2017/18 UniPD - T. Vardanega 09/05/2018

| Hardware architecture taxonomy

7 a Multicore SYStCmS _ m A multiprocessor (or multi-core) is #ghtly coupled

o Global status and workload information on all processors

Hﬁﬂal reckonlng (cores) can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler

a When each processor (core) has its own scheduler, the
decisions and actions of all schedulers are coherent

m Scheduling in this model is an NP-hatrd problem
m A distributed system is /oosely coupled

Credits to various authors (acknowledged in place)

o Itis too costly to keep global status

o There usually is a dispatcher / scheduler per processor

2017/18 UniPD — T. Vardanega Real-Time Systems 418 of 595

| Fundamental issues ”

-
iy

% *

m Hardware architecture taxonomy [BT What 1S Changlng ln the

o Homogeneous vs. heterogeneous processors

m Research focused first on SMP (symmetric multiprocessors) that make a much I I ‘ X 7 1d
simpler problem \X’ Or P

m Attention is now shifting to heterogeneous processors, which are
becoming dominant in a variety of application domains

m Scheduling approach

a Global or partitioned or alternatives between these extremes Credits to Tucker Taft
m Partitioning = allocation problem followed by single-CPU scheduling A d
= Optimality criteria are shattered a. |

The GNAT Pro Company

a EDF no longer optimal and not always better than FPS
a Global scheduling not always better than partitioned

2017/18 UniPD — T. Vardanega Real-Time Systems 417 of 595

DAAl Tivrva~s OuvvAatAarmAas

2017/18 UniPD - T. Vardanega

What’s the matter with the processor HW?

= Big, unstoppable shift to multicore, manycore,
heterogeneous (e.g. GPGPU), cloud computing
= Associated challenge

— It is already hard to write safe, correct sequential programs for
single-processors

— Will programming for multicores exceed our abilities?
= Very opportune goal: provide programming language
support to make it easy and natural to write safe
(including predictable), correct parallel programs
— Perhaps even easier than it is to write safe, correct sequential
programs in many existing languages
* Is that possible?

The right turn in processor performance

1,000,000

100,000
= 10,
§;1 = Courtesy
% IEEE Computer,
g o January 2011,
= page 33

100

m
1985 1990 1995 2000 2005 2010 015 2020
fear of Introduction

Parallel Lang Support 420

Figure 2. t al g h in singl performance

and a fe af pi perfa e to 2020, based on the

ITRS di A dashed line rep P if single-

P performance had continued its historical trend. T —————————
Parallel Lang Support 422 |

Why are all moving to multi/manycore?

- Power, power, power

— Speeding clock rates past 3 GHz increased power density beyond
what the chips (and customer pocketbooks) could bear

— More and more computing is moving to battery-operated mobile
platforms where low power is king

< With multi/manycore, the theoretical computing
performance-per-watt (PPW) can be increased by
adding cores, and perhaps slowing clock rate a bit

— With single core, PPW began to decrease with increasing clock
rates, due to increased source-to-drain leakage

« Clock rate doubling came to a screeching halt
roundabout 2005

What are the implications of this right turn?

e Clock rate

— Clock rates that were doubling about every 2 years, stalled at
about 3 GHz by 2005

— Had they continued doubling, we would now be buying laptops
with clocks at about 50 GHz
= Cores/chip
— Scaling to smaller features has continued
— Now using added chip real estate for additional CPU “cores”
— The number of cores/chip has started doubling since 2005
— In those 10+ years, mainstream commercial x86 chips came at
20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+
= Almost back on Moore’s Law exponential rocket

— But only if considering cores/chip x performance/core

Parallel Lang Support 421

DAAl Tivrva~s OuvvAatAarmAas

Parallel Lang Support 423

09/05/2018

2017/18 UniPD - T. Vardanega

— A giant network of nodes

— Multiple cores
— Vector units

— GPUs or other accelerators
 Our challenge is to figure how to program these beasts

— ldeally we want our programs to scale without rewriting, from one
core up to a giant server farm or supercomputer

What else is happening to the HW?

