
2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 1

Real-Time Systems

Academic Year 2018/19
Master Degree in Computer Science
Department of Mathematics
University of Padua
Tullio Vardanega

Outline

1. Introduction
2. Scheduling basics
3. Fixed-priority scheduling

a. Task interactions and
blocking

b. Exercises and extensions

4. System issues
a. Programming real-time

systems
b. Implementation details

5. Distributed systems
6. Timing analysis
7. Multicore systems
8. Predictable parallel

programming

Bibliography
• J. Liu, “Real-Time Systems”, Prentice

Hall, 2000
• A. Burns and A. Wellings,

“Analysable Real-Time Systems -
Programmed in Ada”, Amazon
Books, 2016

• State-of-the-art literature

2018/19 UniPD – T. Vardanega Real-Time Systems 2 of 537

1. Introduction

Initial intuition /1

 Real-time system /1
 An aggregate of computers, I/O devices and application-specific

software, characterized by
 Intensive interaction with external environment
 Time-dependent variations in the state of the external environment
 Need to keep control over all individual parts of the external environment

and to react to changes

 System activities subject to timing constraints
 Reactivity, accuracy, duration, completion, responsiveness: all dimensions

of timeliness

 System activities inherently concurrent and increasingly parallel
 The satisfaction of all system constraints must be proved

2018/19 UniPD – T. Vardanega Real-Time Systems 4 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 2

Initial intuition /2

 Real-time system /2
 Operational correctness does not solely depend on the logical

result but also on the time at which the result is produced
 The computed response has an application-specific utility
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be bad

 Embedded system
 The computer and its software are fully immersed in an

engineering system comprised of the external environment
subject to its control

2018/19 UniPD – T. Vardanega Real-Time Systems 5 of 537

Initial intuition /3

 One key difference exists between embedded
systems and cyber-physical systems (CPS), the
new frontier of research in this domain

 Embedded systems are traditionally closed systems
 The interaction with the environment is bounded and the

system operation only varies within a fixed set of modes
 Cyber-physical systems are intrinsically open
 Part of the environment is unknown
 The functional needs may vary rapidly over time

2018/19 UniPD – T. Vardanega Real-Time Systems 6 of 537

Embedded system /1

2018/19 UniPD – T. Vardanega Real-Time Systems 7 of 537

Hardware

Operating

System

Application Programs

Typical General-Purpose Computing
Configuration

Hardware

including
Operating System

components

Application Program

Typical Embedded Computing
Configuration

PlantUser

Embedded system /2

2018/19 UniPD – T. Vardanega Real-Time Systems 8 of 537

A bounded external environement

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 3

Cyber-physical system

2018/19 UniPD – T. Vardanega Real-Time Systems 9 of 537

Image credits to www.designwordonline.com

The boundaries of this
“world” are much wider
and more dynamic than
for traditional embedded
systems

The interconnect is predominantly
sensor-based and wireless

Cybernetics: now and then

 Born in 1948 as the science of control systems
 From the Greek κυβερνητης “steersman”, which became

“gubernator” in Latin
 Sensing the external (physical) environment
 Computing the distance from the expected status
 Actuating devices that reduce that distance

 Every control action performed on the external
environment causes (positive or negative) feedback

 The goal is to calibrate actions so that the system
objectives is reached with bounded feedback

2018/19 UniPD – T. Vardanega Real-Time Systems 10 of 537

Example /1

 A digital system comprised of sensors and actuators

2018/19 UniPD – T. Vardanega Real-Time Systems 11 of 537

A/D

A/D

Control law
computation D/A

Sensor Actuator
Physical
system
(plant)

𝒔ሺ𝒕ሻ

𝒓ሺ𝒕ሻ 𝒓𝒌

𝒔𝒌

𝒂𝒌

𝒂ሺ𝒕ሻ

Feedback control loop

Reference
values

𝒂𝒌 ൌ 𝒂𝒌ି𝟐 ൅ 𝜶 𝒓𝒌 െ 𝒔𝒌 ൅ 𝜷 𝒓𝒌ି𝟏 െ 𝒔𝒌ି𝟏 ൅ 𝜸ሺ𝒓𝒌ି𝟐 െ 𝒔𝒌ି𝟐ሻ
Gradient over time

Example /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic with period 𝑇
 For the convenience of control theory

