7.b Seeking the lost optimality

Partitioned Schedulers ≠ Optimal

■ Example: 2 processors; 3 tasks, each with 2 units of work required every 3 time units: (3,2)

Global Schedulers May Succeed

■ Example: 2 processors; 3 tasks, each with 2 units of work required every 3 time units

Task 3 migrates between processors

Fluid Rate Curve

Feasible Work Region

The Grand Challenge (Mark 1)

- Design an *optimal* scheduling algorithm for periodic task sets on *multiprocessors*
 - ☐ A task set is *feasible* if there exists a schedule that meets all deadlines
 - ☐ A scheduler is *optimal* if it can always schedule any feasible task set

2017/18 UniPD – T. Vardanega

Real-Time Systems

459

Necessary and Sufficient Conditions

- Any set of (independent) tasks needing at most
 - \square 1 processor for each task τ_i ($\forall i \ U_i \leq 1$)
 - \square m processors for all tasks $(\sum_i U_i \leq m)$

is feasible

- **Proof**: small scheduling intervals can approximate the fluid rate curve (at what cost?)
 - □ **Status**: solved. P-Fair (1996) was the first optimal algorithm

2017/18 UniPD – T. Vardanega

Real-Time Systems

460

Problem

The Grand Challenge (Mark 2)

- Design an *optimal* scheduling algorithm with *fewer* context switches and migrations
 - Finding a feasible schedule with *the fewest* migrations is NP-Complete!

2017/18 UniPD – T. Vardanega

Real-Time Systems

461

The Grand Challenge (Mark 2)

- Design an *optimal* scheduling algorithm with *fewer* context switches and migrations
- Status: *Solved*□ **BUT** the solutions are complex and confusing
- Our Contributions: A simple, unifying theory for optimal global multiprocessor scheduling and a simple optimal algorithm

2017/18 UniPD – T. Vardanega

Real-Time Systems

462

Tail

Why Greedy Algorithms Fail On Multiprocessors

■ Example (n = 3, m = 2)

2017/18 UniPD – T. Vardanega

Real-Time Systems

463

Why Greedy Algorithms Fail On Multiprocessors

Proportioned Algorithms Succeed On Multiprocessors

Paul Time Systems

2017/18 UniPD - T. Vardanega 12/05/2018

Proportioned Algorithms Succeed On Multiprocessors

Proportional Fairness

■ Insight: scheduling is easier when all jobs have the same deadline

Theorem [Hong, Leung: RTSS 1988, IEEE TCO 1992]
No optimal on-line scheduler can exist for a set of jobs with two or more distinct deadlines on any m multiprocessor system, where m > 1

- Application: apply all deadlines to all jobs
 - Assign workloads proportional to utilization
 - Work complete matches fluid rate curve at every system deadline

2017/18 UniPD – T. Vardanega Real-Time Systems 470

Proportional Fairness is the Key

- All known optimal algorithms enforce proportional fairness at all deadlines
 - □ **P-Fair** (1996) *Baruah, Cohen, Plaxton, and Varvel* (the extreme: proportional fairness at *all times*)
 - □ **BF** (2003) Zhu, Mossé, and Melhem
 - □ LLREF (2006) Cho, Ravindran, Jensen
 - □ **EKG** (2006) Andersson, Tovar
- Why do they all use proportional fairness?

2017/18 UniPD – T. Vardanega Real-Time Systems 471

Scheduling Multiple Tasks is Complicated

2017/18 UniPD - T. Vardanega 12/05/2018

Restricted Feasible Regions

Actual Feasible Regions

- Partition time into *slices* based on all system deadlines
- Allocate each job a per-slice workload equal to its utilization times the length of the slice
- Schedule jobs within each slice in any way that obeys the following three rules:
 - 1. Always run a job with zero local laxity
 - 2. Never run a job with no workload remaining in the slice
 - 3. Do not voluntarily allow more idle processor time than $(m-\sum U_i)\times$ (length of slice)

2017/18 UniPD – T.
Vardanega Real-Time Systems 476

Paul Time Systems

DP-Fair Scheduling Rule #1 work completed When job hits zero local laxity, then run to completion

time slice

Real-Time Systems

2017/18 UniPD - T.

