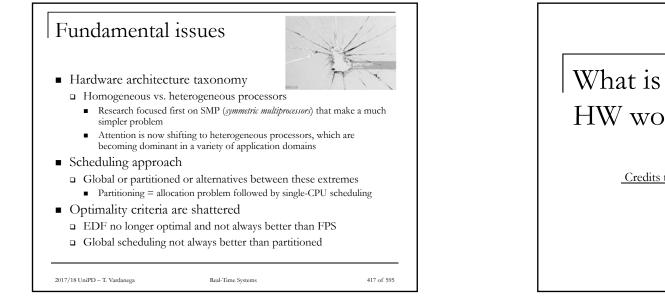
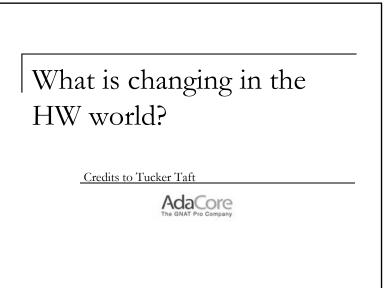
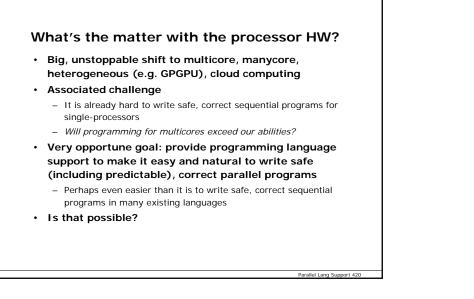
1

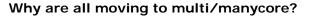
7.a Multicore systems – initial reckoning

Credits to various authors (acknowledged in place)

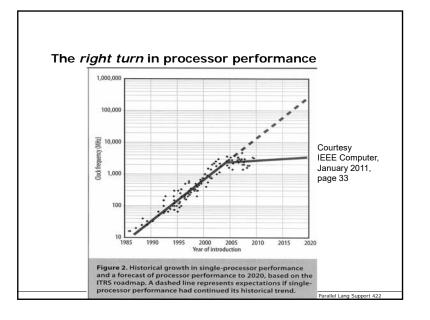

Hardware architecture taxonomy A multiprocessor (or multi-core) is *tightly coupled*Global status and workload information on all processors (cores) can be kept current at low cost The system may use a centralized dispatcher and scheduler When each processor (core) has its own scheduler, the decisions and actions of all schedulers are coherent


- Scheduling in this model is an NP-hard problem
- A distributed system is *loosely coupled*
 - □ It is too costly to keep global status
 - □ There usually is a dispatcher / scheduler per processor


Real-Time Systems


```
2017/18 UniPD – T. Vardanega
```

418 of 595



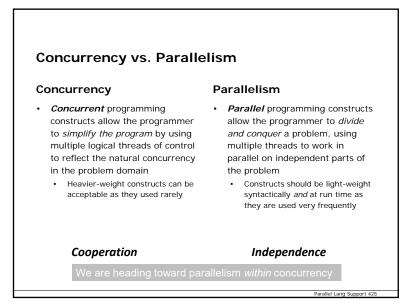
- · Power, power, power
 - Speeding clock rates past 3 GHz increased power density beyond what the chips (and customer pocketbooks) could bear
 - More and more computing is moving to battery-operated mobile platforms where low power is king
- With multi/manycore, the theoretical computing performance-per-watt (PPW) can be increased by adding cores, and perhaps slowing clock rate a bit
 - With single core, PPW began to *decrease* with increasing clock rates, due to increased source-to-drain leakage

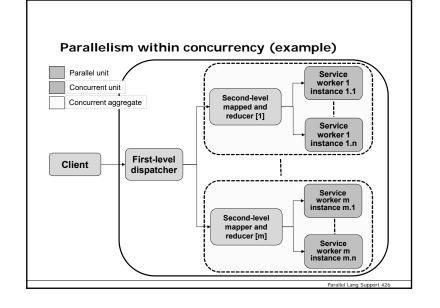
Parallel Lang Support 42

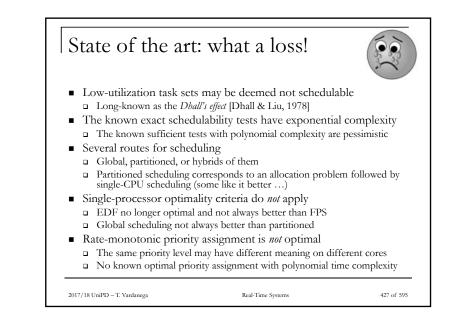
Clock rate doubling came to a screeching halt roundabout 2005

What are the implications of this right turn?

