
2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 1

7.c Global resource sharing

Contention and blocking

 The single-runner premise on which previous
solutions were based falls apart
 Suspending on wait no longer facilitates earlier release of

shared resources  parallelism gets in the way
 Priority boosting the lock holder does not help  per-

CPU priorities do not have global meaning (on
partitioned scheduling)

 With local and global resources, suspensive wait becomes
dangerous  local priority inversions (PI) may occur

 Spinning protects against PI, but wastes CPU cycles

2017/18 UniPD – T. Vardanega Real-Time Systems 513 of 595

Multiprocessor PCP /1

 P-FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is the synchronization

processor (SP) for that resource
 It statically knows all the use requirements of all of its resources

 The critical sections of a resource execute on its SP
 Jobs that use remote resources employ “distributed transactions”

 The processor to which a task is assigned is the local
processor (LP) for all of the jobs of that task

2017/18 UniPD – T. Vardanega Real-Time Systems 514 of 595

Multiprocessor PCP /2

 A task may use local and global resources
 Local resources reside on the LP of that task
 Resources are global when their SP differs from the

client tasks’ LP

 Resource access control protocols need actual locks
to protect against parallel contention
 This causes lock-free algorithms to become attractive

 SPs use M-PCP to control access to their global
resources

2017/18 UniPD – T. Vardanega Real-Time Systems 515 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 2

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections must execute at higher ceiling

priorities than all local tasks on their SP
 This breaks independence!

 A task 𝜏௛ that is denied access to a global shared
resource 𝜌௚ suspends on its LP and waits in a priority-
based queue for that resource
 Any task 𝜏௟ with lower-priority than 𝜏௛ on the same LP may

thus acquire global resources on 𝜌௚’s SP, with higher ceiling
than 𝜌௚

2017/18 UniPD – T. Vardanega Real-Time Systems 516 of 595

Multiprocessor PCP /4

 If the global resource 𝜌௚ᇱ being acquired by 𝜏௟
resides on the same SP as 𝜌௚, then 𝜏௛ suffers an
anomalous form of PI
 The execution in 𝜌௚ᇱ delays the release of 𝜌௚

 As contention for a global resource involves
suspension, M-PCP suffers the risk of deadlock
 With global resources hosted on ൐ 1 SPs, nesting global

resources may lead to deadlock and must be disallowed
 This is why other protocols prefer 𝜏௛ to spin

2017/18 UniPD – T. Vardanega Real-Time Systems 517 of 595

Blocking under M-PCP

 With M-PCP, task 𝜏௜ is blocked by lower-priority tasks in 5 ways!
 Local blocking (once per release): when finding a local resource held by a

local lower-priority task that got running as a consequence of 𝜏௜’s
suspension on access to a global resource

 Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP

 Local preemption: when global critical sections are executed on 𝜏௜’s LP by
remote tasks of any priority (multiple times) and by local tasks of lower
priority (once per release)

 Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 𝜏௜’s global resource resides

 Deferred interference as local higher-priority tasks suspend on access to global
resources because of blocking effects

2017/18 UniPD – T. Vardanega Real-Time Systems 518 of 595

Multiprocessor SRP

 P-EDF with resources bound to processors
[Gai, Lipari, Di Natale, 2001]
 Normal SRP is used for controlling access to local resources

 Tasks that lock a global resource execute the critical section
at the highest local priority
 As the lock-holder cannot be pre-empted, the wait time is shorter
 But this provision breaks independence

 Tasks that request a global resource 𝜌ீ already locked, are
held in a FIFO queue on 𝜌ீ ’s SP and spin on their LP
 This policy upper-bounds the requesting task’s spin time to 𝑚 െ 1

executions of the longest critical section of 𝜌ீ
 This duration adds to the task’s WCET

2017/18 UniPD – T. Vardanega Real-Time Systems 519 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 3

In general …

 With lock-based resource access control protocols,
locks can use either suspension or spinning

 With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
 To bound blocking, PI avoidance algorithms should be used

 With spinning, the task busy-waits
 To bound blocking, the spinning task becomes

non-preemptable and its request is placed in FIFO queue
 The lock owner may also run non-preemptively

 But this breaks independence

2017/18 UniPD – T. Vardanega Real-Time Systems 520 of 595

𝑂ሺ𝑚ሻ locking protocols : G-EDF /1

 All resources are global
 To request a resource, a task must first acquire a general

priority-queue, PQ, lock (one of 𝑚)
 If the resource is busy, the requestor waits, suspending, on a

resource-specific FIFO queue, FQ (of 𝑚 positions)
 The lock-holder inherits the highest priority of tasks waiting

in the chain of queues (FQ and PQ)
 Per-request blocking is 2𝑚 െ 1 executions of the

longest critical section for the resource
 When FQ is full with 𝑚 lp-jobs and 𝑚 hp-tasks run (including

the job of interest) that all want to acccess the same resource
 The other tasks suffer inheritance blocking

2017/18 UniPD – T. Vardanega Real-Time Systems 521 of 595

𝑂ሺ𝑚ሻ locking protocols : G-EDF /2

2017/18 UniPD – T. Vardanega Real-Time Systems 522 of 595

𝑂ሺ𝑚ሻ locking protocols : P-EDF /1

 Shared resources may be local or global
 One priority queue (PQ) per processor: the task at the head of it

acquires a token to use to contend for global resources
 Requests for G-resources wait in a per-resource FQ

 The waiting tasks suspend
 Lock-holders’ priority is inheritance-boosted from their PQ