Vardanega

Pool Time Systems

time

481

DF-Fair Guarantees Optimality

- We say that a scheduling algorithm is DP-Fair if it follows these three rules
- **Theorem**: Any DP-Fair scheduling algorithm for periodic tasks is optimal

2017/18 UniPD – T. Vardanega

Real-Time Systems

481

PhD seminar on Real-Time Systems, University of Bologna, July 2014

Real-Time Systems

483

DP-Fair Implications

- (Partition time into slices)
 - + (Assign proportional workloads)

Optimal scheduling is almost trivial

- ☐ Minimally restrictive rules allow great latitude for algorithm design and adaptability
- What is the simplest possible algorithm?

2017/18 UniPD - T.

Real-Time Systems

482

RUN Assumptions

Model parameters

- $oldsymbol{\cdot}$ m homogeneous (symmetric) processors
- Implicit-deadline independent task $\tau_i, i \in \{1...n\}$
- $n = m + k, k \ge 0$
- Fixed-rate tasks $U_i = \frac{C_i}{T_i}$ $\sum_{i=1}^n U_i \leq m$
- Fully utilized system: no idle time (perhaps using fillers)
- Migration and preemption are assumed to have no additional costs over c_i

2017/18 UniPD – T. Vardanega

Real-Time Systems

484

Example /1

- $U_i = 0.6 \ \forall \tau_i, i = \{1, ..., n = 5\}$
- $\sum_{i=1}^{n=5} U_i = 3 \Rightarrow m = 3$ (fully utilized system)
- What schedule Σ for $\mathbf{S} = \big\{ \{ oldsymbol{ au}_i \}, oldsymbol{m} \big\}$?

2017/18 UniPD – T.
Vardanega Real-Time Systems

485

Duality

- . The problem of scheduling $\begin{array}{l} \mathbf{S} = \{ \boldsymbol{\tau}_1 = (c_1, T_1), ..., \boldsymbol{\tau}_n = (c_n, T_n) \}, \boldsymbol{m} \\ \text{has a } \textit{dual} \text{ problem that consists of scheduling} \\ \boldsymbol{S}' = \{ \boldsymbol{\tau}_1' = (T_1 c_1, T_1), ..., \boldsymbol{\tau}_n' = (T_n c_n, T_n) \}, (n \boldsymbol{m}) \end{array}$
- · With this definition of duality
 - . Laxity in primal is work remaining in the dual
 - . A work-complete event in the primal is zero-laxity in the dual
 - And viceversa
- Corollary: any scheduling problem with $m{m}$ processors and $m{n} = m{m} + m{1}$ tasks and $\sum_{1}^{n} U_i = m{m}$ may be scheduled by applying EDF to its uniprocessor dual
 - If I can schedule n tasks on m processors, then I can also schedule the same n tasks on n-m processors
 - This is so because the scheduling events in the dual map to scheduling events in the primal

 2017/18 UniPD – T.
 Real-Time Systems
 486

 Vardanega
 486

The G-LLF example at page 429 ...

- At t = 15 the CPU time remaining is $T_R = m \times (H_S t) = 10$
- Yet, the time needed is $T_N = e_1 + e_2 + e_3 = 11$

2017/18 UniPD - T. Vardanega

Real-Time Systems

487 of 595

Applying duality

The dual (LLF) schedule leaves no idle time

2017/18 UniPD – T. Vardanega

Real-Time Systems

488

Example /1

- $U_i = 0.6 \ \forall \tau_i, i = \{1, ..., n = 5\}$
- $\sum_{i=1}^{n} U_i = 3 \Rightarrow m = 3$ (fully utilized system)
- What schedule Σ for $\mathbf{S} = \{ \{ \boldsymbol{\tau}_i \}, \boldsymbol{m} \}$?

2017/18 UniPD – T.

Vardanega Real-Time Systems 489

Example /2

• Consider the dual of this $\{n = 5, m = 3\}$ system

Example /3

Example /4

Example /5

The $(n^*=3,m^*=2)$ system still cannot be partitioned feasibly Yet, applying duality to it seems promising since the dual would need $n^*-m^*=1$ processor, which would REDUCE the problem TO a UNIPROCESSOR case

493

2017/18 UniPD – T. Vardanega

Real-Time Systems

Example /6

2017/18 UniPD - T.