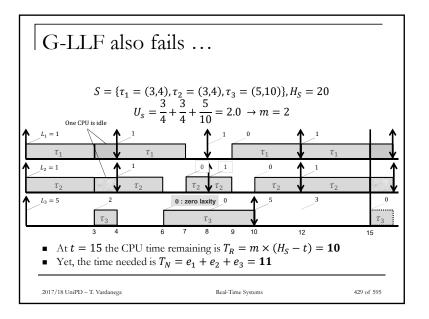
- Clock rate
 - Clock rates that were doubling about every 2 years, stalled at about 3 GHz by 2005
 - Had they continued doubling, we would now be buying laptops with clocks at about 50 GHz
- Cores/chip
 - Scaling to smaller features has continued
 - Now using added chip real estate for additional CPU "cores"
 - The number of cores/chip has started doubling since 2005
 - In those 10+ years, mainstream commercial x86 chips came at 20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

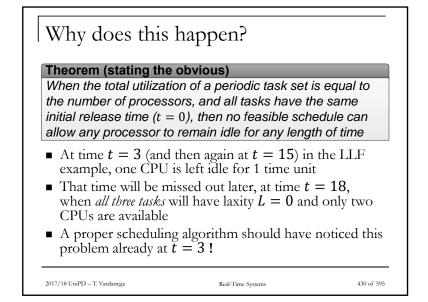

Parallel Lang Support 423

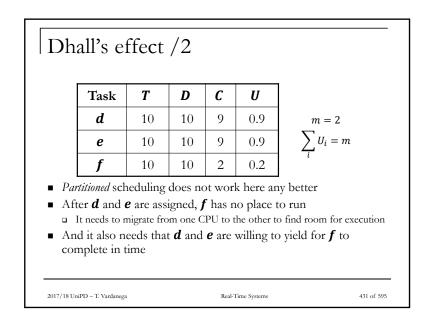

- · Almost back on Moore's Law exponential rocket
 - But only if considering cores/chip x performance/core

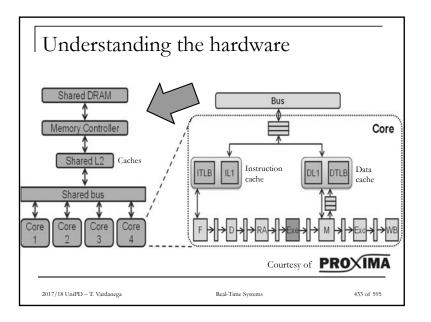

What else is happening to the HW?

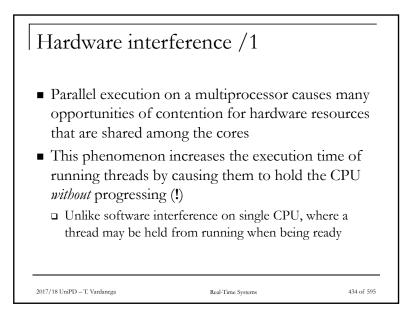
- · HW is getting more complicated
- · Not just a handful of really fast processors
- · Today's fastest computers have
 - A giant network of nodes
 - Each node is itself a heterogeneous conglomeration
 - Multiple cores
 - Vector units
 - GPUs or other accelerators
- · Our challenge is to figure how to program these beasts
 - Ideally we want our programs to *scale without rewriting*, from one core up to a giant server farm or supercomputer
 - Our basic approach is to *eliminate* barriers to parallelization, and remove the *sequential* bias of our programming languages