 Blocking for all tasks has three components
 Local, when the lock-holder is a local lp-task (per release)
 Remote direct, when the requestor is last in the FQ (per request)
 Remote transitive, when a local lp-task has acquired the PQ

token and is last of the FQ (per release)

2017/18 UniPD – T. Vardanega Real-Time Systems 523 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 4

𝑂ሺ𝑚ሻ locking protocols : P-EDF /2

2017/18 UniPD – T. Vardanega Real-Time Systems 524 of 595

𝑂ሺ𝑚ሻ independence preservation /1

2017/18 UniPD – T. Vardanega

𝑚
𝑐 െ 1

𝑐 െ 1

𝑣 ൌ
𝑚
𝑐

Real-Time Systems 525 of 595

 𝛽௜,௞ൌ
𝑚
𝑐 െ 1 ൅

𝑚
𝑐 ൈ 𝑐 െ 1 𝜔௞ ൌ 𝑚 െ 1 𝜔௞

𝑂ሺ𝑚ሻ independence preservation /2

 Clusters of size 1 ൑ 𝑐 ൑ 𝑚
 Global scheduling per cluster, partitioned cluster assignment

 Suspension-based
 One FIFO+PRIO queue per cluster, for Ο 𝑚 blocking
 One per-resource global FIFO queue

 Head of cluster FQ copied in G-FQ and removed only after service

 Independence preserved by inter-cluster migration
 Head of G-FQ (if pre-empted) can migrate to any CPU along

the queue (hence across clusters), with priority boosted by
inheritance from a waiting task

 Blocking is per request: 𝛽௜,௞ ൌ ሺ𝑚 െ 1ሻ𝜔௞

2017/18 UniPD – T. Vardanega Real-Time Systems 526 of 595

𝑂ሺ𝑚ሻ independence preservation /3

2017/18 UniPD – T. Vardanega Real-Time Systems 527 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 5

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (with cluster size 𝑐 ൏ 𝑚),

no resource access control protocol can simultaneously
 Prevent unbounded PI blocking
 Preserve independence (you don’t suffer if you don’t contend)
 Avoid migration

 Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration (!)

2017/18 UniPD – T. Vardanega Real-Time Systems 528 of 595

MrsP [Burns, Wellings, 2013] /1

 Rendering RTA for partitioned multiprocessors
identical to the single-processor case
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 Preserving the property that, once a task starts

executing, its resources are available
 It needs global resource control protocols
 Cannot use suspension-based solutions!

2017/18 UniPD – T. Vardanega Real-Time Systems 529 of 595

MrsP [Burns, Wellings, 2013] /2

 Spinning non-preemptively may decrease feasibility
 Urgent tasks would suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP, at most one task per processor

may contend globally, which assures Ο 𝑚 blocking
 Access requests are served in FIFO order

 To bound blocking, spinning tasks “donate” their
cycles to the pre-empted lock-holder
 The lock-holder migrates to the processor of a spinning task

and runs in its stead until it either completes or migrates again

2017/18 UniPD – T. Vardanega Real-Time Systems 530 of 595

MrsP [Burns, Wellings, 2013] /3

2017/18 UniPD – T. Vardanega Real-Time Systems 531 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 6

MrsP [Burns, Wellings, 2013] /4

 For partitioned scheduling (𝑐 ൌ 1)
 Spinning-based : local wait spins at local ceiling

 Combined with PCP/SRP, this assures blocking at most once
before execution

 Allows using uniprocessor-style RTA
 Wait is per resource, increased by parallel contention

 𝛽௜ ൌ 𝑚𝑎𝑥௞ሺ𝜔௞
ெ௥௦௉ሻ ൌ 𝑚𝑎𝑥௞ ሺ𝑚 െ 1ሻ𝜔௞ ൌ ሺ𝑚 െ 1ሻ ൈ 𝑚𝑎𝑥௞ 𝜔௞

 Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in the
global FIFO is currently spinning

2017/18 UniPD – T. Vardanega Real-Time Systems 532 of 595

MrsP [Burns, Wellings, 2013] /5

 𝑅௜ ൌ 𝐶௜
ᇱ ൅ 𝐵௜ ൅ 𝐼௜

 𝐵௜ ൌ 𝑚𝑎𝑥 𝜌௟, 𝑏
 𝜌௟ is the longest critical section of a resource used by a lower-

priority task with ceiling no less than 𝜏௜ ’s priority
 𝑏 is the longest duration of RTOS inhibited preemption

 𝐼௜ ൌ ∑ ோ೔
்ೕ

𝐶௝
ᇱ

௝ఢ௛௣𝒍ሺ௜ሻ

 𝐶௜
ᇱ ൌ 𝐶௜ ൅ ∑ 𝑛௜𝑒௝௝

 𝐶௜ is task 𝜏௜ ’s WCET outside of critical sections
 𝑛௜ is the number of times task 𝜏௜ uses shared resource 𝑗
 𝑒௝ ൑ 𝑚 െ 1 𝜌௝ , with 𝜌௝ the longest critical section of resource 𝑗

2017/18 UniPD – T. Vardanega Real-Time Systems 533 of 595

MrsP [Burns, Wellings, 2013] /6

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

 Recent work has extended MrsP to proper nesting

2017/18 UniPD – T. Vardanega Real-Time Systems 534 of 595

MrsP [Burns, Wellings, 2013] /7

2017/18 UniPD – T. Vardanega Real-Time Systems 535 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 7

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions: DP-Fair and RUN
 Incorporating global resource sharing

2017/18 UniPD – T. Vardanega Real-Time Systems 536 of 595

