
2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 1

8. Parallel computing

Credits to Tucker Taft

Parallel Lang Support 538

Program, Processor, Process
• Program = static piece of text

– Instructions + link-time-known data

• Processor(s) = resource(s) that can execute a program
– In a “multi-processor,” processors may

– Share uniformly one common address space for main memory
– Have non-uniform access to shared memory
– Have unshared parts of memory
– Share no memory as in “Shared Nothing” (distributed memory)

architectures

• Process = instance of program + run-time data
– Run-time data = registers + stack(s) + heap(s)

Parallel Lang Support 539

Threads, Picothreads, Tasks, Tasklets, etc.
• No uniform naming of threads of control within process

– Thread, Kernel Thread, OS Thread, Task, Job, Light-Weight
Process, Virtual CPU, Virtual Processor, Execution Agent,
Executor, Server Thread, Worker Thread

– “Task” generally describes a logical piece of work
– “Thread” generally describes a virtual CPU, a thread of control

within a process
– “Job” in the context of a real-time system generally describes a

single period’s actions within a periodic task

• No uniform naming of user-level lightweight threads
– Task, Microthread, Picothread, Strand, Tasklet, Fiber, Lightweight

Thread, Work Item
– Called “user-level” in that scheduling is done by code outside of

the kernel/operating-system

Parallel Lang Support 540

SIMD – Single Instruction Multiple Data
• Vector Processing

– Single instruction can operate on “vector” register set, producing
many adds/multiplies, etc. in parallel

• Graphical Processing Unit
– Broken into independent “warps” consisting of multiple “lanes” all

performing same operation at same time
– Typical GPU might be 32 warps of 32 lanes each ~= 1024 cores
– Modern GPUs allow individual “lane”s to be conditionally turned on

or off, to allow for “if-then-else” kind of programming

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 2

Parallel Lang Support 541

How to Support Parallel Programming
• Library Approach

– Provide an API for spawning and waiting for tasklets
– Examples include Intel’s TBB, Java Fork/Join, Rust

• Pragma Approach
– No new syntax
– Everything controlled by pragmas on

– Declarations
– Loops
– Blocks

– OpenMP is main example here, OpenACC is similar

• Syntax Approach
– Menu of new constructs

– Cilk+, Go, CPlex

– Building Blocks + Syntactic Sugar
– Ada 202X, ParaSail

Parallel Lang Support 542

What About Safety?
• Language-provided safety is to some extent orthogonal

to approach to supporting parallel programming
– Harder to provide using Library Approach: Rust does it by having

more complex parameter modes
– Very dependent on amount of “aliasing” in the language

• Key question is whether compiler
– Trusts programmer requests and follows orders
– Treats programmer requests as hints, only following safe hints
– Treats programmer requests as checkable claims, complaining if

not true

• If compiler can check claims, compiler can insert safe
parallelism automatically

• More discussion on Tuesday

Parallel Lang Support 543

Library Option: TBB, Java Fork/Join, Rust
• Compiler is removed from the picture completely

– Except for Rust, where compiler enforces safety

• Run-time library controls everything
– Focuses on the scheduling problem
– Need some run-time notion of “tasklet ID” to know what work to do

• Can be verbose and complex
– Feels almost like going back to assembly language
– No real sense of abstraction from details of solution
– Can use power of C++ templates to approximate syntax approach

Parallel Lang Support 544

The Rust Language
• Rust is from Mozilla http://rust-lang.org

– From “browser” development group
– Browser has become enormous, complex, multithreaded

– C-ish syntax, but with more of a “functional” language feel
– Trait-based inheritance and polymorphism; match instead of switch

– Safe multithreading using owned and managed storage
– Owned storage in global heap, but only one pointer at a time (no

garbage collection)
• Similar to C++ “Unique” pointers

– Originally also provided Managed storage in task-local heap, allowing
many pointers within task to same object, but since dropped to avoid
need for garbage collector

– Complex rules about parameter passing and assignment
• Copy vs. move semantics
• Borrowing vs. copying

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 3

Parallel Lang Support 545

Pragma Option: OpenMP, OpenACC
• User provides hints via #pragma
• No building blocks – all smartness in the compiler
• Not conducive to new ways of thinking about problem

– Case study of Ada 95 Passive Tasks vs. Protected Types

Ed Schonberg (NYU, AdaCore) on pragmas

• The two best-known language-independent (kind of) models of distribution
and parallel computation currently in use, OpenMP and OpenACC, both
choose to use a pragma-like syntax to annotate a program written in the
standard syntax of a sequential language (Fortran, C, C++)

• Those annotations typically carry target-specific information (number of threads,
chunk size, etc.)