 Actuator commanding is produced at the time of the next sampling
 As part of feedback control mathematics

 System stability degrades with the width of the sampling period
 Plant capacity

 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is

capable of it within 𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑅 requires higher frequency of
actuation and thus faster sampling → hence shorter 𝑇

 A rule-of-thumb ோ
்⁄ ratio normally ranges [10 .. 20]

2018/19 UniPD – T. Vardanega Real-Time Systems 12 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 4

 A control system consists of (possibly distributed)
resources governed by a real-time operating system

 The RTOS design must meet stringent reliability
requirements

 Measured in terms of maximum acceptable probability
of failure
 Typically set in the range 10ିଵ଴. . 10ିହ per unit of

operational life/service time (hour / run)

Application requirements /1

2018/19 UniPD – T. Vardanega Real-Time Systems 13 of 537

Application requirements /2

 Safety-critical systems
 E.g., Airbus A-3X0: 10-9 probability of allowable system

failure per hour of flight
 One failure in 109 hours of flight (൐ 114ା𝑘 years!)

 Business-critical real-time systems
 E.g., satellite system: between 10-6 and 10-7 probability of

allowable failure per hour of operation
 One failure in 107 hours of operation (about 1,141 years!)

2018/19 UniPD – T. Vardanega Real-Time Systems 14 of 537

Understanding the hardware /1

2018/19 UniPD – T. Vardanega

Instruction
cache

Data
cache

Caches

Courtesy of

Real-Time Systems 15 of 537

Understanding the hardware /2

2018/19 UniPD – T. Vardanega

Courtesy of

Core

Real-Time Systems 16 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 5

Key characteristics /1

 Complexity
 In algorithms, mostly because of the need to apply discrete control

over analog and continuous physical phenomena
 In development, mostly owing to more demanding verification and

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary engineering (spanning control, SW, and system)
 Extreme variability in size and scope

 From tiny and pervasive (nano-devices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability

2018/19 UniPD – T. Vardanega Real-Time Systems 17 of 537

Key characteristics /2

 Must respond to events triggered by the external
environment as well as by the passing of time
 Double nature: event-driven and time-driven

 Continuity of operation
 The whole point of a real-time embedded system is that it must be

capable of operating without (constant) human supervision
 Nearly no keyboard-based interaction!

 Software architecture inherently concurrent
 Must be temporally predictable

 Need for static (off-line) verification of correct temporal behavior
 How does that relate to determinism?

2018/19 UniPD – T. Vardanega Real-Time Systems 18 of 537

Predictability and determinism

 Predictability (what can be known a priori) may be
regarded as a continuum
 Its maximum end-point is deterministic a-priori

knowledge (absolute certainty)
 Its minimum end-point is total absence of a-priori

knowledge (see what happens …)
 Seeking predictability implies reasoning about kinds

and degrees of uncertainty
 Very rarely we have full a-priori knowledge

2018/19 UniPD – T. Vardanega Real-Time Systems 19 of 537

Meeting real-time requirements

 Minimizing the average response time of application tasks is the
goal for general-purpose computing but it is not for RTS!

 “Real-time computing is not equivalent to fast computing”
[Stankovic, 1988]

 Given real-time requirements and a HW/SW implementation,
how can one show that those requirements are met?
 Testing and simulation are not enough

 Maiden flight of space shuttle, 12 April 1981: there was a ଵ
଺଻

probability for a transient overload occurring at initialization; it never
did in testing; it did at launch

 System-level predictability is what we need
 Central to it, is knowing the worst case

2018/19 UniPD – T. Vardanega Real-Time Systems 20 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 6

Example /3

 Complex systems must support
multiple distinct periods 𝑇௜
 Easier to set a harmonic relation between all 𝑇௜

 This removes the need for concurrency of
execution in the relevant computations

 But it causes coupling between possibly
unrelated control actions which is a poor
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control activities
each performed at a specific rate

2018/19 UniPD – T. Vardanega

Any three-dimensional rotation can be
described as a sequence of 𝑟𝑜𝑙𝑙 ሺ𝑥ሻ, 𝑝𝑖𝑡𝑐ℎ ሺ𝑦ሻ,
𝑦𝑎𝑤 ሺ𝑧ሻ rotations (Euler angles)