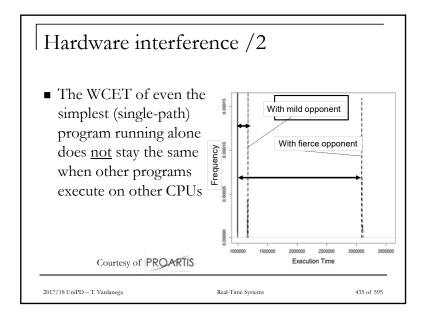

Parallel Lang Support 424

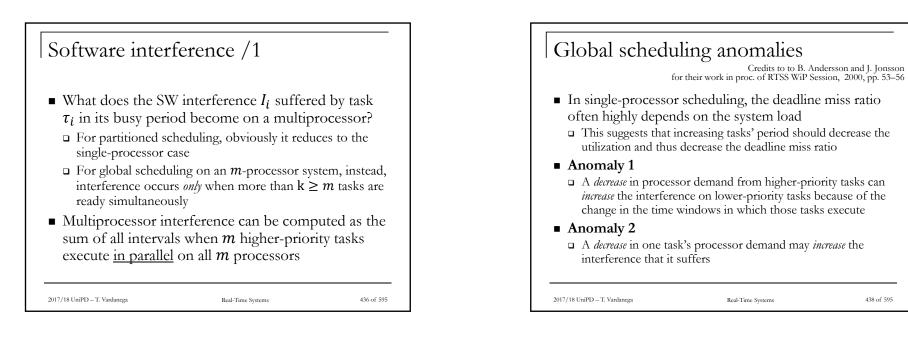


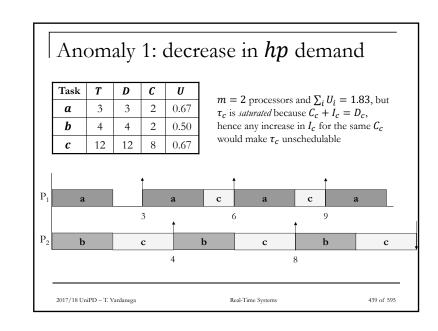


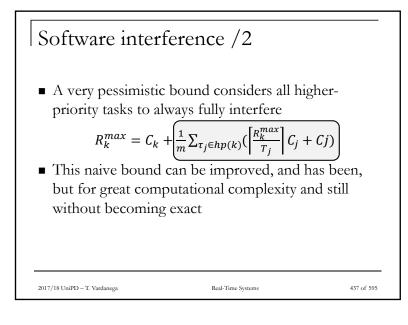


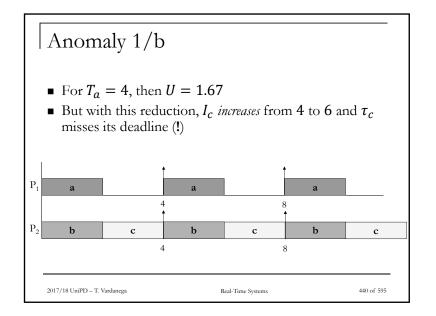


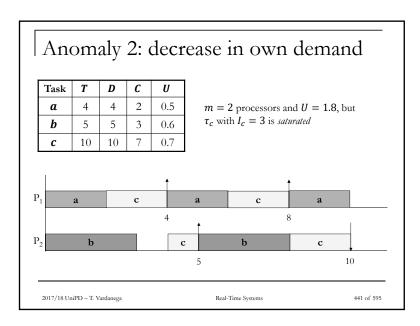


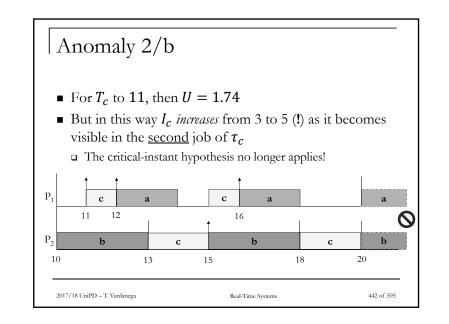


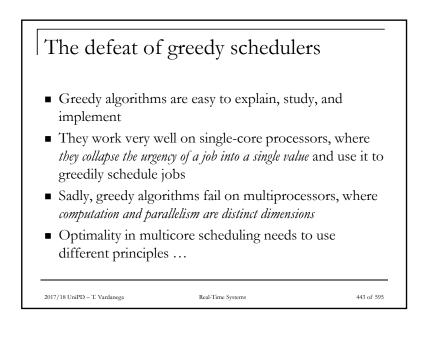


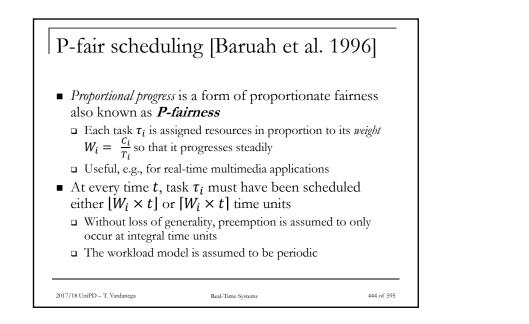


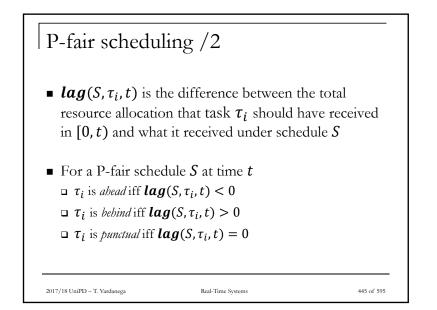


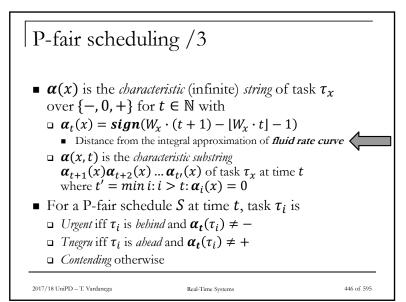


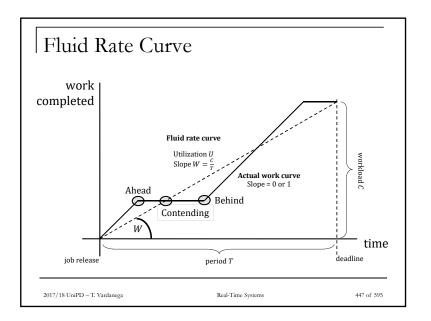


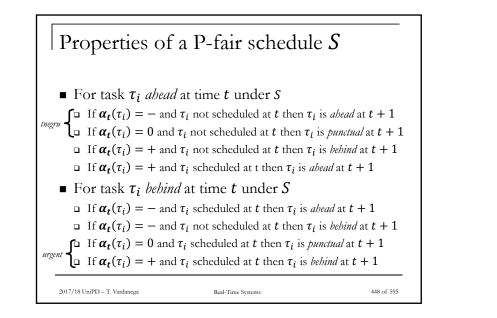


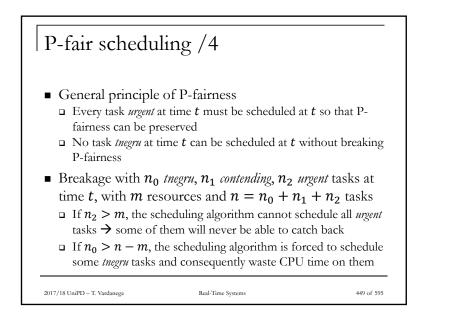


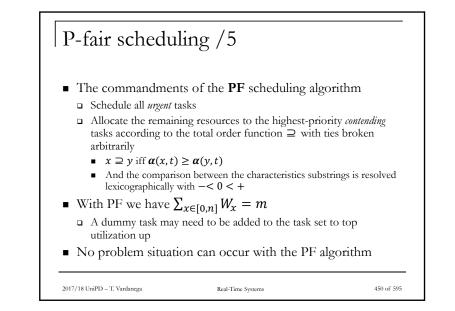












Fask	C	Т	W	• $m = 3$ processors
$\frac{\tau_v}{\tau_v}$	1	3	0.333	 n = 4 tasks τ_z is a dummy task used to top
τ_w	2	4	0.5	system utilization upIn general, its period is set to
τ_x	5	7	0.714	the system hyperperiod
$ au_y$	8	11	0.727	 This time we halved it With DE me always have
$ au_z$	335	462	3-U	• With PF we always have $n_2 > m$ and $n_0 \le n - m$

			T	ĥ	These task						\underline{g} /		
		lag	$x \ge p$	eriod		characteristic string					urgent contending	contending	tnegru
