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1. Introduction

Initial intuition /1

 Real-time system /1
 An aggregate of computers, I/O devices and application-specific 

software, characterized by
 Intensive interaction with external environment
 Time-dependent variations in the state of the external environment
 Need to keep control over all individual parts of the external environment 

and to react to changes

 System activities subject to timing constraints
 Reactivity, accuracy, duration, completion, responsiveness: all dimensions 

of timeliness

 System activities inherently concurrent and increasingly parallel
 The satisfaction of all system constraints must be proved
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Initial intuition /2

 Real-time system /2
 Operational correctness does not solely depend on the logical 

result but also on the time at which the result is produced
 The computed response has an application-specific utility
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be bad

 Embedded system
 The computer and its software are fully immersed in an 

engineering system comprised of the external environment 
subject to its control
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Initial intuition /3

 One key difference exists between embedded 
systems and cyber-physical systems (CPS), the 
new frontier of research in this domain

 Embedded systems are traditionally closed systems
 The interaction with the environment is bounded and the 

system operation only varies within a fixed set of modes
 Cyber-physical systems are intrinsically open
 Part of the environment is unknown
 The functional needs may vary rapidly over time
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Embedded system /1
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A bounded external environement



2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 3

Cyber-physical system
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Image credits to www.designwordonline.com

The boundaries of  this 
“world” are much wider 
and more dynamic than 
for traditional embedded 
systems

The interconnect is predominantly 
sensor-based and wireless 

Cybernetics: now and then

 Born in 1948 as the science of control systems
 From the Greek κυβερνητης “steersman”, which became 

“gubernator” in Latin
 Sensing the external (physical) environment
 Computing the distance from the expected status
 Actuating devices that reduce that distance

 Every control action performed on the external 
environment causes (positive or negative) feedback

 The goal is to calibrate actions so that the system 
objectives is reached with bounded feedback

2018/19 UniPD – T. Vardanega Real-Time Systems 10 of  537

Example /1

 A digital system comprised of sensors and actuators
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Gradient over time

Example /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic with period 𝑇
 For the convenience of control theory

 Actuator commanding is produced at the time of the next sampling
 As part of feedback control mathematics

 System stability degrades with the width of the sampling period
 Plant capacity

 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is 

capable of it within 𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑅 requires higher frequency of 
actuation and thus faster sampling → hence shorter 𝑇

 A rule-of-thumb ோ
்⁄ ratio normally ranges [10 .. 20]
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 A control system consists of  (possibly distributed) 
resources governed by a real-time operating system

 The RTOS design must meet stringent reliability
requirements

 Measured in terms of  maximum acceptable probability 
of  failure
 Typically set in the range 10ିଵ଴. . 10ିହ per unit of  

operational life/service time (hour / run)

Application requirements /1
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Application requirements /2

 Safety-critical systems
 E.g., Airbus A-3X0: 10-9 probability of allowable system 

failure per hour of flight
 One failure in 109 hours of flight (൐ 114ା𝑘 years!)

 Business-critical real-time systems
 E.g., satellite system: between 10-6 and 10-7 probability of 

allowable failure per hour of operation
 One failure in 107 hours of operation (about 1,141 years!)
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Understanding the hardware /1
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Understanding the hardware /2
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Key characteristics /1

 Complexity
 In algorithms, mostly because of the need to apply discrete control 

over analog and  continuous physical phenomena
 In development, mostly owing to more demanding verification and 

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary engineering (spanning control, SW, and system)
 Extreme variability in size and scope

 From tiny and pervasive (nano-devices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability
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Key characteristics /2

 Must respond to events triggered by the external 
environment as well as by the passing of time
 Double nature: event-driven and time-driven

 Continuity of operation
 The whole point of a real-time embedded system is that it must be 

capable of operating without (constant) human supervision
 Nearly no keyboard-based interaction!

 Software architecture inherently concurrent
 Must be temporally predictable

 Need for static (off-line) verification of correct temporal behavior
 How does that relate to determinism?
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Predictability and determinism

 Predictability (what can be known a priori) may be 
regarded as a continuum
 Its maximum end-point is deterministic a-priori 

knowledge (absolute certainty)
 Its minimum end-point is total absence of a-priori 

knowledge (see what happens …)
 Seeking predictability implies reasoning about kinds 

and degrees of uncertainty
 Very rarely we have full a-priori knowledge
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Meeting real-time requirements

 Minimizing the average response time of application tasks is the 
goal for general-purpose computing but it is not for RTS!

