2017/18 UniPD - T. Vardanega 19/05/2018

| Multiprocessor PCP /1

7.C Global resoutrce Shﬂl’iﬂg m P-FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]

a The processor that hosts a resource is the synchronization
processor (SP) for that resource

m It statically knows all the use requirements of all of its resources

a The critical sections of a resource execute on its SP
m Jobs that use remote resources employ “distributed transactions”
0 The processor to which a task is assigned is the /oca/
processor (LP) for all of the jobs of that task

2017/18 UniPD — T. Vardanega Real-Time Systems 514 of 595

| Contention and blocking ‘ Multiprocessor PCP /2

m The single-runner premise on which previous - m A task may use local and global resources
solutions were based falls apart o Local resources reside on the LP of that task
o Suspending on wait no longer facilitates eatlier release of o Resources are global when their SP differs from the
shared resources € parallelism gets in the way client tasks’ LP
0 Priority boosting the lock holder does not help € per- m Resource access control protocols need actual locks
CPU priorities do not have global meaning (on to protect against parallel contention

partitioned scheduling) . . ,
a This causes lock-free algorithms to become attractive

o With local and global resources, suspensive wait becomes)
m SPs use M-PCP to control access to their global

resources

dangerous € local priotity inversions (PI) may occur

0 Spinning protects against PI, but wastes CPU cycles

2017/18 UniPD — T. Vardanega Real-Time Systems 513 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 515 of 595

DAAl Tivrva~s OuvvAatAarmAas A

2017/18 UniPD - T. Vardanega

| Multiprocessor PCP /3

m The task that holds a global lock should 77 be
preempted locally
o All global critical sections must execute at higher ceiling
priorities than all local tasks on their SP
o (This breaks independence!) A
m A task Tp thatis denied access to a global shared

resource pPg suspends on its P and waits in a priority-
based queue for that resource

0 Any task 7; with lower-priority than Ty on the same LP may
thus acquire global resources on pg’s SP, with higher ceiling
than pg

2017/18 UniPD — T. Vardanega Real-Time Systems 516 of 595

| Blocking under M-PCP)

m With M-PCP, task T; is blocked by lower-priority tasks in 5 ways!

0 Local blocking (once per release): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;’s
suspension on access to a global resource

Q Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP

a Local preemption: when global critical sections are executed on T;’s LP by
remote tasks of any priority (multiple times) and by local tasks of lower
priority (once per release)

a Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

Q Deferred interference as local higher-priority tasks suspend on access to global
resources because of blocking effects

2017/18 UniPD — T. Vardanega Real-Time Systems 518 of 595

| Multiprocessor PCP /4

m [f the global resource pg, being acquired by 7,
resides on the same SP as pg, then Ty suffers an
anomalous form of PI

0 The execution in pg, delays the release of pg

suspension,[M—PCP suffers the risk of deadloc

o With global resources hosted on > 1 SPs, nesting global
resources may lead to deadlock and wust be disallowed

m As contention for a global resource involves
10

m This is why other protocols prefer Tp, to spin

2017/18 UniPD — T. Vardanega Real-Time Systems 517 of 595

DAAl Tivrva~s OuvvAatAarmAas

Multiprocessor SRP

m P-EDF with resources bound to processors
[Gali, Lipari, Di Natale, 2001]
a Normal SRP is used for controlling access to local resources

m Tasks that lock a global resource execute the critical section
at the highest local priority
a As the lock-holder cannot be pre-empted, the wait time is shorter
0 But this provision breaks independence

m Tasks that request a global resource pg already locked, are
held in a FIFO queue on pg’s SP and spin on their LP

a This policy uppet-bounds the requesting task’s spin time tom — 1
executions of the longest critical section of pg

0 This duration adds to the task’s WCET

2017/18 UniPD — T. Vardanega Real-Time Systems 519 of 595

19/05/2018

2017/18 UniPD - T. Vardanega

| In general ...