t	v	w	x.	9	2	v	w	x	y	2	tasks	tasks	tasks
0	0	0	0	Q	0	-	-	-	-	-	{}	y > z > x > w > v	{}
1	1	2	-2	-3	-127	-	0	+	+	+	$\{w\}$	y > z > x > v	{}
2	2	0	3	-6	-254	0	-	+	+	+	$\{v, x\}$	w > y > z	{}
3	0	(-2)	1	2	- 81	-	\bigcirc) - (-	-	{}	y > z > x > v	(w)
-4	1	0	$^{-1}$	-1	-46	-	4	+	+	+	{}	y>z>x>v=w	X)
5	2	2	-3	-4	-173	0	0	+	+	+	$\{v, w\}$	y > z > x	$\langle 0 \rangle$
6	0	0	12	-7	162	-	-	0	+	+	$\{x, z\}$	w > y > v	{}
7	1	-2	0	1	35	-	0	-	-	-	{}	y > z > x > y	$\{w\}$
8	2	0	-2	+2	-92	0	-	+	+	+	$\{v\}$	$y > z > x \neq w$	{}
9	0	2	3	-5	-219	-	0	+	+	+	$\{w, x\}$	y > z > v	{}
10	1	0	1	-8	116	-	-	F	0	-	{}	z > x > v = w	$\{y\}$
11	-1	2	$^{-1}$	0	-11	0	0	+	-	+	$\{w\}$	y > z > x	$\{v\}$
12	0	0	-4	-3	-13%	-	-	+	+	+	$\{x\}$	y > z > w > v	{}
13	1	2	2	-6	-265	1-	0	0	+	+	$\{w, x\}$	v > y > z	{}
14	-1	0	0	2	70	0	-	-)	-	-	{} /	y > z > x > w	$\{v\}$
15	0	2	-2	-1	-57	-	0	+	+	+	$\{w\}$	y > z > x > v	{}
16	1	0	3	-4	-184	-	-	+	+	+	$\{x\}$	y > z > v = w	{}
17	2	2	1	-7	-311	0	0	7	#	+	$\{v, w\}$	x > y > z	{}
18	0	0	$^{-1}$	1	24	-	-	+/	+	1	{}	y > z > x > w > v	- {}
19	1	2	-3	-2	-103	-	0	+	H	/+	$\{w\}$	y > z > v = x	{}