• This solution eases the inescapably iterative process of program tuning,
because it only needs the annotations to be modified

Parallel Lang Support 546

Lesson Learned – Passive Tasks vs. Protected Objects

• Ada 83 relied completely on task + rendezvous for
synchronization

• Real-time community familiar with Mutex, Semaphore,
Queue, etc.

• One solution – Pragma Passive_Task
– Required task to be written as loop enclosing a single “select with

terminate” statement
– Passive_Task optimization (Habermann and Nassi described first)

turned “active” task into a “slave” to callers
– Executed only when task entry was called
– Reduced overhead for particular idiom

• Ada 9X Team proposed “Protected Objects”
– Provided entries like tasks
– Also provided protected functions and procedures for simple

Mutex functionality

Parallel Lang Support 547

Lesson Learned (cont’d)
• Major battle
• Final result was Protected Objects added to language
• Data-Oriented Synchronization Model Widely Embraced
• Immediately allowed focus to shift to interesting

scheduling and implementation issues
– Priority Inheritance
– Priority Ceiling Protocol
– Priority Ceiling Emulation
– “Eggshell” model for servicing of entry queues
– Use of “convenient” task to execute entry body to reduce context

switches
– Notion of “requeue” to do some processing and then requeue for

later steps of processing

• New way of thinking
– Use of Task Rendezvous now quite rare

Parallel Lang Support 548

Syntax Option
• Menu of new features

– Go, Cilk+, CPlex

• Building Block + Syntactic Sugar approach
– Ada 202x
– ParaSail

• Some demos now of ParaSail to illustrate “divide and
conquer” approach

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 4

Parallel Lang Support 549

Syntax Option – New Constructs
• Asynchronous function call

– cilk_spawn C(X)
– go G(B)
– _Task _Call F(A)

• Wait for spawned strand/goroutine/task
– cilk_sync;
– <implicit for Go>
– _Task _Sync; or end of _Task _Block { … }

Parallel Lang Support 550

Cilk+ from MIT and Intel
• Keywords – Express task parallelism

– cilk_for - Parallelize for loops
– cilk_spawn - Specifies that a function can execute in parallel
– cilk_sync – Waits for all spawned calls in a function

• Reducers
– Eliminate contention for shared variables among tasks by

automatically creating views of them as needed, and "reducing"
them in a lock free manner

– “tasklet local storage” + reduction monoid (operator + identity)

• Array Notation
– Data parallelism for arrays or sections of arrays

• SIMD-Enabled Functions
– Define functions that can be vectorized when called from within an

array notation expression or a #pragma SIMD loop

• #pragma simd: Specifies that a loop is to be vectorized

Parallel Lang Support 551

The Go Language
• Go is from Google http://golang.org

– Rob Pike from early Bell Labs Unix design team
– Quite “C” like syntactically, but with some significant

differences
– Object name precedes type name in syntax; allows type

name to be omitted when can be inferred
• e.g. “X int;” vs “int X;”  “X := 3;” // declares

// and initializes X

– No pointer arithmetic; provides array slicing for divide-and-
conquer

– “Goroutines” provide easy asynchronous function calls
• Communicate via channels and select statements, but no

race-condition checking built in

– Interfaces and method sets but no classes
– Fully garbage collected

Parallel Lang Support 552

Building Blocks + Syntactic Sugar
• Ada 202X, ParaSail
• Examples

– Operators, Indexing, Literals & Aggregates, Iterators

• New level of abstraction
– Defining vs. calling a function
– Defining vs. using a private type
– Implementing vs. using syntactic sugar

• Minimize built-in-type “magic”

