2018/19 UniPD - T. Vardanega

2. Scheduling basics

‘ Common approaches /1

m Clock-driven (time-driven) scheduling
0 Scheduling decisions are made beforehand (at system design) and
actuated at fixed time instants of execution
= The time instants occur at intervals signaled by clock via interrupts

m The scheduler first dispatches to execution the job due in the current
time period and then suspends itself until then next schedule time

m The scheduled job is supposed to complete before the next schedule
time = this scheme requires no preemption

a All scheduling parameters must be known in advance
a The schedule, computed offline, is fixed forever

0 The scheduling overhead incurred at run time is very small

2018/19 UniPD — T. Vardanega Real-Time Systems 56 of 539

| Common approaches /2

m Weighted round-robin scheduling
o With basic round-robin (which requires preemption)
m All ready jobs are placed in a FIFO queue
= CPU time is quantized, i.e., allotted in e slices
m The job at head of queue is allowed to execute for one quantum
0 If not complete by end of quantum, it goes to the tail of the queue
0 Hence all jobs in the queue ate given one quantum per round
0 Not good for jobs with precedence relations
0 Fine for producer-consumer pipelines that proceed in continual increments
o With weighted correction to it (as for scheduling network traffic)
m Jobs are assigned CPU time according a ‘weight’ (fractionary) attribute
= Job J; gets w; time slices per round (full traversal of the queue)
O One full round is); @; of ready jobs

2018/19 UniPD — T. Vardanega Real-Time Systems 57 of 539

DAAl Tivrva~s OuvvAatAarmAas

| Common approaches /3

m Priority-driven (event-driven) scheduling

0 This class of algorithms is greedy
= Never leave available processing tesources unutilized
= An available resource may stay unused only if there is no job ready to
use it
Q A cairvoyant alternative might instead defer access to the CPU to incur less
contention and thus reduce job response time

= Anomalies may occur when job parameters change dynamically
0 Scheduling decisions are made at run time when changes occur to
the ready queue, hence based on present local knowledge
m The event causing a scheduling decision is called “dispatching point’
a Itincludes algorithms also used in non real-time systems
m FIFO, LIFO, SETF (shortest e.t. first), LETF (longest e.t. first)

2018/19 UniPD — T. Vardanega Real-Time Systems 58 of 539

09/05/2019

2018/19 UniPD - T. Vardanega 09/05/2019

| Predlctabﬂlty of execution Classification of Scheduling Algorithms

m Initial intuition All scheduling algorithms

0 The execution of job set S under a given scheduling algorithm
is predictable if the actual start time and the actual response

time of every job in S vary within the bounds of the maximal static scheduling dynamic scheduling

schedule and minimal schedule (or offline, or clock driven) (or online, or priority driven)

w Maximal schedule: the schedule created by the scheduling algorithm

under worst-case (contention) conditions
w Minimal schedule: analogously for the best case O LN
. . . . static-priority dynamic-priority
m Theorem: the the execution of independent jobs with scheduling scheduling
given release times under preemptive priotity-driven
scheduling on a single processor is predictable
Jim Anderson Beal-Time Systems Intoduction - 30

0 This notion of predictability also holds for static scheduling

2018/19 UniPD — T. Vardanega Real-Time Systems 59 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 60 of 539

| Preemption vs. non preemption

Optimality /1

= Can we compare preemptive scheduling with » Priorities assigned dynamically after absolute deadlines
non-preemptive scheduling for performance? 0 Ready queue reordering on job release and job completion
o There is no single response that is valid in general m FEarliest Deadline First (EDF) scheduling is optimal for
o When all jobs have same release time, and preemption single CPU systems with independent jobs and preemption
overhead is negligible (1?), then preemptive scheduling is o For any job set, EDF produces a feasible schedule if one exists
provably better 0 The optimality of EDF breaks under other hypotheses (e.g,, no
m Does the improvement in the last finishing time preemption, multicote processing)
(minimum makespan) under preemptive scheduling pay nonoT dy dy d,

