2017/18 UniPD - T. Vardanega 12/05/2018

- — Problem

Partitioned Schedulers # Optimal

7b Seekjng the 105t m Example: 2 processors; 3 tasks, each with 2 units
. . of work required every 3 time units: (3,2)
optimality —_— |
cpu1 |Taski1 , .
0 1 2 3
cpu2 |Task2 , l
I I
0 1 2 3
sgjgélZ;niPD ot Real-Time Systems 455
" A Problem

Global Schedulers May Succeed

m Example: 2 processors; 3 tasks, each with 2 units
of work required every 3 time units

Task 3 migrates between processors

CPU1 |Task1 , lTask 3b

I
Greg Levint Shelby Funk* Caitlin Sadowski* 0 /1\2/ 3
Scott Brandt'

lan Pye? .
y cpu2 [Task3a) Task2 |
I I

"University of California *University of Georgia
Santa Cruz Athens 0 1 2 3
2017/18 UniPD — T.
2017/18 UniPD — T. Vardanega Real-Time Systems 457 Vardanegam Real-Time Systems 456

DAAl Tivrva~s OuvvAatAarmAas A

2017/18 UniPD - T. Vardanega

Problem

]
Fluid Rate Curve
work
completed —~
-7 !
P 1
e i
Fluid rate curve /- :
1
Slope W = % = U (Utilization) -} | H
Pad 1
e Actual work curve 1 > B
e Slope = 0 (not running) H §
e =1 (running) 1 ~
P 1
27 I
7 1
-7 |
< i
- I
- I
| time
|
job release period T deadline
2017/18 UniPD - T.
Vardanega Real-Time Systems 457
" JEE Problem
]
Feasible Work Region
work
work complete
completed .]
]
]
]
|
]
N |
o]
0«’}?’" Lo/ ! S
4 - v =
K o S L g
; - D] Q
i e 0 | Q
7 S !
:
& I
-7 |
Fie I
- I
|
' time
|
job release period T deadline
2017/18 UniPD - T.
Vardanega Real-Time Systems 458

DAAl Tivrva~s OuvvAatAarmAas

" S protiem

The Grand Challenge (Mark 1)

m Design an optimal scheduling algorithm for
periodic task sets on multiprocessors

O A task set is feasible if there exists a schedule
that meets all deadlines

O A scheduler is optimal if it can always
schedule any feasible task set

2017/18 UniPD - T.

Vardanega Real-Time Systems 459
N Protiem
Necessary and Sufficient

Conditions

m Any set of (independent) tasks needing at most
O 1 processor for each task t; (Vi U; < 1)
O m processors for all tasks (3; U; < m)
is feasible
m Proof: small scheduling intervals can approximate
the fluid rate curve (at what cost?)

O Status: solved. P-Fair (1996) was the first optimal
algorithm

2017/18 UniPD - T.
Vardanega Real-Time Systems 460

12/05/2018

2017/18 UniPD - T. Vardanega

" S =
The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Finding a feasible schedule with the fewest
migrations is NP-Complete!

2017/18 UniPD - T.
Vardanega Real-Time Systems 461

" S Frtten
The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Status: Solved

O BUT the solutions are complex and confusing

m Our Contributions: A simple, unifying
theory for optimal global multiprocessor
scheduling and a simple optimal algorithm

2017/18 UniPD - T.
Vardanega Real-Time Systems 462

DAAl Tivrva~s OuvvAatAarmAas

12/05/2018

" S
Why Greedy Algorithms Fail
On Multiprocessors

m Example (n = 3, m = 2)

Task 1: Work =9, Period =10 | i
Task 2: Work =9 , Period =10 hi

Task 3 Work =8, Period =40 NN | Y
0 10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

2017/18 UniPD - T.
Vardanega Real-Time Systems 463

" S
Why Greedy Algorithms Fail
On Multiprocessors

At _ O 'rasn:wun:g_&nm:ml i
t=20, T1, T2 Task 2: Werk =3, Period = 10

. —
are the obvious Task 3 Work =8, Period = 40 _ ' t

greedy choice '

CPU l

CPU2
01 2 3 45 6 7 8 9 101112
2017/18 UniPD - T.