Real-Time Systems 21 of 537

Example /4

 180 Hz cycle
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle (at every 2nd activation)
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle (at every 6th activation)
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle (at every 6th activation)
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data

2018/19 UniPD – T. Vardanega Real-Time Systems 22 of 537

(Artificially) harmonic multi-rate system(Artificially) harmonic multi-rate system

Example /5

 Command and control systems are often organized
in a hierarchical fashion
 At the lowest level we place the digital control systems

that operate on the physical environment
 At the highest level we place the interface with the

human operator
 The output of higher-level controllers becomes a reference value

𝒓ሺ𝑡ሻ for lower-level controllers
 The more composite the hierarchy the more complex the

interdependence in the logic and timing of operation

2018/19 UniPD – T. Vardanega Real-Time Systems 23 of 537

Example /6

Flight	control
system

State	
estimator

Air	
data

Physical	plant	L0

Virtual	
plant	L1

State	
estimator

Flight	mgmt
system

Navigation

Virtual	
plant	L2

Air	traffic
control

State	
estimator

Sensors

Operator
interface Commands

Responses

2018/19 UniPD – T. Vardanega Real-Time Systems 24 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 7

A conceptual model

Controlled	subsystemControlled	subsystem

Control	subsystem

Operation	subsystem

application,	or	environment,	
which	dictates	the	RT	requirements

controls	resources	for	use	
by	the	controlled	subsystem

Initiates	and	monitors	system	activity

Application interface

Human-machine interface

2018/19 UniPD – T. Vardanega Real-Time Systems 25 of 537

A typical embedded system
Algorithms for
Digital Control

Data Logging

Data Retrieval
and Display

Operator
Interface

Interface Engineering
System

Remote
Monitoring System

Real-Time
Clock

Database

Operator’s
Console

Display
Devices

Real-Time Computer

2018/19 UniPD – T. Vardanega Real-Time Systems 26 of 537

An initial taxonomy /1

 The prevailing classification stems from the traditional
standpoint of control algorithms

 Strictly periodic systems
 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!

2018/19 UniPD – T. Vardanega Real-Time Systems 27 of 537

Some terminology

 Time-aware
 A system that makes explicit reference to wall-clock time

 E.g., open vault door at 9.00 AM

 Reactive
 A system that must produce outputs within deadlines

relative to specific (input) events
 Control systems are reactive by nature
 Hence required to constrain the time variability (jitter) of

their input and output
 Input jitter and output jitter control

2018/19 UniPD – T. Vardanega Real-Time Systems 28 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 8

Definitions in the SW domain /1

 Job
 Unit of work selected for execution by the scheduler
 Needs physical and logical resources to execute
 Each job has an entry point where it awaits activation

 Task
 Unit of functional and architectural composition
 Issues jobs (one at a time, until completion) to

perform actual work
 One such task is said to be recurrent

2018/19 UniPD – T. Vardanega Real-Time Systems 29 of 537

An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular intervals of time, 𝑇
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded

minimum distance from one another

2018/19 UniPD – T. Vardanega Real-Time Systems 30 of 537

Definitions /2

 Release time
 When a job should become eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of

the release event and when the scheduler actually
recognizes the job as ready

 May be set at some offset from the system start time
 The offset of the first job of task τ is named phase, 𝜑, and

it is one of the attributes of τ

2018/19 UniPD – T. Vardanega Real-Time Systems 31 of 537

Definitions /3

 Deadline
 The time by which a job must complete its execution
 May be < (constrained), = (implicit), > (arbitrary) than the next job’s

release time
 Response time

 The time span between the job’s release and its actual completion

 The longest admissible response time for a job 𝑗௜ is termed
the job’s relative deadline, 𝐷௜

 The algebraic summation of release time and relative
deadline is termed absolute deadline, 𝑑௜

2018/19 UniPD – T. Vardanega Real-Time Systems 32 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 9