3
___Absolute deadline d; =1; +D;

off the time overhead of preemption?
0 We do not know in general

o For 2 CPUs, the minimum makespan for non-preemptive
scheduling is never worse than 4/5 of that for preemptive

time

Ready queve: | 1,] [100] [J20004]

2018/19 UniPD — T. Vardanega Real-Time Systems 61 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 62 of 539

DAAl Tivrva~s OuvvAatAarmAas n)

2018/19 UniPD - T. Vardanega

| Optimality /2

m Priorities assigned dynamically after Jaxizy L(t)
a Li(t) = (r; + D;) — t — R;(t), where R;(t) is the residual execution time
needed for 7; at time ¢
0 Scheduling occurs on job release and job completion
o Jobs’ priority, L(t), vaties with t: more dynamic than EDF and more
costly to implement
m Least Laxity First (LLF) scheduling is optimal under the same
hypotheses as for EDF optimality

Tveéy T2 €3 o d,
ey, L@ =@+D)—t—(e1—er,) e
Ly(t) = (r;=D;) —t — (Ez‘:,Q)é ,,,,,,, time
t
Ready queue: J»hi
2018/19 UniPD - T. Vardanega Real-Time Systems 63 of 539

| Optimality and sub-optimality

m The processor speed-up factor determines the increase in
processor speed that a scheduling algorithm would
require to equalize an gp#imal algorithm of the same
class for any task set

Esxact = 2 [15] EDF-F
FF-P b e e e e e {uniprocessor
optim
p! P-’I al)
/
- |
. . - 1
Uppes Bound = 2 . 2 5
Exact =2 ;.("- Exact= 2.4 Com Exact= 1+ (-L'-"-
Lower Bound =,f3 Do - T i Pein
!
- +
Iy
FP-NP L EDF-NP
Exact = 2 [15]
IV T I e e ST Py T PrecTpHveSeredmmy-KISS 2015
[|
2018/19 UniPD — T. Vardanega Real-Time Systems 64 of 539

| Optimality /3

m If the goal were solely that jobs meet their deadlines, there
would be little point in having jobs complete any eatlier
0 The Latest Release Time (LRT) algorithm, the converse of
EDF, follows this logic to its core, and schedules jobs
backward from the latest deadline

m LRT operates backwards treating deadlines as release times and
release times as deadlines

m LRT is not greedy: it may leave the CPU unused with ready tasks
m Greedy scheduling algorithms may cause jobs to suffer
larger interference

2018/19 UniPD — T. Vardanega Real-Time Systems 65 of 539

DAAl Tivrva~s OuvvAatAarmAas

‘ Latest Release Time scheduling

.]ob scheduling (execution goes the other way)

>

l:l Time

18 1 9

Tl 4
20

o 0 11 12
6 4 3 4 |7l

18 17 13 11

a

d; @bsolutey 20 18 17

T3 :
17 13 T

LRT needs preemption and off line decisions

2018/19 UniPD — T. Vardanega Real-Time Systems 66 of 539

09/05/2019

2018/19 UniPD - T. Vardanega

| Ramifications for dynamic scheduling

dynamic scheduling

static priority

dynamic priority

fixed priority per task

fixed priority per job dynamic priority per job

FPS EDF LLF

2018/19 UniPD — T. Vardanega Real-Time Systems 67 of 539

‘ Clock-dtiven scheduling /1

n Workload model
0 N periodic tasks, for N constant and statically defined
= In Jim Anderson’s definition of periodic (not Jane Liu’s)

a The (@;, p;i, €;, D;) parameters of every task T; ate constant
and statically known

m The schedule is static and committed at design to a table 8
of decision times tj, where
o S[tx] = 7; if a job of task T; must be dispatched at time ¢},
o S[tx] = I (idk) if no job is due at time ¢,
0 Schedule computation can be as sophisticated as we like since
we pay for it only at design time
Q Jobs cannot overrun otherwise the system is in error

