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7.a Multicore systems –
initial reckoning

Credits to various authors (acknowledged in place)

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) that make a much 
simpler problem

 Attention is now shifting to heterogeneous processors, which are 
becoming dominant in a variety of application domains

 Scheduling approach
 Global or partitioned or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned
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Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors 

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the 

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status 
 There usually is a dispatcher / scheduler per processor
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What is changing in the 
HW world?

Credits to Tucker Taft
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Parallel Lang Support 420

What’s the matter with the processor HW?
• Big, unstoppable shift to multicore, manycore, 

heterogeneous (e.g. GPGPU), cloud computing
• Associated challenge 

– It is already hard to write safe, correct sequential programs for 
single-processors 

– Will programming for multicores exceed our abilities?

• Very opportune goal: provide programming language 
support to make it easy and natural to write safe 
(including predictable), correct parallel programs
– Perhaps even easier than it is to write safe, correct sequential 

programs in many existing languages

• Is that possible?
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Why are all moving to multi/manycore?

• Power, power, power
– Speeding clock rates past 3 GHz increased power density beyond 

what the chips (and customer pocketbooks) could bear
– More and more computing is moving to battery-operated mobile 

platforms where low power is king

• With multi/manycore, the theoretical computing 
performance-per-watt (PPW) can be increased by 
adding cores, and perhaps slowing clock rate a bit
– With single core, PPW began to decrease with increasing clock 

rates, due to increased source-to-drain leakage

• Clock rate doubling came to a screeching halt 
roundabout 2005
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The right turn in processor performance

Courtesy 
IEEE Computer, 
January 2011, 
page 33
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What are the implications of this right turn?

• Clock rate
– Clock rates that were doubling about every 2 years, stalled at 

about 3 GHz by 2005
– Had they continued doubling, we would now be buying laptops 

with clocks at about 50 GHz

• Cores/chip
– Scaling to smaller features has continued
– Now using added chip real estate for additional CPU “cores”
– The number of cores/chip has started doubling since 2005
– In those 10+ years, mainstream commercial x86 chips came at 

20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

• Almost back on Moore’s Law exponential rocket
– But only if considering cores/chip x performance/core
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Parallel Lang Support 424

What else is happening to the HW?
• HW is getting more complicated
• Not just a handful of really fast processors
• Today’s fastest computers have

– A giant network of nodes
– Each node is itself a heterogeneous conglomeration

– Multiple cores
– Vector units
– GPUs or other accelerators 

• Our challenge is to figure how to program these beasts
– Ideally we want our programs to scale without rewriting, from one 

core up to a giant server farm or supercomputer
– Our basic approach is to eliminate barriers to parallelization, and 

remove the sequential bias of our programming languages
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Concurrency vs. Parallelism

Concurrency

• Concurrent programming 
constructs allow the programmer 
to simplify the program by using 
multiple logical threads of control 
to reflect the natural concurrency
in the problem domain
• Heavier-weight constructs can be 

acceptable as they used rarely

Parallelism

• Parallel programming constructs 
allow the programmer to divide 
and conquer a problem, using 
multiple threads to work in 
parallel on independent parts of 
the problem 
• Constructs should be light-weight 

syntactically and at run time as 
they are used very frequently 

Cooperation Independence

We are heading toward parallelism within concurrency
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Parallelism within concurrency (example)

Client First-level 
dispatcher

Second-level 
mapped and 
reducer [1]

Service 
worker 1 

instance 1.1

Service 
worker 1 

instance 1.n

Second-level 
mapper and 
reducer [m]

Service 
worker m 

instance m.1

Service 
worker m 

instance m.n

Parallel unit

Concurrent unit

Concurrent aggregate

State of the art: what a loss!