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 5

Parallel Lang Support 553

Parallel Block

parallel
sequence_of_statements

{and
sequence_of_statements}

end parallel;

Each alternative is an (explicitly specified) “parallelism opportunity” (POp)
where the compiler may create a tasklet, which can be executed by an
execution server while still running under the context of the enclosing task
(same task ‘Identity, attributes, etc.)
Compiler will complain if any data races or blocking are possible

Parallel Lang Support 554

POps, Tasklets and Execution Servers

LWP within an OS process
(OS schedules LWPs)

(execution servers
in a pool created

at start time)

(tasklet created
by compiler where

POp is found)

No OS scheduling

Instructions + execution context

Parallel Lang Support 555

Parallel Loop

for I in parallel 1 .. 1_000 loop
A(I) := B(I) + C(I);

end loop;

for Elem of parallel Arr loop
Elem := Elem * 2;

end loop;

Parallel loop is equivalent to parallel block by unrolling loop
Each iteration as a separate alternative of parallel block

Compiler will complain if iterations are not independent or might block

Parallel Lang Support 556

Simple and Obvious, but What About… ?
• Exiting the block/loop, or a return statement?

– All other tasklets are aborted (need not be preemptive) and awaited,
and then, in the case of return with an expression, the expression is
evaluated, and finally the exit/return takes place

– With multiple concurrent exits/returns, one is chosen arbitrarily, and
others are aborted

• With a very big range or array to be looped over, wouldn’t
that create a huge number of tasklets?
– Compiler may choose to “chunk” the loop into sub-loops, each sub-

loop becomes a tasklet (sub-loop runs sequentially within tasklet)

• Iterations are not completely independent, but could
become so by creating multiple accumulators?
– We provide notion of parallel array of such accumulators (next slide)

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 6

Parallel Lang Support 557

Parallel Arrays of Accumulators: Map/Reduce /1

Parallel Lang Support 558

Parallel Arrays of Accumulators: Map/Reduce /2

Partial : an array with a dynamic bound
whose elements can be worked on
in parallel (the elements of an accumulator
must be initialized to 0)

0 0 0

Arr : an input array «mapped» onto Partial
to square all of its elements and sum them up

4 1 9

2 1 3

෍ 𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝒊
𝒏

𝒊ୀ𝟏

1 n

1 n
Map & (initial) Reduce

(Final) Reduce

Parallel Lang Support 559

Parallel Arrays of Accumulators: Map/Reduce /3

declare
Partial: array (parallel <>) of Float := (others => 0.0);
Sum_Of_Squares : Float := 0.0;

begin
for E of parallel Arr loop -- “Map” and partial reduction

Partial(<>) := Partial(<>) + E ** 2;
end loop;

for I in Partial’Range loop -- Final reduction step
Sum_Of_Squares := Sum_Of_Squares + Partial (I);

end loop;

Put_Line (“Sum of squares of elements of Arr =“ &
Float’Image (Sum_Of_Squares));

end;

Parallel array bounds of <> are set to match number of “chunks” of parallel
loop in which they are used with (<>) indices. May be specified explicitly

Parallel Lang Support 560

Map/Reduce Shorthand
• Final reduction step will often look the same

Total := <identity>;
for I in Partial’Range loop

Total := <op> (Total, Partial);
end loop;

• Provide an attribute function ‘Reduced to do this
Total := Partial’Reduced(Reducer => “+”, Identity => 0.0);

or
Total := Partial’Reduced; -- Reducer and Identity defaulted

• The ‘Reduced attribute may be applied to any array
when Reducer and Identity are specified explicitly

• The ‘Reduced attribute may be implemented using a
tree of parallel reductions

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 7

Parallel Lang Support 561

Parallel Languages Can Simplify
Multi/manycore Programming
• As the number of cores increases, traditional

multithreading approaches become unwieldy
– Compiler ignoring availability of extra cores would be like a

compiler ignoring availability of extra registers in a machine and
forcing programmer to use them explicitly

– Forcing programmer to worry about possible race conditions
would be like requiring programmer to handle register allocation,
or to worry about memory segmentation