2018/19 UniPD — T. Vardanega Real-Time Systems 68 of 539

| Clock-driven scheduling /2

Input: stored schedule S[ty], k = {0,..,N — 1}; H (hyperperiod)
SCHEDULER ::
i:=0;
k :=0;
set timer to expire at ty ;
do forever :
sleep until timer interrupt;
|if an aperiodic job is executing then preempt; end if; |
current task T = S[ty];
i=i+1;
k :=imod N;
set timer to expire at ty + [i/N]| X H;
if current task T = |
then execute job at head of aperiodic queue;
else exccute job of task T;
end if;
end do;
end SCHEDULER

2018/19 UniPD — T. Vardanega Real-Time Systems 69 of 539

DAAl Tivrva~s OuvvAatAarmAas

Clock-dtiven scheduling /3

S[] Task dispatch
ey L0
L = M
0 t1, T PG LS
N | i
ty ey oo Timer I:l i \’?z z

: ty 4T
t b1 o)
t

We need an interval timer

L ts, Tl
ts

o0 oo

Where the t; values need o be equally spaced

2018/19 UniPD — T. Vardanega Real-Time Systems 70 of 539

09/05/2019

2018/19 UniPD - T. Vardanega 09/05/2019

| Example | Clock-driven scheduling /4
(9u i€, D;)
J={t1=(0,4,1,4),t; = (0,5,1.8,5),t3 = (0,20,1,20),t, = (0,20,2,20)}
U= Zﬁ =0.76 m Reasons of complexity control suggest minimizing the size of
~ Pi .
i he cyclic schedul 1
H=20 4 & ‘. 4 4 o 198 the cyclic schedule (table S)
I P a The scheduling point tj, should occur at regular intervals
; E i AY m Each such interval is termed minor cycle (frame) and has duration f
4|t % l U l % & il & 4 '] il C 1 m We need a (cheaper, more standard) periodic timer instead of a (more costly)
0 4 8 12 16 20 interval timer
= Within minor cycles there is no preemption, but a single frame may allow
0 4 the execution of multiple (tun-to-completion) jobs
1 t3 . . .
m The schedule table S for] would need 17 entries = - o o For evety task T;, ¢; must be a non-negative integer multiple of f
a That’s too many and the schedule too fragmented! 343 !] I‘orccqu, the first job of every task has its release time set at the start edge
’ & of a minor cycle
n ? . .
Why 17 198 i m To build such a schedule, we must enforce some constraints
2 Gotot mod(H)
2018/19 UniPD — T. Vardanega Real-Time Systems 71 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 72 of 539

| Clock-driven scheduling /5

Understanding constraint 3

pj

m Constraint 1: Every job J must complete within f O) t'+D;|
o f = max;_g, n)(€;) so that overruns can be detected v t' +p;

m Constraint 2: f must be an integer divisor of the Constraint 3
hyperperiod f
o H:H = Nf where NeN l
o It suffices that f be an integer divisor of at least one task petiod p; @ v T

o The hyperperiod beginning at minor cycle kf for k = 0,N —
1,2N — 1 is termed major cycle

t'+D;

This is the frame in which job / must be scheduled

m Constraint 3: There must be one fu// frame f between t+2f <t 4D
J’s release time t” and its deadline: t" + D; > t + 2f , i | ever| | ;]
. 't > 4
o So that J can be set to be scheduled in that frame @ " 1 D T [t'—t =gcd(p;, f)
1 . —] . 7 .]
o This can be expressed as: 2f — ged(p;, f) < D; for every task T; t+p 2f — ged(p;, f) < D;
2018/19 UniPD — T. Vardanega Real-Time Systems 73 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 74 of 539