Vardanega Real-Time Systems 464

2017/18 UniPD - T. Vardanega

" JE

Why Greedy Algorithms Fail
On Multiprocessors

Ta!ki:Wk:Q_F!nDd:Iﬂ' i

Evenatt =8, Task 2: Werk =9 , Feriod = 10 MY
T1, Ty are the On|y Task 3: Work =8, Period =40 |
“reasonable” '

greedy choice

o) |

CPU2

9 10 11 12

01 2 3 45 6 7
2017/18 UniPD - T.

Vardanega Real-Time Systems

" JE

Why Greedy Algorithms Fail
On Multiprocessors

Yet, if 75 isn’t started PR S—
by t — 8, the Task1: Work=9

resultant idle time
eventually causes a
deadline miss

CF’UM

01 2 3 45 6 7 8 9 101112
2017/18 UniPD - T.

Vardanega Real-Time Systems

Task 2 : Weork =9, Period = 10

Task3:Work=8 Peiod=do N, |
1 0

DAAl Tivrva~s OuvvAatAarmAas

465

466

" S
Why Greedy Algorithms Fail
On Multiprocessors

Ta!ki:Wk:Q_F!nDd:Iﬂ' i

HOW C.a.n we ‘see Task 2: Work=9 , Period = 10 LY
this critical event Task 3 Work =8 Period = 40
att =8? 0

CPU 1 T Jt

CPU2

01 2 3 45 6 7 9 10 11 12
2017/18 UniPD - T.
Vardanega Real-Time Systems 467
" JEE

Proportioned Algorithms
Succeed On Multiprocessors

Task 1: Work =9, Period = 10 1__*_

Subdivide 75 in
Task 2 Work =9 Period = 10 N

two subtasks with
the same period
as 74,7,

CPU1T i

01 2 3 45 6 7 8 9 101112

2017/18 UniPD - T.
Vardanega Real-Time Systems 468

12/05/2018

2017/18 UniPD - T. Vardanega 12/05/2018

" S "
Proportioned Algorithms , : .
Succeed On Multiprocessors Proportional Fairness is the Key
O m All known optimal algorithms enforce proportional
NOW 75 as @ ZEro- ez vies. - o s _ fairness at all deadlines

Iaxity eventatt =8 = 3:mk=2.&riw=|oH ¥ ¥ Y

5

O P-Fair (1996) - Baruah, Cohen, Plaxton, and Varvel

(the extreme: proportional fairness at all times)

O BF (2003) - Zhu, Mossé, and Melhem
CPU 1 O LLREF (2006) - Cho, Ravindran, Jensen

>~ O EKG (2006) - Andersson, Tovar
CPU2
0123 45 6 79 10 11 12 m Why do they all use proportional fairness?
2017/18 UniPD - T.
Vardanega Real-Time Systems

2017/18 UniPD - T.
469 Vardanega Real-Time Systems 471

¢
Proportional Fairness

|
Scheduling Multiple Tasks is
Complicated

work

m Insight: scheduling is easier when all jobs completed

have the same deadline

m Application: apply all deadlines to all jobs

m Assign workloads proportional to utilization 5 A

m Work complete matches fluid rate curve at pa— —
every system deadline time

2017/18 UniPD - T.

2017/18 UniPD - T.
Vardanega Real-Time Systems 470

Vardanega Real-Time Systems 472

DAaAl Tivma~n OuratAaArmas

2017/18 UniPD - T. Vardanega

" JE

Scheduling Multiple Tasks with
Same Deadline is Easy

work
completed

i
time
2017/18 UniPD - T.
Vardanega Real-Time Systems 476
" JE '
DP-Fair

Actual Feasible Regions

work job deadlines
completed

r. - b

time

2017/18 UniPD - T.
Vardanega Real-Time Systems 474

DAAl Tivrva~s OuvvAatAarmAas

" E— : .
Restricted Feasible Regions
Under Deadline Partitioning

work all system deadlines
completed

T
time
2017/18 UniPD - T.
Vardanega Real-Time Systems 478
" '
DP-Fair

The DP-Fair Scheduling Policy

m Partition time into slices based on all system deadlines

m Allocate each job a per-slice workload equal to its
utilization times the length of the slice

m Schedule jobs within each slice in any way that obeys the
following three rules:

1. Always run a job with zero local laxity
2. Never run a job with no workload remaining in the slice

Do not voluntarily allow more idle processor time than
(m — Y U;) x (length of slice)

2017/18 UniPD - T.
Vardanega Real-Time Systems 476

12/05/2018

2017/18 UniPD - T. Vardanega

'_
DP-Fair Work Allocation

work
completed

2017/18 UniPD - T.
Vardanega

J

\

time slice

Real-Time Systems

" S
DP-Fair Scheduling Rule #1

work
completed

2017/18 UniPD - T.
Vardanega

DAaAl Tivmma~n OuvvatAarmas

' When job hits zero
1 local laxity, then
| run to completion

time slice

Real-Time Systems

*

DP-Fair Scheduling Rule #2

work |

Allocated Completed :
workload

time

450 -t

When job
finishes local
workload,
stop running

local work
complete
line

time slice

Real-Time Systems

*

DP-Fair Scheduling Rule #3

idle !
time |

time

2017/18 UniPD - T.

481 Vardanega

Do not voluntarily allow idle
time in excess of this limit

time slice

Real-Time Systems

Allowabl
> idle time

time

time

482

e

483

12/05/2018

2017/18 UniPD - T. Vardanega

DF-Fair Guarantees Optimality

m We say that a scheduling algorithm is
DP-Fair if it follows these three rules

m Theorem: Any DP-Fair scheduling
algorithm for periodic tasks is optimal

2017/18 UniPD - T.

Vardanega Real-Time Systems

" JE
DP-Fair Implications

m (Partition time into slices)
+ (Assign proportional workloads)

Optimal scheduling is almost trivial

O Minimally restrictive rules allow great latitude for
algorithm design and adaptability

m What is the simplest possible algorithm?

2017/18 UniPD - T.

Vardanega Real-Time Systems

DAAl Tivrva~s OuvvAatAarmAas

12/05/2018

EXAMPLE OF EXAM ASSIGNMENT:
STUDYING THE RUN ALGORITHM

PhD seminar on Real-Time Systems, University of Bologna, July 2014 s

481 Real-Time Systems 483

RUN Assumptions

Model parameters

. m homogeneous (symmetric) processors

. Implicit-deadline independent task t;, i € {1..n}
. n=m+kk=0

. o
- Fixed-rate tasks U; = YriUi<m
3

. Fully utilized system: no idle time (perhaps using fillers)

. Migration and preemption are assumed to have no additional
costs over ¢;

482 2017/18 UniPD - T.

Vardanega Real-Time Systems 184

2017/18 UniPD - T. Vardanega

Example /1

n=>5
; \ Legend

Q00 - ©

processor
k=n-m=2
\) (the excess)
Y
m=3

. Ui =0.6 VTi,i = {1, = 5}
Y=3U; = 3= m = 3 (fully utilized system)
. What schedule Z for § = {{Ti}, m} ?

2017/18 UniPD - T.

- 4
Vardanega Real-Time Systems 85

Duality

. The problem of schedullng

S={r1 =(c1,T1), ... Tn = (€, Ty)}, M

has a dual problem that conS|sts of schedullng

S, = {TI - (Tl —Cq, Tl): Ty = (T —Cn» n)} (n m)
. With this definition of duality

. Laxity in primal is work remaining in the dual

. Awork-complete event in the primal is zero-laxity in the dual

And viceversa

. Corollary: any schedulmg problem with m processors and n =

m + 1 tasks and), = m may be scheduled by applying EDF
to its uniprocessor dlual

If | can schedule n tasks on m processors, then | can also schedule
the same n tasks on n — m processors

. This is so because the scheduling events in the dual map to
scheduling events in the primal

2017/18 UniPD - T.