• Cores should be seen as a resource, like virtual
memory or registers
– Compiler should be in charge of using cores wisely
– Algorithm as expressed in programming language should allow

compiler maximum freedom in using cores
– Number of cores available should not affect difficulty of

programmer’s job or correctness of algorithm

Parallel Lang Support 562

The ParaSail Approach
• Eliminate global variables

• Operation can only access or update variable state via its parameters

• Eliminate parameter aliasing
– Use “hand-off” semantics

• Eliminate explicit threads, lock/unlock, signal/wait
– Concurrent objects synchronized automatically

• Eliminate run-time exception handling
– Compile-time checking and propagation of preconditions

• Eliminate pointers
– Adopt notion of “optional” objects that can grow and shrink

• Eliminate global heap with no explicit allocate/free
of storage and no garbage collector
– Replaced by region-based storage management (local heaps)
– All objects conceptually live in a local stack frame

Parallel Lang Support 563

What ParaSail Retains
• Pervasive parallelism

– Parallel by default; it is easier to write in parallel than sequentially
– All ParaSail expressions can be evaluated in parallel

– In expression like “G(X) + H(Y)”, G(X) and H(Y) can be evaluated in parallel
– Applies to recursive calls as well (as in Word_Count example)

– Statement executions can be interleaved if no data dependencies unless
separated by explicit then rather than “;”

– Loop iterations are unordered and possibly concurrent unless explicit
forward or reverse is specified

– Programmer can express explicit parallelism easily using “||” as statement
connector, or concurrent on loop statement

– Compiler will complain if any possible data dependencies

• Full object-oriented programming model
– Full class-and-interface-based object-oriented programming
– All modules are generic, but with fully shared compilation model
– Convenient region-based automatic storage management

• Annotations part of the syntax
– Pre- and post-conditions
– Class invariants and value predicates

Parallel Lang Support 564

Why Pointer Free?
• Consider F(X) + G(Y)

– We want to be able to safely evaluate F(X) and G(Y) in
parallel without looking inside of F or G

– Presume X and/or Y might be incoming var (in-out)
parameters to the enclosing operation

– Clearly, no global variables can help
– Otherwise F and G might be stepping on same object

– “No parameter aliasing” is important, so we know X and Y
do not refer to the same object

– What do we do if X and Y are pointers?
– Without more information, we must presume that from X and

Y you could reach a common object Z
– How do parameter modes (in-out vs. in, var vs. non-var)

relate to objects accessible via pointers?

• Pure value semantics for non-concurrent objects

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 8

Parallel Lang Support 565

ParaSail Virtual Machine
• ParaSail Virtual Machine (PSVM) designed to be output

from ParaSail “front end”
• PSVM designed to support “pico” threading with

parallel block, parallel call, and parallel wait
instructions

• Heavier-weight “server” threads serve a queue of light-
weight pico-threads, each of which represents a
sequence of PSVM instructions (parallel block) or a
single parallel “call”
– Similar to Intel’s Cilk (and TBB) run-time model with work stealing

• While waiting to be served, a pico-thread needs only a
handful of words of memory

• A single ParaSail program can easily involve 1000’s of
pico threads

• PSVM instrumented to show degree of parallelism
achieved

A bareboard runtime lib for
time-predictable parallelism

Davide Compagnin (2017 PhD
candidate), Tullio Vardanega
University of Padova

Moral

 When you seek sustainable time-composable
parallelism, mind what you abstract away of
the (manycore) processor hardware

 Implementation experience suggests that you
should hide much less than used to be with
concurrency

2017/18 UniPD – T. Vardanega 567 of 595

Kalray MPPA-256

 288-core single chip
 16 17-core compute clusters
 4 I/O subsystems (2D torus)

 Each cluster includes 17 cores
 16 for general-purpose computing
 1 for communication and core scheduling ops

 2MB RAM per cluster, in 16 128KB-memory
banks, grouped pairwise for 8 core pairs
 Divided in left-side and right-side banks
 Memory address mapping interleaved or blocked

2017/18 UniPD – T. Vardanega 568 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 9

Our runtime library /1

 An execution model that supports task[lets] to
expose the potential parallelism of
applications efficiently

 A user-level runtime environment that
implements dynamic, load-balanced task
scheduling on top
of threads