DAAl Tivrva~s OuvvAatAarmAas |

2018/19 UniPD - T. Vardanega

| Example

T ={0,4,1,4),(0,5,2,5), (0, 20, 2, 20)}

m H=20

[c1]: f = max(e;): f>2

(2] : |p:/fl —pi/f =0:£={2,4,5, 10, 20}

[c3]:2f —gcd(p;, f) < D;:f<2

f=2:4—-gcd(42) <40K f=5:10—gcd(4,2) < 4KO

4 —ged(5,2) <5 OK — 1090 <
i bdom <200k S =10:20 ged(4,2) < 4KO

f=4:8—gcd(44) <40K f =20:40—-gcd(4,2) <4KO
8 —gcd(54) <5 KO

2018/19 UniPD — T. Vardanega Real-Time Systems 75 of 539

| Clock-driven scheduling /5

m [t is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given fsimultaneously

m In that case we must decompose task T;’s jobs by
slicing their (WCET) e}” into fragments small
enough to artificially yield a “good” f

2018/19 UniPD — T. Vardanega Real-Time Systems 76 of 539

| Clock-driven scheduling /6

m To construct a cyclic schedule we must make three
design decisions
o Fixan f
o Slice (the large) jobs
o Assign (jobs and) slices to minor cycles
m Sadly, these decisions are very tightly coupled

0 This defect makes cyclic scheduling very fragile to any
change in system parameters

2018/19 UniPD — T. Vardanega Real-Time Systems 77 of 539

DAAl Tivrva~s OuvvAatAarmAas

| Clock-driven scheduling /7

Input: stored schedule S[k], kin0..F — 1
CYCLIC_EXECUTIVE ::
t==0k =0;
do forever
sleep until clock interrupt at time t X f
currentBlock = S[k];
t:=t+1;k =t modF;
if last job not completed then take action;
end if;
execute all slices in currentBlock;
while aperiodic job queue not empty do
execute aperiodic job at top of queue;
end do;
end do;
end SCHEDULER

2018/19 UniPD — T. Vardanega Real-Time Systems 78 of 539

09/05/2019

2018/19 UniPD - T. Vardanega

| Example (slicing) — 1/2

(¢ipirei, D)

J={r1=(0,4,1,4),7, =(0,5,2,7),73 = (0,20,5,20)},H = 20
T3 causes disruption since we need e3 < f < 4 to satisfy ¢3
We must therefore slice €3 : how many slices do we need?

f=4 S(t=4)

Y 6 Y it t it t it t

| Example (slicing) — 2/2

... then we obsetve that e3 = {1, 3,1} is a good choice
‘/‘/./ T S
a4 ~
P > Y a

4 8 12 16

We first look at the schedule with f =4 and F = (?) =5

without T3, to see what least-disruptive opportunities we have ...

4 5 |4 G 4 b 4 b 4 3

i

2018/19 UniPD — T. Vardanega Real-Time Systems 79 of 539

4 8 12 16

73 = {13 = (0,20,1,x),73 = (0,20,3,y), 73" = (0,20,1,20)}

where x <y < 20 represent the precedence constraints that
must hold between the slices (could have used phases instead)

2018/19 UniPD — T. Vardanega Real-Time Systems 80 of 539

Design issues /1

m Completing a job much ahead of its deadline is of no use

m If we have spare time we might give aperiodic jobs more
opportunity to execute hence make the system more responsive

m The principle of slack stealing allows aperiodic jobs to execute
in preference to periodic jobs when possible
o Every minor cycle include some amount of slack time not used for
scheduling periodic jobs
m The slack is a szatic attribute of each minor cycle
m A scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
0o However, this value-added provision requires a fine-grained interval timer
(again!) to signal the end of the slack time for each minor cycle

2018/19 UniPD — T. Vardanega Real-Time Systems 81 of 539

DAAl Tivrva~s OuvvAatAarmAas

‘ Design issues /2

m What can we do to handle overruns?
o Halt the job found running at the start of the new minor cycle
= But that job may not be the one that overrun!

= Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual wzility

a Defer halting until the job has completed all its “critical actions”

= To avoid the risk that a premature halt may leave the system in an
inconsistent state

a Allow the job some extra time by delaying the start of the next
minor cycle

m Plausible if producing a late result still had uzlity

2018/19 UniPD — T. Vardanega Real-Time Systems 82 of 539

09/05/2019

2018/19 UniPD - T. Vardanega

| Design issues /3

m What can we do to handle mode changes?

o A mode change is when the system incurs some
reconfiguration of its function and workload parameters

m Two main axes of design decisions
o With or without deadline during the transition

o With or without overlap between outgoing and incoming
operation modes

2018/19 UniPD — T. Vardanega Real-Time Systems 83 of 539

Overall evaluation

= Pro
o Comparatively simple design
o Simple and robust implementation

o Complete and cost-effective verification

= Con
a Very fragile design

= Construction of the schedule table is a NP-hard problem
= High extent of undesirable architectural coupling

o All parameters must be fixed a priori at the start of design
m Choices may be made arbitrarily to satisfy the constraints on f
= Totally inapt for sporadic jobs

2018/19 UniPD — T. Vardanega Real-Time Systems 84 of 539

Priority-driven scheduling

m Base principle

o Every job is assigned a priority

0 The job with the highest priority is selected for execution
» Dynamic-priority scheduling

o Distinct jobs of the same task may have distinct priorities

m For EDF, the job priority is fixed at release but changes across
releases

m For LLF, the job priority may change at every dispatching point
m Static-priority scheduling

o All jobs of the same task have one and the same priority

2018/19 UniPD — T. Vardanega Real-Time Systems 85 of 539

Dynamic-priority scheduling

m Theorem [Liu, Layland: 1973] EDF is optimal for
independent jobs with preemption
o Also true for task sets that include sporadic jobs

a The allowable relative deadline for this theorem to hold is implicit
or constrained

m Result trivially applicable to LLF

m EDF is nof optimal for jobs that do 7of allow preemption
0 Preemption is an aid to optimality f’
1

DAAl Tivrva~s OuvvAatAarmAas

2018/19 UniPD — T. Vardanega Real-Time Systems 86 of 539

09/05/2019

2018/19 UniPD - T. Vardanega

| Static (fixed)-priority scheduling (FPS)

m Two main variants with respect to the strategy for
priority assignment
o Rate monotonic
m A task with lower period (faster rate) gets higher priority
0 Deadline monotonic
m A task with higher urgency (shorter deadline) gets higher priority
m Before looking at those strategies in more detail we
need to fix some basic notions

2018/19 UniPD — T. Vardanega Real-Time Systems 87 of 539

Dynamic scheduling: compatison criteria /1

m Priority-driven scheduling algorithms that disregard job
urgency (deadline) perform pootly
0 The WCET is not a factor of interest for priority assignment

a Weighed round-robin is “utilization-monotonic”, but is of
scarce practical use for real-time

m Schedulable utilization helps compare the
performance of scheduling algorithms

0 A scheduling algorithm S can produce a feasible schedule for
a task set T on a single processor if and only if U(T) does not
exceed the schedulable utilization of S

2018/19 UniPD — T. Vardanega Real-Time Systems 88 of 539

Dynamic scheduling: compatison criteria /2

m Theorem [Liu, Layland: 1973] for single processors
and implicit or constrained deadlines,
the schedulable utilization of EDF is 1

éi

m Checking for A=)I- < 1, known as

density, is a sufficient schedulability test for EDF

m FPor constrained deadlines, we may have A= 1 > U

2018/19 UniPD — T. Vardanega Real-Time Systems 89 of 539

Dynamic scheduling: compatison criteria /3

m The schedulable utilization criterion alone is not
sufficient: we must also consider predictability
0 Recall its intuition at page 59

m On transient overload, the behavior of static-priority
scheduling can be determined a-priori and is reasonable
a The overrun of any job of a given task T does not harm the

tasks with higher priority than T
m Under transient overload, EDF becomes instable

a A job that missed its deadline is #ore urgent than a job with a
deadline in the future: one lateness may cause many morel!