 “Real-time computing is not equivalent to fast computing” 
[Stankovic, 1988]

 Given real-time requirements and a HW/SW implementation, 
how can one show that those requirements are met?
 Testing and simulation are not enough

 Maiden flight of space shuttle, 12 April 1981: there was a ଵ
଺଻

probability for a transient overload occurring at initialization; it never 
did in testing; it did at launch

 System-level predictability is what we need
 Central to it, is knowing the worst case
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Example /3

 Complex systems must support 
multiple distinct periods 𝑇௜
 Easier to set a harmonic relation between all 𝑇௜

 This removes the need for concurrency of 
execution in the relevant computations

 But it causes coupling between possibly 
unrelated control actions which is a poor 
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control activities 
each performed at a specific rate
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Any three-dimensional rotation can be 
described as a sequence of 𝑟𝑜𝑙𝑙 ሺ𝑥ሻ, 𝑝𝑖𝑡𝑐ℎ ሺ𝑦ሻ, 
𝑦𝑎𝑤 ሺ𝑧ሻ rotations (Euler angles)
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Example /4

 180 Hz cycle
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle (at every 2nd activation)
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle (at every 6th activation)
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle (at every 6th activation)
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data
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(Artificially) harmonic multi-rate system(Artificially) harmonic multi-rate system

Example /5

 Command and control systems are often organized 
in a hierarchical fashion
 At the lowest level we place the digital control systems 

that operate on the physical environment
 At the highest level we place the interface with the 

human operator
 The output of higher-level controllers becomes a reference value 

𝒓ሺ𝑡ሻ for lower-level controllers
 The more composite the hierarchy the more complex the 

interdependence in the logic and timing of operation
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Example /6
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A conceptual model
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An initial taxonomy /1

 The prevailing classification stems from the traditional 
standpoint of control algorithms

 Strictly periodic systems
 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events 

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!
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Some terminology

 Time-aware
 A system that makes explicit reference to wall-clock time

 E.g., open vault door at 9.00 AM

 Reactive
 A system that must produce outputs within deadlines

relative to specific (input) events
 Control systems are reactive by nature
 Hence required to constrain the time variability (jitter) of 

their input and output
 Input jitter and output jitter control
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Definitions in the SW domain /1

 Job
 Unit of work selected for execution by the scheduler
 Needs physical and logical resources to execute
 Each job has an entry point where it awaits activation

 Task
 Unit of functional and architectural composition
 Issues jobs (one at a time, until completion) to 

perform actual work
 One such task is said to be recurrent
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An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular intervals of time, 𝑇
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular 
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded 

minimum distance from one another
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Definitions /2

 Release time
 When a job should become eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of 

the release event and when the scheduler actually 
recognizes the job as ready

 May be set at some offset from the system start time
 The offset of the first job of task τ is named phase, 𝜑, and 

it is one of the attributes of τ
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Definitions /3

 Deadline
 The time by which a job must complete its execution
 May be < (constrained), = (implicit), > (arbitrary) than the next job’s 

release time
 Response time

 The time span between the job’s release and its actual completion

 The longest admissible response time for a job 𝑗௜ is termed 
the job’s relative deadline, 𝐷௜

 The algebraic summation of release time and relative 
deadline is termed absolute deadline, 𝑑௜
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Definitions /4

 Hard deadline
 If the consequences of a job completing past the deadline are 

serious and possibly intolerable
 Satisfaction must be demonstrated off line

 Soft deadline
 If the consequences of a job occasionally completing past the 

assigned deadline are tolerable
 The quantitative interpretation of “occasional” may be 

established in either probabilistic terms or as a utility 
function
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Definitions /5

 Laxity (aka slack)
 𝑠 𝑡 ൌ 𝑑 െ 𝑡 െ 𝑟 defines the slack 𝑠ሺ𝑡ሻ at time 𝑡 of 

job 𝐽 with deadline 𝑑 and remaining time of execution 𝑟
 A job with non-negative laxity meets its deadline

 Tardiness
 The distance between a job’s response time and its 

deadline
 A job with negative laxity has tardiness

 Usefulness
 Value of (residual) utility of the job’s computational 

product as a function of its tardiness
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Usefulness

Tardiness	൐ 𝟎

Interesting	notion	but	difficult	to	apply	and	verify

A	soft	deadline for	which	the	value	of	the	product	drops	to	
0	at	the	expiry	of	the	relative	deadline	is	said	to	be	firm

Can be computed

Difficult to quantify

Laxity	൒ 𝟎

Deadline
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An initial taxonomy /3

 According to timing requirements
 Hard real-time (HRT) tasks

 Whose jobs have hard deadlines
 Soft real-time (SRT) tasks 

 Whose jobs have soft deadlines
 Firm real-time (FRT) tasks

 Whose jobs have soft deadlines but usefulness ≤ 0 past the deadline
 Not real-time tasks 

 Do not exhibit timing requirements

 This taxonomy extends to real-time systems
 Which however are mixed in nature 
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Abstract models /1

 Resources
 Active (processor, server)

 They “do” what they have to 
 Execute machine instructions, move data, process queries, etc.