 Low-utilization task sets may be deemed not schedulable
 Long-known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential complexity
 The known sufficient tests with polynomial complexity are pessimistic

 Several routes for scheduling
 Global, partitioned, or hybrids of them
 Partitioned scheduling corresponds to an allocation problem followed by 

single-CPU scheduling (some like it better …)
 Single-processor optimality criteria do not apply

 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

 Rate-monotonic priority assignment is not optimal
 The same priority level may have different meaning on different cores
 No known optimal priority assignment with polynomial time complexity
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Dhall’s effect /1

 Under global scheduling, G-EDF and G-FPS would run
𝒂 and 𝒃 first on each of the 2 processors respectively

 But this would not leave sufficient time for 𝒄 to complete 
 7 time units would be available on each processor, but 8 on neither

 Deadline miss even if the total system is underutilized (!)

Task 𝑻 𝑫 𝑪 𝑼
𝒂 10 10 5 0.5

𝒃 10 10 5 0.5

𝒄 12 12 8 0.67

𝑚 ൌ 2

෍ 𝑈௜ ൌ 1.67 ൏ 𝑚
௜
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𝑆 ൌ 𝜏ଵ ൌ 3,4 , 𝜏ଶ ൌ 3,4 , 𝜏ଷ ൌ 5,10 , 𝐻ௌ ൌ 20

𝑈௦ ൌ
3
4 ൅

3
4 ൅

5
10 ൌ 2.0 → 𝑚 ൌ 2

 At 𝑡 ൌ 15 the CPU time remaining is 𝑇ோ ൌ 𝑚 ൈ 𝐻ௌ െ 𝑡 ൌ 𝟏𝟎
 Yet, the time needed is 𝑇ே ൌ 𝑒ଵ ൅ 𝑒ଶ ൅ 𝑒ଷ ൌ 𝟏𝟏

G-LLF also fails …
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𝜏ଷ
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𝜏ଵ
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𝜏ଷ

𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଵ𝜏ଵ
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𝐿ଵ ൌ 1

𝐿ଶ ൌ 1

𝐿ଷ ൌ 5 2

1

1

6 10

0 1

0

1 0

0

9 12

5 3

1

1

0

15

One CPU is idle

𝟎 : zero laxity

Theorem (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, and all tasks have the same 
initial release time (𝑡 ൌ 0), then no feasible schedule can 
allow any processor to remain idle for any length of time

Why does this happen?

 At time 𝑡 ൌ 3 (and then again at 𝑡 ൌ 15) in the LLF 
example, one CPU is left idle for 1 time unit

 That time will be missed out later, at time 𝑡 ൌ 18, 
when all three tasks will have laxity 𝐿 ൌ 0 and only two 
CPUs are available

 A proper scheduling algorithm should have noticed this 
problem already at 𝑡 ൌ 3 !
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Dhall’s effect /2

 Partitioned scheduling does not work here any better
 After 𝒅 and 𝒆 are assigned, 𝒇 has no place to run

 It needs to migrate from one CPU to the other to find room for execution
 And it also needs that 𝒅 and 𝒆 are willing to yield for 𝒇 to 

complete in time

Task 𝑻 𝑫 𝑪 𝑼
𝒅 10 10 9 0.9

𝒆 10 10 9 0.9

𝒇 10 10 2 0.2

𝑚 ൌ 2

෍ 𝑈௜ ൌ 𝑚
௜
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The multicore scheduling landscape
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Global Partitioned

Clustered Hybrid (semi-partitioned)

Understanding the hardware
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Instruction
cache

Data
cache

Caches

Courtesy of

Hardware interference /1

 Parallel execution on a multiprocessor causes many 
opportunities of contention for hardware resources 
that are shared among the cores

 This phenomenon increases the execution time of 
running threads by causing them to hold the CPU 
without progressing (!)
 Unlike software interference on single CPU, where a 

thread may be held from running when being ready 
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y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of even the 
simplest (single-path) 
program running alone 
does not stay the same 
when other programs 
execute on other CPUs
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Courtesy of
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Software interference /1