DAAl Tivrva~s OuvvAatAarmAas

2018/19 UniPD — T. Vardanega Real-Time Systems 90 of 539

09/05/2019

2018/19 UniPD - T. Vardanega

Dynamic scheduling: compatison criteria /4

m Other figures of merit for comparison exist
0 Normalized Mean Response Time (NMRT)

m Ratio between the job response time and the CPU time actually
consumed with the job being ready

m The larger the NMRT value, the larger the task idle time
0 Guaranteed Ratio (GR)

m Number of tasks whose jobs can be guaranteed versus the total
number of tasks with jobs that request execution

o Bounded Tardiness (BT)

m Number of tasks whose job tardiness can be guaranteed to stay
within given bounds

= With some BT, soft real-time systems can have some utility

2018/19 UniPD — T. Vardanega Real-Time Systems 91 of 539

| Example (EDF) /1

(pi, v, €, Dy)
T ={r; =(0,2,0.6,1),7, = (0,5,2.3,5)}
Density A(T) = ;—11 + ;—22 =1.06>1

Utilization U(T) = ;—1 + ;—2 =0.76 <1
1 2
What happens to T under EDF?

|
B - i) B - B U

B OK
1 2 3 4 5 6 7 8
H=10
2018/19 UniPD —T. Vardancga Real-Time Systems 92 of 539

| Example (EDF) /2

(¢ipirei, Dy)

T = {t= (0,2, 1,2), t,= (0, 5,3, 5)} @ U(t) = ;—1 + ;—2 =11
1 2
T has no feasible schedule: what job suffers most under EDF?

: e
bl |tk | t it | \tz '_ (W g
0 2 4 5 6 8 . 10 -

Which job is dispatehed here?

T = {t,= (0, 2, 0.8, 2), t,= (0, 5, 3.5, 5)} = U(t) = % + % =11
T has no feasible schedule: what job suffers most under EDF?

‘What about
T = {t1= (0,2, 0.8, 2), 2 = (0, 5, 4, 5)} with U(t) = :—1 + :—2 =1.2?
1 2
2018/19 UniPD —T. \’ardmncga Real-Time Sys(cms 93 of 539

DAAl Tivrva~s OuvvAatAarmAas

| Example (EDF vs FPS) /3

23
T={t; =(0,4,1,4),t; =(0,6,2,6),t3 = (0,8,3,8)},U =5 H=24

With fixed-priority scheduling (FPS), rate-monotonic priority assignment
T
|f1 l Ly l’fs 51 ltz ta t1l

0 4 6 At time 4, with
t3’s (absolute) deadline = 8, fixed priority = low
t1’s (absolute) deadline = 8, fixed priority = high
FPS has t; preempt t3

At time 6, with
t,’s (absolute) deadline = 12, fixed priority = medium
With earliest-deadline fitst (EDF) FPS has t, preempt t3, which misses its deadline

T
Ul e, A4 |t1 t Itll
0o s 6 8

EDF may incur less preemptions and schedule more task sets than FPS

2018/19 UniPD — T. Vardanega Real-Time Systems 94 of 539

09/05/2019

AN

2018/19 UniPD - T. Vardanega

| Critical instant /1

worst case for all tasks

priority tasks

relation between D; and p;

the worst case

m Feasibility and schedulability tests must consider the

o The worst case for task T; occurs when the worst possible
relation holds between its release time and that of all higher-

0 The actual case may differ depending on the admissible
m The notion of critical instant — if one exists — captures

0 The response time R; for a job of task 7; with release time on
the critical instant is the longest possible value for 7;