With lock-based resoutce access control protocols,
locks can use either suspension or spinning

With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
o To bound blocking, PI avoidance algorithms should be used

With spinning, the task busy-waits

o To bound blocking, the spinning task becomes
non-preemptable and its request is placed in FIFO queue

The lock owner may also run non-preemptively

0 But this breaks independence

2017/18 UniPD — T. Vardanega Real-Time Systems 520 of 595

| O (m) locking protocols : G-EDF /2

—taskset- - »
suspend!

r
]
Fom /

FeSi <riFog PRIO [T

/

\pd L = /<\§\
_/

JLFP scheduler

S i

2017/18 UniPD — T. Vardanega Real-Time Systems 522 of 595

| O (m) locking protocols : G-EDF /1

m All resources are global
o To request a resource, a task must first acquire a general

priority-queue, PQ, lock (one of m)

o If the resource is busy, the requestor waits, suspending, on a
resource-specific FIFO queue, FQ (of m positions)

0 The lock-holder inherits the highest priority of tasks waiting
in the chain of queues (FQ and PQ)
m Per-request blocking is 2m — 1 executions of the
longest critical section for the resource
o When FQ is full with m Ip-jobs and m hp-tasks run (including

the job of interest) that all want to acccess the same resource

m The other tasks suffer inheritance blocking

2017/18 UniPD — T. Vardanega Real-Time Systems 521 of 595

DAAl Tivrva~s OuvvAatAarmAas

| O (m) locking protocols : P-EDF /1

m Shared resources may be local or global

a One priority guene (PQ) pet processor: the task at the head of it
acquires a foken to use to contend for global resources

o Requests for G-resources wait in a per-resource FQ
m The waiting tasks suspend
0 Lock-holders’ priority is inheritance-boosted from their PQ
m Blocking for all tasks has three components
a Local, when the lock-holder is a local Ip-task (per release)
a Remote direct, when the requestor is last in the FQ (per request)

a Remote transitive, when a local Ip-task has acquired the PQ
token and is last of the FQ (pet release)

2017/18 UniPD — T. Vardanega Real-Time Systems 523 of 595

19/05/2018

2017/18 UniPD - T. Vardanega

binary semaphore
and prio boosting

r —partitiony
1

suspend:)
1

| 0 (m) locking protocols : P-EDF /2

2017/18 UniPD — T. Vardanega

Real-Time Systems 524 of 595

| O(m) independence preservation /2

Clusters of size 1 < c <m
o Global scheduling per cluster, partitioned cluster assignment

Suspension-based
o One FIFO+PRIO queue per cluster, for O(m) blocking

o One per-resource global FIFO queue
m Head of cluster FQ copied in G-FQ and removed only after service

Independence preserved by inter-cluster niigration

o Head of G-FQ (if pre-empted) can migrate to any CPU along
the queue (hence across clusters), with priority boosted by
inheritance from a waiting task

Blocking is per request: B, = (M — 1)wy

2017/18 UniPD — T. Vardanega Real-Time Systems 526 of 595

-

S

\
Y
.

copy head

pa= [1) -]

0 (m) independence preservation /1

PoClusSter) — - = - - e e e e — o

c—1
e

r=cluster
[
1
I
I
[

= e
KaEg o |
I

wp = (Mm— Doy

2017/18 UniPD — T. Vardanega

Real-Time Systems 525 of 595

| O (m) independence preservation /3

] [| = t ¥ T
exgcuting holding res. busy wait release request res completion
2
(e
o

clustera T:—’ ; ! lj
T3

cluster, . I:I == :‘[

01 23 1 5 6 7 8 9 10 11 12 13 14 time

e t = 3: task 7o suspends and task 7| resumes execution

o ¢ = 4: task 73 migrates to cluster; and preempts task 7

2017/18 UniPD — T. Vardanega Real-Time Systems 527 of 595

DAAl Tivrva~s OuvvAatAarmAas

19/05/2018

2017/18 UniPD - T. Vardanega

| [Brandenburg, 2013]

s Theorem
o Under non-global scheduling (with cluster size ¢ < m),
10 resource access control protocol can simultaneously
m Prevent unbounded PI blocking
m Preserve independence (you don’t suffer if you don’t contend)
m Avoid migration
m Seeking independence preservation and bounded Pl-blocking
requires inter-cluster job migration (!)