 What does the SW interference 𝐼௜ suffered by task 
𝜏௜ in its busy period become on a multiprocessor?
 For partitioned scheduling, obviously it reduces to the 

single-processor case
 For global scheduling on an 𝑚-processor system, instead, 

interference occurs only when more than k ൒ 𝑚 tasks are 
ready simultaneously

 Multiprocessor interference can be computed as the 
sum of all intervals when 𝑚 higher-priority tasks 
execute in parallel on all 𝑚 processors
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Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to always fully interfere

𝑅௞
௠௔௫ ൌ 𝐶௞ ൅ ଵ

௠
∑ ሺ ோೖ

೘ೌೣ

்ೕ
𝐶௝ ൅ 𝐶𝑗ሻఛೕ∈௛௣ሺ௞ሻ

 This naive bound can be improved, and has been, 
but for great computational complexity and still 
without becoming exact
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Global scheduling anomalies

 In single-processor scheduling, the deadline miss ratio 
often highly depends on the system load
 This suggests that increasing tasks’ period should decrease the 

utilization and thus decrease the deadline miss ratio
 Anomaly 1

 A decrease in processor demand from higher-priority tasks can 
increase the interference on lower-priority tasks because of the 
change in the time windows in which those tasks execute

 Anomaly 2
 A decrease in one task’s processor demand may increase the 

interference that it suffers
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Credits to to B. Andersson and J. Jonsson
for their work in proc. of RTSS WiP Session, 2000, pp. 53–56

Anomaly 1: decrease in ℎ𝑝 demand

Task 𝑻 𝑫 𝑪 𝑼
𝒂 3 3 2 0.67
𝒃 4 4 2 0.50
𝒄 12 12 8 0.67

𝑚 ൌ 2 processors and ∑ 𝑈௜ ൌ 1.83௜ , but
𝜏௖ is saturated because 𝐶௖ ൅ 𝐼௖ ൌ 𝐷௖,
hence any increase in 𝐼௖ for the same 𝐶௖
would make 𝜏௖ unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c
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Anomaly 1/b

 For 𝑇௔ ൌ 4, then 𝑈 ൌ 1.67
 But with this reduction, 𝐼௖ increases from 4 to 6 and 𝜏௖

misses its deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4
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Anomaly 2: decrease in own demand

Task 𝑻 𝑫 𝑪 𝑼
𝒂 4 4 2 0.5
𝒃 5 5 3 0.6
𝒄 10 10 7 0.7

𝑚 ൌ 2 processors and 𝑈 ൌ 1.8, but
𝜏௖ with 𝐼௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c
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Anomaly 2/b

 For 𝑇௖ to 11, then 𝑈 ൌ 1.74
 But in this way 𝐼௖ increases from 3 to 5 (!) as it becomes 

visible in the second job of 𝜏௖
 The critical-instant hypothesis no longer applies!

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18
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The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and 
implement 

 They work very well on single-core processors, where 
they collapse the urgency of a job into a single value and use it to 
greedily schedule jobs

 Sadly, greedy algorithms fail on multiprocessors, where 
computation and parallelism are distinct dimensions

 Optimality in multicore scheduling needs to use 
different principles …
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness 
also known as P-fairness
 Each task 𝜏௜ is assigned resources in proportion to its weight

𝑊௜ ൌ   ஼೔
்೔

so that it progresses steadily

 Useful, e.g., for real-time multimedia applications
 At every time 𝑡, task 𝜏௜ must have been scheduled 

either 𝑊௜ ൈ 𝑡 or 𝑊௜ ൈ 𝑡 time units
 Without loss of generality, preemption is assumed to only 

occur at integral time units
 The workload model is assumed to be periodic
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P-fair scheduling /2

 𝒍𝒂𝒈ሺ𝑆, 𝜏௜, 𝑡ሻ is the difference between the total 
resource allocation that task 𝜏௜ should have received 
in ሾ0, 𝑡ሻ and what it received under schedule 𝑆