= HW is getting more complicated
= Not just a handful of really fast processors
e Today’s fastest computers have

— Each node is itself a heterogeneous conglomeration

— Our basic approach is to eliminate barriers to parallelization, and
remove the sequential bias of our programming languages

Parallelism within concurrency (example)

~ —ommmeees
[paraliet unit / ! Service

: worker 1
l:l Concurrent unllt instance 1.1

Uy
I:I Concurrent aggregate

Second-level

mapped and 1
reducer [1] !
Service
worker 1
\ instance 1.n | |
~, e ——
First-level !
dispatcher 1
ys
i Service
i worker m
[inst m.1
[Second-level 1
i mapper and A
[reducer [m] =
i
1
)

Service
worker m
instancem.n | |}
\, ’
~, —_———— _ 7

Parallel Lang Support 424

Parallel Lang Support 426

Concurrency

= Concurrent programming

constructs allow the programmer
to simplify the program by using
multiple logical threads of control
to reflect the natural concurrency
in the problem domain

« Heavier-weight constructs can be

acceptable as they used rarely

Cooperation

Concurrency vs. Parallelism

Parallelism

Parallel programming constructs
allow the programmer to divide
and conquer a problem, using
multiple threads to work in
parallel on independent parts of
the problem
« Constructs should be light-weight
syntactically and at run time as
they are used very frequently

Independence

Parallel Lang Support 425

DAAl Tivrva~s OuvvAatAarmAas

State of the art: what a loss!

m Low-utilization task sets may be deemed not schedulable
o Long-known as the Dhall’s effect [Dhall & Liu, 1978]
m The known exact schedulability tests have exponential complexity
0 The known sufficient tests with polynomial complexity are pessimistic
m Several routes for scheduling
0 Global, partitioned, or hybrids of them
o Partitioned scheduling corresponds to an allocation problem followed by
single-CPU scheduling (some like it better ...)
m Single-processor optimality criteria do 7ot apply
o EDF no longer optimal and not always better than FPS
0 Global scheduling not always better than partitioned
= Rate-monotonic priority assignment is 7o optimal
0 The same priotity level may have different meaning on different cores
0 No known optimal priority assignment with polynomial time complexity

2017/18 UniPD — T. Vardanega Real-Time Systems 427 of 595

09/05/2018

2017/18 UniPD - T. Vardanega 09/05/2018

| Dhall’s effect /1 | Why does this happen?

Task | T D c U When the total utilization of a periodic task set is equal to
a 10 10 s | 05 m=2 the number of processors, and all tasks have the same
: initial release time (t = 0), then no feasible schedule can
b 10 10 5 |05 Z Ui=167<m allow any processor to remain idle for any length of time
c 12 12 8 | 0.67 m At time t = 3 (and then again at t = 15) in the LLF

example, one CPU is left idle for 1 time unit

m That time will be missed out later, at time t = 18,
when a/ll three tasks will have laxity L = 0 and only two

m Under global scheduling, G-EDF and G-FPS would run
a and b first on each of the 2 processors respectively

m But this would not leave sufficient time for € to complete CPUs are available

o 7 time units would be available on each processor, but 8 on neither A proper scheduling g_]gorjthm should have noticed this
m Deadline miss even if the total system is underutilized (!) problem already at t = 3!
2017/18 UniPD — T. Vardanega Real-Time Systems 428 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 430 of 595