Vardanega

 $m^{**} = 1 = k^*$

Real-Time Systems

Example /7

m = n = k = 1 = 0

2017/18 UniPD – T. Vardanega Real-Time Systems

Why does reduction terminate? /1

Lemma: $\psi = \left| \sigma \circ \phi \left(U_1^4 \tau_i \right) \right| \le \left\lceil \frac{|\tau| + 1}{2} \right\rceil$

Intuition

 $\sum_{1}^{4} U_{i} = 3 \Rightarrow m = 3$ n = 4 $\mathbf{k} = n - m = 1$

495

496

In the dual system

 $\sum_{1}^{4} U_{i}^{*} = n - m = 1 \Rightarrow$ $m^{*} = 1 = k$ $n^{*} = 1$ after packing $k^{*} = 0$ no leftover

494

Why does reduction terminate? /2

How does RUN work /1

- A pair of basic operators
 - DUAL (φ)
 - PACK (σ)
- The REDUCE ($\psi = \sigma \oplus \phi$) operation lowers (~ halves) the size of the problem at every step
- **Theorem** (validity of the dual): Σ valid $\Leftrightarrow \Sigma^*$ valid
- Since every dual task represents the idle time of its primary, finding a feasible schedule for the dual (which is easier) determines a feasible schedule for its primary

2017/18 UniPD – T.
Vardanega Real-Time Systems

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE:

- A. Generate a reduction sequence for \mathcal{T} ;
- B. Invert the sequence to form a server tree;
- C. For each proper subsystem \mathcal{T}' of \mathcal{T} ;

Define the client/server at each virtual level;

II. ON-LINE;

Upon a scheduling event:;

- A. If the event is a job release event at level 0;
- 1. Update deadline sets of servers on path up to root;
- 2. Create jobs for each of these servers accordingly;
- B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to schedule at level 0;
- C. Assign the m chosen jobs to processors, according to some task-to-processor assignment scheme;

2017/18 UniPD – T.
Vardanega Real-Time Systems 499

Example: off-line phase

Dool Time Systems

498

Example: on-line phase (at time t = 7)

Putting RUN into practice

Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega University of Padua, Italy

26th EUROMICRO Conference on Real-time Systems (ECRTS) Madrid, 9 July 2014

This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7 / 2007-2013] under grant agreement 611085 www.proxima-project.eu

RUN implementation

□ For real

- On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
- Relying on standard RTOS support
- Main implementation choices and challenges
 - Scheduling on the reduction tree
 - How to organize the data structure
 - How to perform virtual scheduling and trigger tree updates
 - Intrinsic influence of the packing policy
 - Mixing global and local scheduling
 - Global release event queue vs. local level-0 ready queue
 - Handling simultaneous scheduling events
 - Job release, budget exhaustion (possibly from different sub-trees)
 - Meeting the full-utilization requirement
 - Variability of tasks' WCET and less-than-full utilization

Empirical evaluation

- ☐ Empirical evaluation instead of simulation-based
- ☐ Focus on scheduling interference
 - Cost of scheduling primitives
 - Incurred preemptions and migrations
- □ RUN compared against P-EDF and G-EDF
 - > RUN shares something in common with both
 - ➤ Much better than **Pfair** (S-PD² in LITMUSRT)

- RUN has superior performance for preemptions and migrations

Experimental setup

- ☐ **LITMUS**RT on an 8-core AMD OpteronTM 2356
- ☐ Collected measurements for RUN, P-EDF, G-EDF
 - Hundreds of automatically generated task sets
 - ➤ Harmonic and non-harmonic, with global utilization @ 50%-100%
 - > Representative of small up to large tasks
- □ Two-step process
 - > Preliminary empirical determination of overheads

Primitive overheads and empirical bound

- Expectations confirmed
 - > P-EDF needs lighter-weight scheduling primitives
- ☐ Tree update (TUP) triggered upon
 - > Budget exhaustion event
 - ➤ Job release → REL includes TUP
- ☐ Empirical upper bound on RUN scheduling overhead
 - $\blacktriangleright \quad OH_{RUN}^{Job} = REL + \widehat{SCHED} + CLK + k \times (TUP + \widehat{SCHED} + max(PRE, MIG))$

$$k = \lceil (3p+1)/2 \rceil$$
 and $\widehat{SCHED} = SCHED + CSW + LAT$.

Empirical schedulability

PROXIMA |

Kernel interference

PROXIMA

Scheduling cost

Per-job scheduling overhead

Evaluation against S-PD²