 Applications seen
as DAGs

2017/18 UniPD – T. Vardanega 569 of 595

Runtime architecture

2017/18 UniPD – T. Vardanega 570 of 595

Our runtime library /2

 DAGs model parallel computation
 Edges denote sequential strands of computation
 Nodes denote fork/join operations

 Suspension is costly and should be avoided
 Invert control-flow dependencies and convert the

program to a continuation-passing style
 The computation always makes progress

performing a tail-recursive function call
 No return to the caller, but to a “continuation” that

represents the remainder of the computation

2017/18 UniPD – T. Vardanega 571 of 595

Escaping linear recursion /1

 Linear recursive functions cost stack space
dearly as the caller has something to do after
the callee returns (so that its stack frame
must be kept and execution must walk back
to it)

2017/18 UniPD – T. Vardanega 572 of 595

factorial(n) {
if (n == 0) return 1;
return n * factorial(n - 1);

}

factorial(4)
4*factorial(3)
3*factorial(2)
2*factorial(1)
1*factorial(0) 1

2
6

24

Stack depth = 5

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 10

Escaping linear recursion /2

 A tail-recursive function has nothing to do
after the callee returns (hence its stack frame
can be reclaimed and reused)

2017/18 UniPD – T. Vardanega 573 of 595

factorial_tr(n, accumulator) {
if (n == 0) return accumulator;
return factorial_tr(n - 1, n * accumulator);

}

factorial(n) {
return factorial_tr(n, 1);

}

factorial(4)
factorial_tr(4,1)

factorial_tr(3,4)

factorial_tr(2,12)

factorial_tr(1,24)

factorial_tr(0,24)

24

Stack depth = 2

Continuations /1

 The completion of T2 and T3 triggers the
execution of T4 (their continuation)

 The continuation task T4 is seen as part of T1
 And it inherits T1’s possible ancestor
 Children tasks return to their parent effectively by

sending return values to the continuation

2017/18 UniPD – T. Vardanega 574 of 595

Continuations /2

 Tasks never suspend
 Their execution is deferred before starting

 This does away with the nesting of stack
frames, and makes the execution of tasks
completely asynchronous

 This model needs a task pool that stores the
tasks that need execution, which neatly
allows for load balancing

2017/18 UniPD – T. Vardanega 575 of 595

Execution model /1

 Tasks run to completion
 Hence, there are no blocking, yielding,

suspension, or other interfering events
 Much benefit on temporal and spatial locality

 The runtime is stack-less
 All tasks that execute within the context of the

same executor may share its stack
 The runtime complexity is minimum

2017/18 UniPD – T. Vardanega 576 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 11

Execution model /2

 The schedule loop exits when all tasks have
been executed
 But checking whether the task pool is empty may

not be sufficient
 Residual tasks may be still executing with an

empty task pool and they can (still) originate a
further subtree of tasks

 We check completion of the root of DAG
 Its completion corresponds to the termination of

the computation

2017/18 UniPD – T. Vardanega 577 of 595

Load balancing /1

 Work-sharing is work-conserving
 No worker can be idle as there are ready tasks

 Not very efficient to implement
 The push model feeds one worker at a time
 The pull model requires queue locking, which

serializes scheduling decisions and becomes a
scalability bottleneck

 It presumes evenly-balanced workloads,
which is a rare circumstance

2017/18 UniPD – T. Vardanega 578 of 595

Load balancing /2

 Work-seeking uses cooperative distribution of
load between busy and idle workers
 When a worker empties its local queue, it seeks load

from busy workers
 Busy workers regularly check for work-seeking

workers and, when they find one, they
synchronously push a task into their queue
 If all workers are busy, each will spend time trying to

offload (!)
 The idle worker suspends on empty (local)

queue and resumes as soon as the queue is no
longer empty

2017/18 UniPD – T. Vardanega 579 of 595

Load balancing /3

 Work-stealing uses double-ended queues
 One dequeue per worker
 Pushing and popping on the tail (serialized LIFO)

 When the local dequeue becomes empty, the
worker steals from a victim
 Not cooperative: no offer from busy worker
 Stealing from the head of the victim’s dequeue (FIFO) to

minimize access conflicts with owner
 Random victim selection propagates work well

 Lesser contention among cores, more data locality,
better load balancing

2017/18 UniPD – T. Vardanega 580 of 595

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 12

Which is best?