| G-LLF also fails ... ‘ Dhall’s effect /2

S={r; =G4),1;, = (34),73 = (510)}, Hs = 20 Task T D C U
3 3 5
Ug==—+-+—==20->m=2 —
One CPU is idle s 4 4 10 d 10 10 9 0'9 m=2
S : A | I 1 | 0 A A e 10 10 9 0.9 ZUi=m
L v 51 51) 51 \ l
AN =1 l\/{l oN 1 0 A 3 f 10 10 2 0.2
@ [V = | | nyn | [7, , m Partitioned scheduling does not work here any better
A =5 2 0:zerolaxity 0 A S 3 0 m After d and e are assigned, f has no place to run
| o | 73 T?\ o It needs to migrate from one CPU to the other to find room for execution
3 4 6 7 8 8 10 12 15 m And it also needs that d and e are willing to yield for f to
m Att =15 the CPU time remaining is T = m X (Hg — t) = 10 complete in time

m Yet, the time neededis Ty = e; + e, +e3 =11

2017/18 UniPD — T. Vardanega Real-Time Systems 429 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 431 of 595

DAAl Tivrva~s OuvvAatAarmAas

2017/18 UniPD - T. Vardanega 09/05/2018

| The multicore scheduling landscape | Hardware interference /1

m Parallel execution on a multiprocessor causes many
opportunities of contention for hardware resources
that are shared among the cores

m This phenomenon increases the execution time of
running threads by causing them to hold the CPU
withont progressing (1)

o Unlike software interference on single CPU, where a
thread may be held from running when being ready

2017/18 UniPD — T. Vardanega Real-Time Systems 432 of 595 2017/18 UniPD —T. Vardanega Real-Time Systems 434 of 595

| Understanding the hardware | Hardware interference /2

m The WCET of even the

<[] —
. . g J I . . 1
simplest (single-path) s ‘_i W'"‘ mild opponent '
program running alone e :
2 L With fierce opponent |
does not stay the same §¢ | [e :
when other progtams § | !
[T I]
execute on other CPUs £ | ! i
H
]
1]
g !

Courtesy of PRO IMA Courtesy of PRQ}(R"”S Execution Time

2017/18 UniPD — T. Vardanega Real-Time Systems 433 of 595 2017/18 UniPD —T. Vardanega Real-Time Systems 435 of 395

DAAl Tivrva~s OuvvAatAarmAas |

2017/18 UniPD - T. Vardanega

| Software interference /1

m What does the SW interference I; suffered by task
T; in its busy period become on a multiprocessor?
o For partitioned scheduling, obviously it reduces to the
single—processor case
o For global scheduling on an m-processor system, instead,
interference occurs on/y when more than k = m tasks are
ready simultaneously
m Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors

2017/18 UniPD — T. Vardancga Real-Time Systems 436 of 595

‘ Global scheduling anomalies
Credits to to B. Andersson and J. Jonsson
for their work in proc. of RTSS WiP Session, 2000, pp. 53-56
m In single-processor scheduling, the deadline miss ratio
often highly depends on the system load
0 This suggests that increasing tasks’ period should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1

Q A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time windows in which those tasks execute

= Anomaly 2

Q A decrease in one task’s processor demand may zncrease the
interference that it suffers

2017/18 UniPD — T. Vardanega Real-Time Systems 438 of 595

| Software interference /2

m A very pessimistic bound considers all higher-
priority tasks to always fully interfere

max 1 Rznax 7
R =Cr + ;erehp(k)([T_j] G +Cj)

m This naive bound can be improved, and has been,

but for great computational complexity and still
without becoming exact

2017/18 UniPD — T. Vardanega Real-Time Systems 437 of 595

DAAl Tivrva~s OuvvAatAarmAas

| Anomaly 1: decrease in hp demand

Task | T D C U
m = 2 processors and Y,; U; = 1.83, but
a 3 2 | 0.67 T, is saturated because C; + I, = Dy,
b 4 4 2 | 0.50 hence any increase in I for the same C,
c 1211218 | 067 would make 7, unschedulable
Py a ‘ a | c a c a |
3 6 9
P, b ‘ c b ‘ c b | c
4 8