Vardanega Real-Time Systems 186

DAAl Tivrva~s OuvvAatAarmAas

12/05/2018

| The G-LLE example at page 429

S= {Tl = (3'4’)rT2 = (3:4): T3 = (5.10)}, HS =20
3 3 5
Us = =20 -m=2

One CPU is idle 4 4 1 0
A OL=1 ! 1 0 A 1 A
T1 k T1 | | T1 Tq
AN =1 S oN 1 0 A A
T2 I v D | | PR A | | T2 N 12 y
Ly=5 2 0: zero laxity 0 N S 3 0
| T3 I | T3 Ty i
3 4 6 7 8 9 10 12 15

m Att =15 the CPU time remaining is T = m X (Hs —t) = 10
m Yet, the time neededis Ty = e; + e, +e3 =11

2017/18 UniPD — T. Vardanega Real-Time Systems 487 of 595

Applying duality

3 3 5
S=(n=041=0605=610,U;=;+,+7;=20 >m=2

1 5
Sp={t1, = (1,9),72, = (1,4), 73, = (5,10)}, Us, =Z+Z+E= 1.0-mp=1

AN L =3 AN 3 A 3 2 A 3 N

Tq I y Tq | v T1 Tq I

Tip Tip I Tip T1p
AN L, =3 AN 3 A 3 1 A 3 2 A
T2 I h 2 | T2 W72 T3 R T2 I v
T2p T2p T2p T2p
Lyh =5 3 1 1 A S 4 3 2
| 13 13 {73
T3p T3p T3p T3p
1 3 4 5 6 7 8 10 11 12 13 14 15

The dual (LLF) schedule leaves no idle time

2017/18 UniPD - T.

Vardanega Real-Time Systems 188

2017/18 UniPD - T. Vardanega

Example /1
[\ Legend
©00 - ©
T processor
k=n-m=2
\) (the excess)
Y
m=3

. Ui =0.6 VTi,i = {1,...,71 = 5}
. XU; = 3= m = 3 (fully utilized system)
. What schedule % for S = {{z;},m}?

2017/18 UniPD -~ T. Real-Time Systems 489
Vardanega

Example /2

* Consider the dual of this {n = 5,m = 3} system

- - The dual should run on m* = 2 processors

L J
T

m'=n-m=5-3=2=k

2017/18 UniPD - T. Real-Time Systems 490
Vardanega

DAaAl Tivma~n OuratAaArmas

Example /3

¢
0o) (T = U =06
i

(OB ¢ = DUAL operation

T —c¢;
) (T — ¢ T —— = 1= U; = 0.4
L

m =2=k
2017/18 UniPD —T. Real-Time Systems 491
Vardanega
Example /4

o(U,U)) = (U X Ty + U; x Ty, (T, U T)))

. ¢ | Reduction l

PACK PACK] y=c®o

c l’i & = PACK operation
L
i k*=n"—m"= 3 2=1

2017/18 UniPD - T. Real-Time Systems 492
Vardanega

12/05/2018

AN

2017/18 UniPD - T. Vardanega

Example /5

The (n* = 3,m* = 2) system still cannot be
partitioned feasibly

Yet, applying duality to it seems promising
since the dual would need n* —m* =1
processor, which would REDUCE the problem
TO a UNIPROCESSOR case

m*=1=k*
2017/18 UniPD - T. Real-Time Systems 493
Vardanega
Example /6

m*=1=k"
2017/18 UniPD —T. Real-Time Systems 494

Vardanega

DAAl Tivrva~s OuvvAatAarmAas

Example /7
¢ ¢ ¢
[PACK J y=cDo
(o)
%]
L) \ J
*%k '
n _1 k**:n**_m**zl_lzo
l_'_l
mY=nt -k =1-0=1=k"
\Zlg:gélzgl:iniPD -T Real-Time Systems 495
Why does reduction terminate? /1
T|+1
Lemma: y = |5 °¢ (Utr,) | < [l |2]
i 1 Intuition
050 YIU;=3=>m = 3
n =4
0 k=n-m=1
lo
U/ In the dual system
YiUui=n-m=1=
0.5f m =1=k
n* = 1 after packing
k* = 0 no leftover
QU 7/18 UniPD - T.