2017/18 UniPD – T. Vardanega 581 of 595

Parallel Lang Support 582

How Do Iterators Fit into This Picture?
• Computationally-intensive programs typically Build,

Analyze, Search, Summarize, and/or Transform large
data structures or large data spaces

• Iterators encapsulate the process of walking data
structures or data spaces

• The biggest speed-up from parallelism is provided by
spreading the processing of a large data structure or
data space across multiple processing units

• High-level iterators that are amenable to a safe, parallel
interpretation can be critical to capitalizing on
distributed and/or multicore HW

Parallel Lang Support 583

While Loops and Tail Recursion Issues
+ While loop – pros

– Universal sequential loop construct: semantics defined simply

- While loop – cons
– Necessarily updates a global to advance through iteration
– Generally doesn’t update global until after finishing processing

current iteration

+ Tail recursion – pros
– No need for global variables: each loop iteration carries its own

copy of loop variable(s)
– Can generalize to walking more complex data structure such as a

tree by recurring on multiple subtrees

- Tail recursion – cons
– Next iteration value not specified until making (tail) recursive call
– Each loop necessarily becomes a separate function

Parallel Lang Support 584

Combine “pros” of Tail Recursion with (Parallel) “for” Loop

• Parallelism requires each iteration to carry its own copy
of loop variable(s), like tail recursion
– For-loop variable treated as local constant of each loop iteration

• For loop syntax allows next iteration value to be
specified before beginning current iteration
– Rather than at tail-recursion point or end of loop body
– Multiple iterations can be initiated in parallel

• Explicit “continue” statement may be used to handle
more complex iteration requirements
– Condition can determine loop-variable values for next iteration(s)

• Explicit “parallel” statement connector allows
“continue” statement to be executed in parallel with
current iteration
– Rather than after the current iteration is complete

• Explicit “exit” or “return” allows easy premature exit

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 13

Parallel Lang Support 585

Safety in a Parallel Program – Data Races
• Data races

– Two simultaneous computations reference same object and at least
one is writing to the object

– Reader may see a partially updated object
– If two Writers running simultaneously, then result may be a

meaningless mixture of two computations

• Solutions to data races
– Dynamic run-time locking to prevent simultaneous use
– Use atomic hardware instructions such as test-and-set or compare-

and-swap
– Static compile-time checks to prevent simultaneous incompatible

references

• Can support all three
– Dyamic: ParaSail “concurrent” objects; Ada “protected” objects
– Atomic: ParaSail “Atomic” module; Ada pragma “Atomic”
– Static: ParaSail hand-off semantics plus no globals; SPARK checks

Parallel Lang Support 586

Safety in a Parallel Program – Deadlock
• Deadlock, also called “Deadly Embrace”

– One thread attempts to lock A and then B
– Second thread attempts to lock B and then A

• Solutions amenable to language-based approaches
– Assign full order to all locks; must acquire locks according to this order
– Localize locking into “monitor”-like construct and ensure an operation

of such a monitor does not call an operation of some other monitor
that in turn calls back

– I.e. disallow cyclic call chain between monitors

• More general kind of deadlock – waiting forever
– One thread waits for an event to occur
– Event never occurs, or is dependent on some further action of thread

waiting for the event

• No general solution to this general problem
– Requires full power of formal proof

Parallel Lang Support 587

Work stealing as the new consensus for
scheduling parallel work

Parallel Lang Support 588

Scheduling All of the Parallel Computing
• Fully Symmetric Multiprocessor scheduling out of favor

– Significant overhead associated with switching processors in the
middle of a stream

• Notion of Processor Affinity introduced to limit threads
(bouncing) migration across processors
– But requires additional specification when creating threads

• One-to-One mapping of program threads to kernel
threads falling out of favor
– Kernel thread switching is expensive

• Moving to lightweight threads managed in user space
– But still need to worry about processor affinity

• Work stealing emerging as consensus solution
– Small number of kernel threads (server processes)
– Large number of lightweight user-space threads
– Processor affinity managed automatically and adaptively

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 14

Parallel Lang Support 589

Work Stealing: Double-ended Queues
• Approximately one server process per physical core
• Each server process has a double-ended queue of very

light-weight threads
– “picothreads,” “strands,” “tasklets,” etc.