2018/19 UniPD – T. Vardanega Real-Time Systems 33 of 537

Definitions /4

 Hard deadline
 If the consequences of a job completing past the deadline are

serious and possibly intolerable
 Satisfaction must be demonstrated off line

 Soft deadline
 If the consequences of a job occasionally completing past the

assigned deadline are tolerable
 The quantitative interpretation of “occasional” may be

established in either probabilistic terms or as a utility
function

2018/19 UniPD – T. Vardanega Real-Time Systems 34 of 537

Definitions /5

 Laxity (aka slack)
 𝑠 𝑡 ൌ 𝑑 െ 𝑡 െ 𝑟 defines the slack 𝑠ሺ𝑡ሻ at time 𝑡 of

job 𝐽 with deadline 𝑑 and remaining time of execution 𝑟
 A job with non-negative laxity meets its deadline

 Tardiness
 The distance between a job’s response time and its

deadline
 A job with negative laxity has tardiness

 Usefulness
 Value of (residual) utility of the job’s computational

product as a function of its tardiness

2018/19 UniPD – T. Vardanega Real-Time Systems 35 of 537

𝑡

𝑑 െ 𝑡

𝒔ሺ𝒕ሻ
𝑟

𝑑

Utility function

2018/19 UniPD – T. Vardanega Real-Time Systems 36 of 537

Usefulness

Tardiness	൐ 𝟎

Interesting	notion	but	difficult	to	apply	and	verify

A	soft	deadline for	which	the	value	of	the	product	drops	to	
0	at	the	expiry	of	the	relative	deadline	is	said	to	be	firm

Can be computed

Difficult to quantify

Laxity	൒ 𝟎

Deadline

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 10

An initial taxonomy /3

 According to timing requirements
 Hard real-time (HRT) tasks

 Whose jobs have hard deadlines
 Soft real-time (SRT) tasks

 Whose jobs have soft deadlines
 Firm real-time (FRT) tasks

 Whose jobs have soft deadlines but usefulness ≤ 0 past the deadline
 Not real-time tasks

 Do not exhibit timing requirements

 This taxonomy extends to real-time systems
 Which however are mixed in nature

2018/19 UniPD – T. Vardanega Real-Time Systems 37 of 537

Abstract models /1

 Resources
 Active (processor, server)

 They “do” what they have to
 Execute machine instructions, move data, process queries, etc.

 Jobs must acquire them to make progress toward completion
 Active resources have a type

 Those of the same type can be used interchangeably by a job
 Those of different types cannot
 Processors may have different speed, which has major impact

on the rate of progress for the jobs that run on them

2018/19 UniPD – T. Vardanega Real-Time Systems 38 of 537

Abstract models /2

 Resources
 Passive (memory, shared data, semaphores, …)

 They don’t do anything per se
 Jobs may need some of them to do what they have to

 They may be reused if use does not exhaust them
 If always available in sufficient quantity to satisfy all needs, they

are said to be plentiful and can be ignored
 Passive resources that matter to real-time systems are those that

may cause bottlenecks
 Access to memory may matter more (owing to arbitration) than

memory itself (which may be considered plentiful)

2018/19 UniPD – T. Vardanega Real-Time Systems 39 of 537

Abstract models /3

 Temporal parameters
 Jitter

 Variability in the release time or in the time of input (data freshness) or
output (stability of control)

 Inter-arrival time
 Separation between the release time of successive jobs which are not

strictly periodic
 Job is sporadic if a guaranteed minimum such value exists
 Job is aperiodic otherwise

 Execution time, 𝐶
 For any job 𝐽௜, 𝐶௜ may vary between a best-case (BCET) 𝐶௜

௕ and a worst-
case (WCET) 𝐶௜

௪

2018/19 UniPD – T. Vardanega Real-Time Systems 40 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 11

Periodic task and sporadic task

2018/19 UniPD – T. Vardanega Real-Time Systems 41 of 537

𝜑 ൌ 2, 𝑇 ൌ 5, 𝐶 ൌ 2, 𝑑 ൌ 𝑇

Abstract models /4

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and

variability of execution time
 Hyperperiod 𝐻ௌ of task set 𝑆 ൌ 𝜏௜ , 𝑖 ൌ 1, … , 𝑁

 Defined as LCM (least common multiple) of task periods 𝑇௜

 Utilization
 For every task 𝜏௜ : defined as the ratio between execution time and

period : 𝑈௜ ൌ ஼೔
்೔

൑ 1
 For the system (total utilization) : 𝑈 ൌ ∑ 𝑈௜௜ ൑ 𝑚, where 𝑚 is the

number of CPUs (𝑚 ൌ 1, for now)