2017/18 UniPD — T. Vardanega Real-Time Systems 439 of 595

09/05/2018

2017/18 UniPD - T. Vardanega 09/05/2018

| Anomaly 1/b | Anomaly 2/b

m For T, =4, thenU = 1.67 m For T, to 11, then U = 1.74
m But with this reduction, I, increases from 4 to 6 and T,

: : (m But in this way I #ncreases from 3 to 5 (!) as it becomes
misses its deadline (!)

visible in the second job of T

0 The critical-instant hypothesis no longer applies!

¢ § 10 13 15 18 20
2017/18 UniPD — T. Vardanega Real-Time Systems 440 of 595 2017/18 UniPD —T. Vardanega Real-Time Systems 442 of 395
| Anomaly 2: decrease in own demand | The defeat of greedy schedulers
Task | T D c U Greedv al ith lai d d
s Gr tithms ar in n
a 4 4 2105 m = 2 processors and U = 1.8, but k cedy algorithms are casy to explain, study, a
b 5 3 0.6 T with I, = 3 is saturated 1mplemeﬂt
c l10l10l 771 07 m They work very well on single-core processors, where
they collapse the urgency of a job into a single value and use it to
greedily schedule jobs
P, a | c a | & a | m Sadly, greedy algorithms fail on multiprocessors, where
4 8 computation and parallelism are distinct dimensions
P, . m Optimality in multicore scheduling needs to use
5 o different principles ...
2017/18 UniPD — T. Vardanega Real-Time Systems 441 of 595 2017/18 UniPD —T. Vardanega Real-Time Systems 443 of 395

2017/18 UniPD - T. Vardanega 09/05/2018

| P-fair scheduling [Baruah et al. 1990] | P-fair scheduling /3

m Proportional progress is a form of proportionate fairness m a(x) is the characteristic (infinite) string of task T,
also known as P-fairness over {—,0,+} for t € N with
o Each task 7; is assigned resources in proportion to its weight 0 a; (x) = sign(]/l/;c . (t + 1) — “/Vx . tJ — 1)
Ci . ‘
W; = T—l so that it progresses steadily = Distance from the integral approximation of fuid rate curve <:|
L
0 Useful, e.g., for real-time multimedia applications Q a(x, t) is the characteristic substring

m At every time t, task T; must have been scheduled gﬁ’;gi?f;ﬁlgzl gt't(:Jg (()i)t aik(;[x attime £
either |W; X t]| or [W; X t] time units '
o Without loss of generality, preemption is assumed to only . . .

occur at integral time units a Urgentiff T; is behind and ate(T;) # —
o The workload model is assumed to be petiodic Q Tregruiff T; is abead and &t (7;) # +

a Contending otherwise

m For a P-fair schedule S at time t, task 7; is

2017/18 UniPD — T. Vardanega Real-Time Systems 444 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 446 of 595

| P-fair scheduling /2 ‘ Fluid Rate Curve
)) work
m lag(S,t;,t) is the difference between the total completed
PRt
resource allocation that task T; should have received LT
in [0, t) and what it received under schedule S Fluid rate curve a !
|
Utilization U L7 ' s
. . SlopeW:;/,z’ : > %
m For a P-fair schedule S at time t o+ hetual work curve e
- ope =0 or 1 =
. . Ahead e !
o T; is abead iff lag(S, t;,t) < 0 & Behind :
Q T is bebind iff lag (S, t;,t) > 0 /< Contending :
Tw i
. . _ % L)
Q T; is punctual iff lag(S,t;,t) = 0 : time
job release period T ::leadline
2017/18 UniPD — T. Vardanega Real-Time Systems 445 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 447 of 595

DAAl Tivrva~s OuvvAatAarmAas (o)

2017/18 UniPD - T. Vardanega

| Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a,(t;) = — and 7; not scheduled at t then T; is abead at t + 1
e {D If oty (7;) = 0 and 7; not scheduled at t then T; is punctual at t + 1
o If a,(t;) = + and 7; not scheduled at t then T; is bebind at t + 1
o If a;(t;) = + and 7; scheduled at t then T; is abead at t + 1

m For task T; behind at time t under S
o If a,(t;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a;(t;) = — and 7; not scheduled at ¢ then T; is behind at t + 1
b If a,(t;) = 0 and 7; scheduled at t then T; is punctnalat t + 1
et {D If a;(t;) = + and 7; scheduled at t then T; is behind at t + 1