2017/18 UniPD — T. Vardanega Real-Time Systems 528 of 595

| MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
o Utrgent tasks would suffer longer blocking
m Spinning at the /oca/ ceiling priority is better

o With all processors using PCP/SRP, at most one task per processor
may contend globally, which assures 0(m) blocking

0 Access requests are served in FIFO order

m To bound blocking, spinning tasks “donate” their
cycles to the pre-empted lock-holder

0 The lock-holder migrates to the processor of a spinning task
and runs in its stead until it either completes or migrates again

2017/18 UniPD — T. Vardanega Real-Time Systems 530 of 595

MrsP [Burns, Wellings, 2013] /1

m Rendering RTA for partitioned multiprocessors
identical to the single-processor case
0 The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention
m Preserving the property that, once a task starts
executing, its resources are available
o It needs global resource control protocols

o Cannot use suspension-based solutions!

2017/18 UniPD — T. Vardanega Real-Time Systems 529 of 595

DAAl Tivrva~s OuvvAatAarmAas

| MrsP [Burns, Wellings, 2013] /3

r-partition] - - - ------------
|

spinning at ! /" /_\
own ceiling_ * Y
i R
= m -

resy, -

= -partitiong- === =-=----=-----
|
NP =N
spinning at""':...- tU
0 . AN
own ceiling ! __
|

2017/18 UniPD — T. Vardanega Real-Time Systems 531 of 595

19/05/2018

2017/18 UniPD - T. Vardanega 19/05/2018

| MrsP [Burns, Wellings, 2013] /4 | MrsP [Burns, Wellings, 2013] /6

m Por partitioned scheduling (¢ = 1) m Resource nesting can be supported with either group
w Spinning-based : local wait spins at local ceiling locking ot static ordering of resources
0 Combined with PCP/SRP, this assures blocking at most once 0 With static ordeting, resource access is allowed only with
before execution
. . order number greater than any currently held resources
m Allows using uniprocessot-style RTA

0 The implementation should provide an «out of order
exception to prevent run-time errors

Wait is per resource, increased by parallel contention

a B = max, (W) = max, (m — Dwy) = (m — 1) x max,(wy)
o ‘ ‘ o m The ordering solution is better than banning nesting

and has less penalty than group locking

Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in the
global FIFO is currently spinning m Recent work has extended MrsP to proper nesting

2017/18 UniPD — T. Vardanega Real-Time Systems 532 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 534 of 595

| MisP [Burns, Wellings, 2013] /5 | MisP [Burns, Wellings, 2013] /7
] O = t 7 T
executing holding res. busy wait release request res. completion
.RL:CL’+BL+IL o
» B; = max{p; b} - i
0 py is the longest critical section of a resource used by a lowet- P T4 5 re———— \
priority task with ceiling no less than 7;’s priority ! T3 T:— l:T
a b is the longest duration of RTOS inhibited preemption | e i ﬂ e emmemmsmmmemme————————
0
_ Ri] 1 . 7]
lI—Zhl—C 2
t Jerpl(D) |1;| =i P o -
¢l=c "
. i i + Z] nle] 1] 1 2 3 4 5 [7 8 a 10 11 12 13 14 time
o Cjis task 7;’s WCET outside of critical sections
o n; is the number of times task T; uses shared resource J o t = 3: task 7o start spinning at ceiling priority
0 e < (m— 1)pj, with p; the longest critical section of resoutce j o t = 4: task 73 migrates to Py and executes in place of
2017/18 UniPD — T. Vardanega Real-Time Systems 533 of 595 2017/18 UniPD — T. Vardanega Real-Time Systems 535 of 595

DAAl Tivrva~s OuvvAatAarmAas

2017/18 UniPD - T. Vardanega 19/05/2018

| Summary

Issues and state of the art

Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing

2017/18 UniPD — T. Vardancga Real-Time Systems 536 of 595

DAAl Tivrva~s OuvvAatAarmAas 4