2018/19 UniPD – T. Vardanega Real-Time Systems 42 of 537

Abstract models /5

 Fixing execution parameters
 The time that elapses between when a periodic job

becomes ready and the next period 𝑇 is certainly ൏ 𝑇
 Setting phase 𝜑 ൐ 0 and deadline 𝐷 ൏ 𝑇 for a job may

help limit its output jitter (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Or they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles
 E.g., producer – consumer

2018/19 UniPD – T. Vardanega Real-Time Systems 43 of 537

Extended precedence graphs (task graphs)

Job	of	type	OR	(branch)
typically	followed	by
a	join	job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent	jobs

Dependent	jobs

Job	of	type	AND	(join)

Period	=	2Phase
Relative	deadline

2018/19 UniPD – T. Vardanega Real-Time Systems 44 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 12

Precedence constraints

 One job’s release time cannot follow that of a successor job
 Effective release time (ERT)

 For a job 𝐽௜ with predecessors 𝐽௞ୀଵ,…,௜ିଵ , 𝐸𝑅𝑇௜ this is the latest value
between its own release time and the maximum effective release time of its
predecessors, 𝐸𝑅𝑇௞ , plus 𝐶௞

 One job’s deadline cannot precede that of a predecessor job
 Effective deadline (ED)

 For a job 𝐽௜ with successors 𝐽௞ୀ௜ାଵ,…,௡ , 𝐸𝐷௜ is the earliest value between
𝐷௜ and the minimum effective deadline of its successors, 𝐸𝐷௞, less 𝐶௞

 For single processors with preemptive scheduling, we may
disregard precedence constraints and just consider ERT and ED

2018/19 UniPD – T. Vardanega Real-Time Systems 45 of 537

Abstract models /6

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment
(e.g., non-reentrancy) but also on the programming style

 Preemption causes time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general indicates which activities must be guaranteed possibly even at

the cost of others
 Permissibility of resource preemption

 Some resources are intrinsically preemptable
 Others do not permit it

2018/19 UniPD – T. Vardanega

Which ones?

Real-Time Systems 46 of 537

Abstract models /7

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of processor

time assigned to a job is ൒ than its BCET and ൑ than its WCET
 All precedence constraints in place among tasks as well as among

resources are satisfied

2018/19 UniPD – T. Vardanega Real-Time Systems 47 of 537

Recall
BCET: best-case
execution time
WCET: worst-
case execution

Abstract models /8

 A valid schedule is said to be feasible if it satisfies the temporal
constraints of every job

 A job set is said to be schedulable by a scheduling algorithm if
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists

 Actual systems may include multiple schedulers that operate in
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other

schedulers govern access to physical resources

2018/19 UniPD – T. Vardanega Real-Time Systems 48 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 13

Abstract models /9

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm, which we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact

 Necessary and sufficient
 Schedulability tests, which are only sufficient

2018/19 UniPD – T. Vardanega Real-Time Systems 49 of 537

Further characterization /1

2018/19 UniPD – T. Vardanega Real-Time Systems 50 of 537

Further characterization /2

 The design and development of a RTS mind the worst case
before considering the average case (if at all)
 Improving the average case is of no use and it may even be

counterproductive
 The cache addresses the average case and therefore operates adversarially to

the needs of real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation

2018/19 UniPD – T. Vardanega Real-Time Systems 51 of 537

Summary /1

 From initial intuition to more solid definition of
real-time embedded system

 Survey of application requirements and key
characteristics

 Taxonomy of tasks
 Dispelling false myths
 Introduced abstract models to reason in general

about real-time systems

2018/19 UniPD – T. Vardanega Real-Time Systems 52 of 537

2018/19 UniPD - T. Vardanega 23/02/2019

Real-Time Systems 14

Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft

Firm

Role of
time

Time-aware

Reactive

Characteristics
(see next page)

2018/19 UniPD – T. Vardanega Real-Time Systems 53 of 537

Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency/
Predictability

Reliability/
Safety

Large/
Complex

2018/19 UniPD – T. Vardanega Real-Time Systems 54 of 537

