

2017/18 UniPD – T. Vardanega

Computing the WCET /2

 Exact WCET not generally computable (~ the halting problem)
 Yet, WCET bounds are essential to feasibility analysis

 Which must be safe to upper bound all possible executions
 Which be tight to avoid costly over-dimensioning

Real-Time Systems 398 of 594

2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 2

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control
flow and the HW behavior
 High-level analysis addresses the program behavior

 Control flow analysis builds a control flow graph (CFG)
 Low-level analysis determines the timing cost of

individual instructions on the abstract model of the HW
 Not constant for modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

2017/18 UniPD – T. Vardanega Real-Time Systems 399 of 594

Static WCET analysis /2

2017/18 UniPD – T. Vardanega Real-Time Systems 400 of 594

Implicit path enumeration technique

 The program’s CFG is augmented
with flow graph constraints

 The WCET is computed with
integer linear programming or
constraint programming

 𝑊𝐶𝐸𝑇 ൌ 𝑚𝑎𝑥 ∑ 𝑥 ൈ 𝑡
 𝑥 is the execution frequency of CFG

edge 𝑖
 𝑡 the execution time of CFG edge 𝑖

2017/18 UniPD – T. Vardanega Real-Time Systems 401 of 594

CFG Flow graph constraints

 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers

2017/18 UniPD – T. Vardanega

Static WCET analysis /3

Real-Time Systems 402 of 594

2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 3

Static WCET analysis /4

 High-level analysis /2
 Several techniques are employed to allow using IPET

 Control-flow analysis to construct the CFG
 First finding the basic blocks and then building the graph among them

 Data-flow analysis to find loop bounds
 Value analysis to resolve memory accesses

 Automated information extraction is insufficient
 User annotation of flow facts is needed

 To facilitate detection of infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and referenced memory addresses

2017/18 UniPD – T. Vardanega Real-Time Systems 403 of 594

2017/18 UniPD – T. Vardanega

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Real-Time Systems 404 of 594

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2017/18 UniPD – T. Vardanega Real-Time Systems 405 of 594

Understanding the cache

2017/18 UniPD – T. Vardanega Real-Time Systems 406 of 594

Direct	mapping	(by	index)
Each memory address maps to a single cache block:

the (hash of the) tag field gives it placement

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache blocks:

the index field tells the set and the tag the placement in it

offsetindex (set)tag
031

datatag V

offsetsettag
031

datatag V

1. closure2. look-up 1. closure2. look-up

memory

2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 4

2017/18 UniPD – T. Vardanega Real-Time Systems 407 of 594

2017/18 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we always trust the abstract model of the HW?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

Real-Time Systems 408 of 594

2017/18 UniPD – T. Vardanega

Static WCET analysis /7

 Safeness is at risk
 When local worst case does not always lead to global worst case
 Which is the case when timing anomalies occur

 Complex hardware architectures (e.g., out-of-order pipelines)
 Even improper design choices (e.g., inept cache replacement policies)
 Counter-intuitive timing behavior
 Faster execution of a single instruction causes long-term negative effects

 Both are very difficult to account for in static analysis

Real-Time Systems 409 of 594

2017/18 UniPD – T. Vardanega

Timing anomaly: example

 Assume some dependence between instructions
 Shared resources (e.g. pipeline stages) and opportunistic

scheduling of request servicing

 Faster execution of A leads to a worse case overall execution
owing to the order in which the instructions are executed

Real-Time Systems 410 of 594

2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 5

2017/18 UniPD – T. Vardanega

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor
 On the final executable
 Knowing that safeness not guaranteed (!)

 Hybrid approaches exploit
 The measurement of basic blocks on the real HW

 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

Real-Time Systems 411 of 594

2017/18 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation effects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results contingent on the coverage of the
executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

Real-Time Systems 412 of 594

2017/18 UniPD – T. Vardanega

Hybrid analysis: the big picture

 Open problems
 Can we trust the resulting estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May cause serious cost impact and inherent difficulty of exactness

Program
executable

Opt. User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

Real-Time Systems 413 of 594

2017/18 UniPD – T. Vardanega

Summary

 The challenge of computing the WCET
 Static analysis

 High-level analysis
 Low-level analysis

 Hybrid analysis (measurement-based)

Real-Time Systems 414 of 594

2017/18 UniPD - T. Vardanega 06/05/2018

Real Time Systems 6

Selected readings

 R. Wilhelm et al. (2008)
The worst-case execution-time problem—overview of methods
and survey of tools
DOI: 10.1145/1347375.1347389

2017/18 UniPD – T. Vardanega Real-Time Systems 415 of 594