• Server adds new picothreads to end of queue, and serves
them in a LIFO manner

• When server runs out of picothreads to serve, it steals one
from some other server – picks the oldest one
– Uses FIFO when stealing
– Picks picothread that has been languishing on some servers queue

• Provides good combination of features
– Automatic load balancing
– Good locality of reference within a server
– Good separation between servers

• Consensus: Cilk+, TBB, Java Fork/Join, X10, Fortress, ParaSail,
…

Parallel Lang Support 590

Work Stealing: Double-ended Queues

Server 1 Server 2 Server 3 Server 4

Oldest picothreads
liable to be stolen

Newest
picothreads will
be served next

Will steal one
of these

Parallel Lang Support 591

Work Stealing: Subtleties
• Picothreads are very lightweight because they don’t need

their own stack while waiting to be served
– Once started, they piggyback on stack belonging to server

• Server stack remains occupied (but can start a second
picothread) when current executing picothread has to wait
– For a sub-picothread to finish
– For a resource to be released
– For input to be available

• Care needed to prevent servers from waiting on each other
– May start additional server processes in some cases

• References on Work Stealing
– Blumofe and Leisersen, “Scheduling Multithreaded Computations by

Work Stealing,” Journal of the ACM, Sep 1999, pp 720-748
– Acar, Blelloch, and Blumofe, “The Data Locality of Work Stealing,”

Proceedings of the 12th ACM Symposium on Parallelism in Algorithms
and Architectures, Bar Harbor, ME, July 2000

Parallel Lang Support 592

Work Stealing: Subtleties

Server 1
Stack: A

Server 2 Server 3

Oldest picothreads
liable to be stolenB

C

• A spawns B and C and
then waits for them;

• Server 2 steals B;
• Server 1 serves C

2017/18 UniPD - T. Vardanega 19/05/2018

Real Time Systems 15

Parallel Lang Support 593

Work Stealing: Subtleties

Server 1
Stack:

A, C (lock)

Server 2
Stack:

B

Server 3

Oldest picothreads
liable to be stolenED

• C acquires a lock and
spawns D (on server 1);

• B spawns E (on server 2);
• Server 3 steals D;
• C awaits D (on server 1);
• Server 1 steals E;
• B awaits E (on server 2)

• A spawns B and C and
then waits for them;

• Server 2 steals B;
• Server 1 serves C

Parallel Lang Support 594

Work Stealing: Subtleties

Server 1
Stack:

A, C(lock), E

Server 2
Stack:

B

Server 3
Stack:

D
Oldest picothreads
liable to be stolen

• D finishes (on server 3);
• E (on server 1) tries to

acquire same lock already
held by C;

• Deadlock!

• C acquires a lock and
spawns D (on server 1);

• B spawns E (on server 2);
• Server 3 steals D;
• C awaits D (on server 1);
• Server 1 steals E;
• B awaits E (on server 2)

• A spawns B and C and
then waits for them;

• Server 2 steals B;
• Server 1 serves C

Parallel Lang Support 595

Work Stealing: Subtleties

Server 1
Stack:

A, C(lock), E

Server 2
Stack:

B

Server 3
Stack:

D
Oldest picothreads
liable to be stolen

• B waits for E (on server 2);
• D finishes (on server 3);
• E (on server 1) tries to

acquire same lock already
held by C;

• Deadlock!

Solution: Server with picothread on its stack
holding a lock, may only serve subthreads of
that thread (so Server 1 may not steal E, since
not a subthread of C)

• C acquires a lock and
spawns D (on server 1);

• B spawns E (on server 2);
• Server 3 steals D;
• C awaits D (on server 1);
• Server 1 steals E;
• B awaits E (on server 2)

• A spawns B and C and
then waits for them;

• Server 2 steals B;
• Server 1 serves C