 For a P-fair schedule 𝑆 at time 𝑡
 𝜏௜ is ahead iff 𝒍𝒂𝒈ሺ𝑆, 𝜏௜, 𝑡ሻ ൏ 0
 𝜏௜ is behind iff 𝒍𝒂𝒈ሺ𝑆, 𝜏௜, 𝑡ሻ ൐ 0
 𝜏௜ is punctual iff 𝒍𝒂𝒈ሺ𝑆, 𝜏௜, 𝑡ሻ ൌ 0
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P-fair scheduling /3

 𝜶ሺ𝑥ሻ is the characteristic (infinite) string of task 𝜏௫
over ሼെ, 0, ൅ሽ for 𝑡 ∈ ℕ with
 𝜶௧ 𝑥 ൌ 𝒔𝒊𝒈𝒏 𝑊௫ · 𝑡 ൅ 1 െ 𝑊௫ · 𝑡 െ 1

 Distance from the integral approximation of fluid rate curve

 𝜶ሺ𝑥, 𝑡ሻ is the characteristic substring
𝜶௧ାଵ 𝑥 𝜶௧ାଶ 𝑥 … 𝜶௧ᇱ 𝑥 of task 𝜏௫ at time 𝑡
where 𝑡′ ൌ 𝑚𝑖𝑛 𝑖: 𝑖 ൐ 𝑡: 𝜶௜ሺ𝑥ሻ ൌ 0

 For a P-fair schedule 𝑆 at time 𝑡, task 𝜏௜ is
 Urgent iff 𝜏௜ is behind and 𝜶𝒕 𝜏௜ ് െ
 Tnegru iff 𝜏௜ is ahead and 𝜶𝒕 𝜏௜ ് ൅
 Contending otherwise
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Fluid Rate Curve
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Properties of a P-fair schedule 𝑆

 For task 𝜏௜ ahead at time 𝑡 under 𝑆 
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at t then 𝜏௜ is ahead at 𝑡 ൅ 1

 For task 𝜏௜ behind at time 𝑡 under 𝑆
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1urgent

tnegru
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P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time 𝑡 must be scheduled at 𝑡 so that P-

fairness can be preserved
 No task tnegru at time 𝑡 can be scheduled at 𝑡 without breaking 

P-fairness

 Breakage with 𝑛଴ tnegru, 𝑛ଵ contending, 𝑛ଶ urgent tasks at 
time 𝑡, with 𝑚 resources and 𝑛 ൌ 𝑛଴ ൅ 𝑛ଵ ൅ 𝑛ଶ tasks
 If 𝑛ଶ ൐ 𝑚, the scheduling algorithm cannot schedule all urgent

tasks  some of them will never be able to catch back
 If 𝑛଴ ൐ 𝑛 െ 𝑚, the scheduling algorithm is forced to schedule 

some tnegru tasks and consequently waste CPU time on them
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P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken 
arbitrarily
 𝑥 ⊇ 𝑦 iff 𝜶ሺ𝑥, 𝑡ሻ ൒ 𝜶ሺ𝑦, 𝑡ሻ
 And the comparison between the characteristics substrings is resolved 

lexicographically with െ൏ 0 ൏ ൅

 With PF we have ∑ 𝑊௫ ൌ 𝑚௫∈ሾ଴,௡ሿ
 A dummy task may need to be added to the task set to top 

utilization up
 No problem situation can occur with the PF algorithm
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Example (PF scheduling) /1

Task C T W

𝝉𝒗 1 3 0.333…
𝝉𝒘 2 4 0.5
𝝉𝒙 5 7 0.714…
𝝉𝒚 8 11 0.727…
𝝉𝒛 335 462 3-U

 𝑚 ൌ 3 processors
 𝑛 ൌ 4 tasks
 𝜏௭ is a dummy task used to top 

system utilization up
 In general, its period is set to 

the system hyperperiod
 This time we halved it

 With PF we always have 
𝑛ଶ ൐ 𝑚 and 𝑛଴ ൑ 𝑛 െ 𝑚
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Example (PF scheduling) /2
These tasks are scheduled and they become ahead
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