2018/19 UniPD — T. Vardanega Real-Time Systems

| Critical instant /2

m Theorem: under FPS with D; < p; Vi, the critical instant
for task T; occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the set

m We seek max(w; ;) for all jobs {j} of task 7; for

_ (wij+ @i — @)
w;;= €+) — | é — @i
(k=1,.,i-1) Pk

For task indices assigned in decreasing order of priority
m The), component captutes the interference that any
job j of task T; incurs from jobs of higher-priority tasks
{‘L’k{ between the release time of the first job of task Ty
(with phase @) to the response time of job j, which occurs
at @; + (‘)i,j

2018/19 UniPD — T. Vardanega Real-Time Systems 96 of 539

| Time-demand analysis /1
the absolute worst case for task T;

time

a The obvious question is for which ‘¢’ to check

until the deadline of the task under study

m When ¢ is 0 for all jobs considered, this equation captures

m This equation stands at the basis of Time Demand
Analysis, which investigates how w varies as a function of

o Aslongas w(t) <t for some (important) t for the job of interest, the
supply satisfies the demand, hence the job can complete in time

m Theorem [Lehoczky, Sha, Ding: 1989] condition w(t) < ¢t
is an exact feasibility fest (necessary and sufficient)

0 The method proposes to check at all periods of all higher-priority tasks

2018/19 UniPD — T. Vardanega Real-Time Systems

DAAl Tivrva~s OuvvAatAarmAas

Time demand analysis /2

T = {4= (- 3,1,3), 6,5, 5, 15, 5), t,= (-, 7, 1.25,)} (@upu €. Do)
U(T) = ¥;e;/p; = 0.82
8 e 4
This is when the critical-instant job .
of 1, completes, where w(t) =t irpirary
~§6_ i '.'I':'II‘.:l‘..fl".
§
S /
uEa =
I hence supply satisfies demand
2 I at all t of interest
el{ | The supply exceeds the demand |
2 4 6 8 0 Zime supply
2018/19 UniPD — T. Vardanega Real-Time Systerms 98 of 539

09/05/2019

A A

2018/19 UniPD - T. Vardanega

| Time demand analysis /3

T = {t,= (- 3,1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}

sh—
‘é 6 wy(t) <t
§
3
£
IS
e 1{) | | | | | Time supply
2 4 6 8 10

2018/19 UniPD — T. Vardanega Real-Time Systems 99 of 539

| Time demand analysis /4

T = {t,= (- 3,1, 3), t,=(-, 5, 1.5, 5), t,= (-, 7, 1.25, 7)}

Y Ps3
r' w3(t) <t

.E 6— For D < p it suffices
g to verify (@(t) < t) at ime
3 instants that are mulvipl(
E L_\\ The supply meets the demand of the period of the
S4 = exactly at this point: highest-priority tasks
N his suffices for t: cs lete(! 2

es g this suffices for £ to complete®) | | and <

e, 2

€1 Time supply

2 3 4 5 6 7 8 10

2018/19 UniPD — T. Vardanega Real-Time Systems 100 of 539

Time demand analysis /5

m It is straightforward to extend TDA to determine
the response time of tasks

The smallest value t that satisfies

t
t=e + Xw=1,i-1) [ﬁ] ex
is the worst-case response time of task T;

m Solutions methods to calculate this value were
independently proposed by
0 [Joseph, Pandia: 1986]
0 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2018/19 UniPD — T. Vardanega Real-Time Systems 101 of 539

| Time demand analysis /6

m What changes in the definition of critical instant when D>p ?

m Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991] The first

job of task T; may #ot be the one that incurs the worst-case
response time

m Hence we must consider a/ jobs of task 7; within the so-called
level-i busy period

o The (tg,t) time interval within which the processor is busy executing jobs

with priority 2 I, release time in (tg, t), response time falling within ¢
The release time in (tg, t) captures the full backlog of interfering jobs

The response time of all those jobs falling within t ensures that the busy
period includes their completion

DAAl Tivrva~s OuvvAatAarmAas

2018/19 UniPD — T. Vardanega Real-Time Systems 102 of 539

09/05/2019

AN

2018/19 UniPD - T. Vardanega

| Example

T, = {-, 70, 26, 70}, T, = {-, 100, 62, 120} (¢i,pirei, D)
Let’s look at the level-2 busy period