Vardanega Real-Time Systems 496

12/05/2018

A A

2017/18 UniPD - T. Vardanega

Why does reduction terminate? /2

|‘c|+1]
2

* Reduction y = (c®¢) terminates
as every step of it lowers the

Y residual workload and the # of
processors needed to run it

* The packing operation (at least)

Lemma: y = |c°(p(U‘;ri)|£[
]_f e N \(N\ ()

Wy halves the number of tasks to
schedule
1f
0 * Termination theorem: after a
0.5 finite number p of reduction
steps, the system is reduced to a
0 uniprocessor with full workload
2017/18 UniPD - T. Real-Time Systems 297
Vardanega

How does RUN work /1

* A pair of basic operators
— DUAL (o)
— PACK (o)
* The REDUCE (y = o © @) operation lowers (~ halves)
the size of the problem at every step
* Theorem (validity of the dual): X valid < X* valid
* Since every dual task represents the idle time of its
primary, finding a feasible schedule for the dual
(which is easier) determines a feasible schedule for
its primary

2017/18 UniPD - T.

Vardanega Real-Time Systems 408

DAAl Tivrva~s OuvvAatAarmAas

12/05/2018

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE;
A. Generate a reduction sequence for T
B. Invert the sequence to form a server tree;
C. For each proper subsystem 7" of T;
Define the client/server at each virtual level;
I1. ON-LINE;
Upon a scheduling event: ;
A. If the event is a job release event at level 0;
1. Update deadline sets of servers on path up to root;
2. Create jobs for each of these servers accordingly;
B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to
schedule at level 0;
C. Assign the m chosen jobs to processors, according to some task-to-processor
assignment scheme;

2017/18 UniPD - T.

Vardanega Real-Time Systems 499

Example: off-line phase

Ss = 0(Uy, Us) = ((0.4 + 0.2) x min(5,10)), (5 U 10)) = (0.6,5), Cs, = 3

4
3 m =3
[-
2
1 N
04 /o4 N

w10 {20]*
1 {10} ‘i’i‘,‘-’ o) '.\‘.S:,"‘;I’ 0
| | @(dual) --4--------|--=-
0
I_I o(pack) --1---J----]----

208 aniPD T Real-Time Systems 500

Vardanega

AN

2017/18 UniPD - T. Vardanega 12/05/2018

RUN implementation

Example: on-line phase (at time t = 7)

Q For real
> On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
» Relying on standard RTOS support
U Main implementation choices and challenges
» Scheduling on the reduction tree
] - How to organize the data structure

Si 5i__Jleveld - How to perform virtual scheduling and trigger tree updates
Sl = 5 JI“""'” - Intrinsic influence of the packing policy
T %] T » Mixing global and local scheduling
I T rask
- level - Global release event queue vs. local level-0 ready queue
o) o - Handling simultaneous scheduling events

Job release, budget exhaustion (possibly from different sub-trees)
» Meeting the full-utilization requirement
- Variability of tasks” WCET and less-than-full utilization

200718 DT TN PROXIVA |

Empirical evaluation

/ 0 Empirical evaluation instead of simulation-based
PRO IMA U Focus on scheduling interference

» Cost of scheduling primitives
» Incurred preemptions and migrations

Putting RUN into practice

Implementation and evaluation U RUN compared against P-EDF and G-EDF
» RUN shares something in common with both
™ »> Much better than Pfair (S-PD2 in LITMUSRT)

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega £~ _
University of Padua, ltaly % .~/

26" EUROMICRO Conference on Real-time Systems (ECRTS)
Madrid, 9 July 2014

- RUN has superior performance for preemptions and migrations

This project and the research leading to these results WWW. prOXima-prOjeCt eu
has received funding from the European ’ :

Community's Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085 PRO IMA

DAAl Tivrva~s OuvvAatAarmAas AN

2017/18 UniPD - T. Vardanega 12/05/2018

Experimental setup Empirical schedulability

Q,
O LITMUSRT on an 8-core AMD Opteron™ 2356 g100%
= 80% 4
&]
Q Collected measurements for RUN, P-EDF, G-EDF g oo k
» Hundreds of automatically generated task sets 2 40% .
» Harmonic and non-harmonic, with global utilization @ 50%-100% § 20 % 4
> Representative of small up to large tasks § 0%
4 45 5 55 6 65 7 15 8
Utilization cap 800 B
U Two-step process 700 f PEOE -~
> Preliminary empirical determination of overheads :E: [RN ——
0 Task sets exhibiting at least one miss §, | !
; E300 | '
Collect Determine Perform U RUN suffered no misses 200 | R
e I > Optimality and tailored overhead 1uo | Bl
o - o e - -y 4 i