 Jobs must acquire them to make progress toward completion
 Active resources have a type

 Those of the same type can be used interchangeably by a job
 Those of different types cannot
 Processors may have different speed, which has major impact 

on the rate of progress for the jobs that run on them
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Abstract models /2

 Resources
 Passive (memory, shared data, semaphores, …)

 They don’t do anything per se
 Jobs may need some of them to do what they have to 

 They may be reused if use does not exhaust them
 If always available in sufficient quantity to satisfy all needs, they 

are said to be plentiful and can be ignored
 Passive resources that matter to real-time systems are those that 

may cause bottlenecks
 Access to memory may matter more (owing to arbitration) than 

memory itself (which may be considered plentiful)
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Abstract models /3

 Temporal parameters
 Jitter

 Variability in the release time or in the time of input (data freshness) or 
output (stability of control)

 Inter-arrival time
 Separation between the release time of successive jobs which are not 

strictly periodic
 Job is sporadic if a guaranteed minimum such value exists
 Job is aperiodic otherwise

 Execution time, 𝐶
 For any job 𝐽௜, 𝐶௜ may vary between a best-case (BCET) 𝐶௜

௕ and a worst-
case (WCET) 𝐶௜

௪
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Periodic task and sporadic task
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𝜑 ൌ 2, 𝑇 ൌ 5, 𝐶 ൌ 2, 𝑑 ൌ 𝑇

Abstract models /4

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and 

variability of execution time
 Hyperperiod 𝐻ௌ of task set 𝑆 ൌ 𝜏௜ , 𝑖 ൌ 1, … , 𝑁

 Defined as LCM (least common multiple) of task periods 𝑇௜

 Utilization
 For every task 𝜏௜ : defined as the ratio between execution time and 

period : 𝑈௜ ൌ ஼೔
்೔

൑ 1
 For the system (total utilization) : 𝑈 ൌ ∑ 𝑈௜௜ ൑ 𝑚, where 𝑚 is the 

number of CPUs (𝑚 ൌ 1, for now)
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Abstract models /5

 Fixing execution parameters
 The time that elapses between when a periodic job 

becomes ready and the next period 𝑇 is certainly ൏ 𝑇
 Setting phase 𝜑 ൐ 0 and deadline 𝐷 ൏ 𝑇 for a job may 

help limit its output jitter (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Or they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles 
 E.g., producer – consumer
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Extended precedence graphs (task graphs)

Job	of	type	OR	(branch)
typically	followed	by
a	join	job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent	jobs

Dependent	jobs

Job	of	type	AND	(join)

Period	=	2Phase
Relative	deadline
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Precedence constraints

 One job’s release time cannot follow that of a successor job
 Effective release time (ERT)

 For a job 𝐽௜ with predecessors 𝐽௞ୀଵ,…,௜ିଵ , 𝐸𝑅𝑇௜ this is the latest value 
between its own release time and the maximum effective release time of its 
predecessors, 𝐸𝑅𝑇௞ , plus 𝐶௞

 One job’s deadline cannot precede that of a predecessor job
 Effective deadline (ED)

 For a job 𝐽௜ with successors 𝐽௞ୀ௜ାଵ,…,௡ , 𝐸𝐷௜ is the earliest value between 
𝐷௜ and the minimum effective deadline of its successors, 𝐸𝐷௞, less 𝐶௞

 For single processors with preemptive scheduling, we may 
disregard precedence constraints and just consider ERT and ED
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Abstract models /6

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment 
(e.g., non-reentrancy) but also on the programming style 

 Preemption causes time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general indicates which activities must be guaranteed possibly even at 

the cost of others
 Permissibility of resource preemption

 Some resources are intrinsically preemptable
 Others do not permit it
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Which ones?

Real-Time Systems 46 of  537

Abstract models /7

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of processor 

time assigned to a job is ൒ than its BCET and ൑ than its WCET
 All precedence constraints in place among tasks as well as among 

resources are satisfied
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Recall
BCET: best-case 
execution time
WCET: worst-
case execution

Abstract models /8

 A valid schedule is said to be feasible if it satisfies the temporal 
constraints of every job

 A job set is said to be schedulable by a scheduling algorithm if 
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible 
schedule when one exists

 Actual systems may include multiple schedulers that operate in 
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other 

schedulers govern access to physical resources
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Abstract models /9

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm, which we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling 

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full 
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact

 Necessary and sufficient
 Schedulability tests, which are only sufficient
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Further characterization /1
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Further characterization /2

 The design and development of a RTS mind the worst case 
before considering the average case (if at all)
 Improving the average case is of no use and it may even be 

counterproductive
 The cache addresses the average case and therefore operates adversarially to 

the needs of real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation
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Summary /1

 From initial intuition to more solid definition of 
real-time embedded system

 Survey of application requirements and key 
characteristics

 Taxonomy of tasks
 Dispelling false myths
 Introduced abstract models to reason in general 

about real-time systems
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Real-Time Systems 14

Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft 

Firm 

Role of
time

Time-aware

Reactive

Characteristics
(see next page)
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Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency/
Predictability

Reliability/
Safety

Large/
Complex
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