Ready queue: 1,) Ready queuc: |,

21

Ready queue:],

Time window 1 [0,70) Time window 2 [70,100)

Time left for J,: 70-26 = 44 Time left for I...: 30-26 = 4
Stll ©0 execuier 62-44 =18 | o Jas

Time window 3 [100,140)

. - Time left for J,; = 40
Sill to exccute: 184 =14 [| Jo, completes at: 114 (R = 114)
e auencs oo o RE e T o b by Time available for J,.,: 40-14 = 26

Still to execute: 62-26 = 36

Time window 5 [200,210)
Release time of job J, 5
Ja, completes at: 202 (R = 102) 41 ‘Time window 4 [140,200)

Time available for J,;:10-2 =8 Time available for J,,: 60-26 = 34
Still to execute: 62-8 = 54 Still to execute: 36-34 = 2

Ready queue: J, oo
Time window 7 [280,300)

Time available for J,;: 20-20 = 0

Ready queue:], 5, |5

Ready queue: ;.]

Time window 6 [210,280)
Time available for J,3: 70-26 = 44 — |

Still to execute: 5444 = 10 Lt dime off bl
Ready queue: | 5, J5)24
Still in ready queue: ., - -

"The T, busy period Time window 8 [300,350)

extends beyond +———————1 ‘Time available for J,;: 50-6 = 44

this point (1) J,,; completes at: 300+6+10 = 3 =116){ J,, s response time is not worst-case!

2 N
2018/19 UniPD - T. Vardanega Real-Time Systems 103 of 539

| Level-i busy period

T, = {-, 100, 20, 100}, T, = {-, 150, 40, 150}, T, = {-, 350, 100, 350} = U = 0.75
The same definition of level-i busy period holds also for D < p

but its width is obviously shorter!

"l H v

0 20 100 120 200 220 300 320
2 l | I l
0 20 60 150 180 300

-—— 13 busy peried ————————=

t’l [] [] ll_

[] 60 100 120 150 130200 220 240 3s0

| Demand bound analysis (EDF)

u When df is the demand function (as in time demand analysis) and ¢; is time,
an exact test for a task set T to be schedulable by EDF 1s
Vg, tyity >t df (tg,t) < t, —t;
m For periodic tasks with no offsets and U < 1, the following holds:
df(ty, t;) < df(0,t; —t;)
m The demand bound function helps generalize the test
dbf(L) = mtax(df(t, t+1))=df(0,L),L>0

m Theorem [Baruah, Howell, Rosier: 1990] Exact test for EDF:
[vL € D(T),dbf(L) < L,U < 1]

o Where D(T) is the set of deadlines for T in [0, Ly,], Ly, = min(Lg, Ly),

S (Ti-D)U;

La = max Dl! ...,Dn,T
petiod of the task set

, L = the first idle time in the busy

2018/19 UniPD — T. Vardanega Real-Time Systems 105 of 539

DAAl Tivrva~s OuvvAatAarmAas

time
2018/19 UniPD — T. Vardanega Real-Time Systems 104 of 539
‘ Summary
m Initial survey of scheduling approaches
m Important definitions and criteria
m Detail discussion and evaluation of main scheduling
algorithms
m Initial considerations on feasibility analysis techniques
2018/19 UniPD — T. Vardanega Real-Time Systems 106 of 539

09/05/2019

AN

2018/19 UniPD - T. Vardanega 09/05/2019

| Selected readings

m T. Baker, A. Shaw
The cyclic excecutive model and Ada
DOI: 10.1109/REAL.1988.51108

s C.L. Liu,].W. Layland
Scheduling algorithms for multiprogramming in a hard-real-
time environment

DOI: 10.1145/321738.321743 (1973)

2018/19 UniPD — T. Vardanega Real-Time Systems 107 of 539

A AN

DAAl Tivrva~s OuvvAatAarmAas