4 45 5 55 6 65 7 75 8
Utilization cap

I PROXIMA [

PROXIMA i

Primitive overheads and empirical bound Kernel interference

100 T T T T T T
RUN O Observing average preemptions and migrations
a0 GEDF o |
® 25K — e 2 ————
= : P-EDF --=-- ok G-EDF ——
H 220k |-G-EDF A w20k | RUN - E
£ 2 RUN —= /&
215k i1 815k 7
E A1 5 /
Zrok | Elok - :
o
REL SCHED CSW CLK LAT Tup 2kl ETn
O Expectations confirmed 1;0"% m;; %5 5 55 6 85
> P-EDF needs lighter-weight scheduling primitives w0 0%l L
9 r L80% F T —
ree update riggered upon 230 L
O Tree update (TUP) triggered e g
2 r L
» Budget exhaustion event = :gg?ﬁ -
) 2 0% i So%l
> Job release - REL includes TUP 2% |7 7 // | %t
QO Empirical upper bound on RUN scheduling overhead 0% 2220 0% GFEE; = /.
> OHfet, = REL+SCHED+CLK +kx(TUP+SCHED+max(PRE, MIG)) §45 5886 68 T TATATETS 8 0% 45 5 55 6 65 7 75 8

Utilization cap Utilization cab

k=[(3p+1)/2] and SCHED = SCHED + CSW + LAT.

T PROXIVA |

O-level v 1-level 2-level 0000

PROXIMA [i

DAAl Tivrva~s OuvvAatAarmAas A AN

2017/18 UniPD - T. Vardanega 12/05/2018

Scheduling cost Evaluation against S-PD?
. L 80k T T T T T T T 70k T T T T T T
O Average cost of core scheduling primitives ok [Bede =] oo —]
60 — T 860k [RuN S Esok | pfair - 4
F-EOF -+ S50k - Pair —-- S k- =
50 FG-EDF —— - %ﬂ 4 E40 k g b
ool RUN 1 ; 0k - ye 120k b Fa
E B30k 4E e
Dok - - e i ?Q kI "_,.— -
s “0k b o 4 1k U A
PR P M i R L e el " B e
J ok Ok
A 4 45 5 55 6 65 7 15 &8 4 45 5 55 6 65 7 75 8
. . . . L . Utilization cap Utilization cap
5 55 6 65 7 15 8 . o
Utilization cap Observed preemptions and migrations
Average job release 500
R e S P-EDF -~ . I
- | G-EDF —— A
50 G-EOF — | 400 o — S/
geor RUN e E 4300 |- Plair ——=— o 4
g0 1 @ o
g E200 | e E
Fzof . R E -
R e e 100 | 1
o I L L 1 L L L 0 + T T e Sl ke il
4 45 5 55 6 65 7 715 8 4 45 5 55 6 &5 7 15 &8
Utilization cap offset 0, 0.5 Utilization cap
Average schedule Per-job kernel overhead

T PROXIVMA | I PROXIMA

Per-job scheduling overhead

— T T 60

P-EDF PEDF --=--
50 G-EDF 4 50 FG-EDF 4
- RUN wem
=40 | RUN =40 U
=
@30
E | ez
F2oF=----"
10+
0 " L 1 L 1 . L 0 L L . L L L L
4 45 5 55 6 65 71 15 8 4 45 5 55 6 65 7 75 8
5 2 — T 71— s 2 — —T —
15t 4 Z1s5f E
@ AN Gost ~
E . et Z A T S
6 65 7 15 8 4 45 5 55 6 65 1 15 8
" T —— W 2 T T —— T T
2 2 P-EDF ---=
k=] 1 215 GEDF —— 1
B] E‘ 1L RUN s ’
2os | fost
& o L i A —y==— e = o M " Pa——
4 45 5 55 6 65 7 7.5 8 4 45 5 55 6 65 7 15 8
Utilization cap Utilization cap
Harmonic task set Non-harmonic task set

T PROXIVA |

DAaAl Tivma~n OuratAaArmas AL