2017/18 UniPD — T. Vardanega Real-Time Systems 448 of 595

| P-fair scheduling /5

® The commandments of the PF scheduling algorithm
0 Schedule all #rgent tasks
o Allocate the remaining resources to the highest-priotity contending
tasks according to the total order function 2 with ties broken
arbitrarily
n x 2yiffa(xt) = a(y,t)
m And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
= With PF we have Xy cpon We = m

o A dummy task may need to be added to the task set to top
utilization up

= No problem situation can occur with the PF algorithm

09/05/2018

2017/18 UniPD — T. Vardanega Real-Time Systems 450 of 595

| P-fair scheduling /4

m General principle of P-fairness
o Every task ugent at time £ must be scheduled at ¢ so that P-
fairness can be preserved
o No task #regru at time t can be scheduled at t without breaking
P-fairness

m Breakage with ng fregru, Ny contending, Ny urgent tasks at

time t, with m resources and n = ng + nq + n, tasks

o If n, > m, the scheduling algorithm cannot schedule all #gent
tasks = some of them will never be able to catch back

o If ng > n —m, the scheduling algorithm is forced to schedule
some Znegru tasks and consequently waste CPU time on them

2017/18 UniPD — T. Vardanega Real-Time Systems 449 of 595

DAAl Tivrva~s OuvvAatAarmAas

Example (PF scheduling) /1
= m = 3 processors
Task | C | T w u 7= 4 tasks
T, 1 3 0.333...| = 72isadummy task used to top
system utilization up
Tw 2 4 0.5 m In general, its period is set to
Ty 5 7 0.714... the system hyperpetiod
Ty 38 11 0.727 ... s} AThls time we halved it
s With PF we always have
L2 335|462 3-U n, >mandng<n-—m

2017/18 UniPD — T. Vardanega Real-Time Systems 451 of 595

2017/18 UniPD - T. Vardanega 09/05/2018

| Example (PF scheduling) /2
] These tasks are scheduled and they become ahead |
lag = period characteristic string || urgent dontending Tregrn

[} v T x P z e Jwlxly z tasks tasks tasks |
ol o o ol ¢ = =1=1=1= O o w=c| 0 |

I 1 2]-2]-3 |0+]+] + {uw} y>r>c>v T |

2 2 3| -6 O]l =1+]+ + [fv.x} w >y >t }

Bl < 1| 2 = OB E {} y>s>x>v¢ L

1 10 BJ-17-1) N N) rr.>=>*‘.)".—.=r'/f").]

5 2 2 N3 | -4 0|l o\|+|+] + [| {vr.e} H>:>r {}

0 0 0 2 | =7 =]1=\0]|+]+ {2} w>y > i}

T T[—2] o) 1 -0\ =1=1= { e A {w}

£l 2] o[-2 2 ol -N+[+1]+ {c} y>s>r Xw {3

of o 2] 3[-% o\ 1+ + [{w=} ¥ > {1

oy 1oL 1i-3 =W L) B ' 0]
nj-1] 2|=1] o 0[O0 |+& |-+ {v}
12 1] 0 4| -3 —|1-|H{+] + i}

P R e B e 4
14 [=1 0 [1] 2 N -1-{-1-= {v}
5 0| 2| —=2]—=1 — N+ N+]| + 0
16| 1| o| 3|3 = o L 0
17 T 2 1= 00 +]
s o o= it — = / i
19 1] 2|-8]| -2 — o+ + {}

2017/18 UniPD — T. Vardanega Real-Time Systems 452 of 505

DAaAl Tivma~n OuratAaArmas AN

