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3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings
2 RTS /6

‘ The simplest workload model

m The application consists of n tasks, for constant n
m All tasks are periodic with known periods
o This defines the periodic workload model
m All tasks are completely independent of each other
o No contention for logical resources; no precedence constraints
m All tasks have implicit deadline (D = T)
a Each job of task must complete before the next job is released
m All tasks have a single fixed WCET, which can be trusted as
a safe and tight upper-bound

m All system overheads (context-switch times, interrupt
handling and so on) are assumed absorbed in the WCETs
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‘ Notation in this section

Worst-case blocking time for the task (if applicable)
Worst-case computation time (WCET) of the task (= e)
Relative deadline of the task

The interference time of the task

Release jitter of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, or task period (= p)
The utilization of each task (= ¢/7)

The name of a task
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N
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‘ Fixed-priority scheduling (FPS)

m Still the most widely used approach in industry
m Each task has a fixed (static) priority determined off-line
m In real-time systems, the “priority” of a task is solely derived
from its temporal requirements
0 The task’s relative importance (criticality) to the correct L
functioning of the system or its integrity is not a factor at this level ®
0 A recent strand of research addresses mixed-criticality systems, with
scheduling solutions that contemplate eriticality attributes
m The ready jobs are dispatched to execution in the order
determined by their (static) priority
m In FPS, scheduling at run time is fully defined by the (static)
priority assignment algorithm
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| Preemption and non-preemption /1

m With priority-based scheduling, a high-priority task may be
released during the execution of a lower priority one

m In a preemptive scheme, there will be an immediate switch to
the higher-priority task

w With non-preemption, the lower-priority task will be allowed
to complete before the one notionally at the top of the
ready queue may execute

m Preemptive schemes (such as FPS and EDF) enable higher-
priority tasks to be more reactive, hence they are preferred
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| Preemption and non-preemption /2

m Alternative strategies allow a lower priority task to continue
executing for a bounded time before being preempted

m Such schemes use either deferred preemption or cooperative
dispatching

» Value-based scheduling (VBS) is another approach to
attenuating preemption

0 Useful when the system becomes overloaded and some adaptive
scheme of scheduling is needed to mitigate the risk or the
consequences of overrun

o VBS assigns a value to each task and then employs an on-line value-
based scheduling algorithm to decide which task to run next

0 Analogous to usefulness, but determined off-line
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Rate-monotonic priority assignment

m Fach task is assigned a priority based on its period

o The shorter the period, the higher the priority

a Such priorities have to be unique: hence ties must be resolved
m For any two tasks 7;, 7; : T; < Tj = P; > P

0 Rate monotonic assignment is optimal under preemptive

priority-based scheduling (and implicit deadlines)

= Nomenclature

a Priority 1 as numerical value is the lowest (least) priority

o However, the task indices are sorted highest to lowest
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Utilization-based test

m A simple test exists for rate-monotonic scheduling

m It provides a sufficient but not necessary upper-bound
on the schedulable utilization of FPS
a Only for task sets with D =T

U= . ESn(Z%—l)
=T
Ai_)r{.lon(Z%— 1) =In2 = 0.69

m The schedulable utilization of FPS is /ess than EDF
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‘ Critique of utilization-based tests

m These tests are sufficient but not necessary
0 As such, they fall in the class of schedulability tests

m These tests are not exact and also not general

» But they are Q(n), which makes them interesting
for some users
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| Example: task set A

Task | Period | Computation Time Priority Utilization
T C P U
a 50 12 1 (low) 0.24
b 40 10 2 0.25
c 30 10 3 (high) 0.33

m The combined utilization is 0.82 (or 82%)
m Above the threshold for three tasks (0.78)

0 This task set fails the utilization test

m Hence we have no a-prioti answer on its feasibility
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‘ Timeline for task set A

Task
1
a | | U T Task Release Time
© Task Completion Time
Deadline Met
b :Ij l ® Task Completion Time
Deadline Missed
c I:’ Preempted
Time q
Executin,
0 10 20 30 40 50 60 I:l .
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| Example: task set B

Task | Period | Computation Time Priority Utilization
T C P U
a 80 32 1 (low) 0.40
b 40 5 2 0.125
c 16 4 3 (high) 0.25

m The combined utilization is 0.775
m Below the threshold for three tasks (0.78)

0 This task set passes the utilization test

m Hence this task set will meet all its deadlines
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| Example: task set C

Task | Period | Computation Time Priority Utilization
T C P U
a 80 40 1 (low) 0.50
b 40 10 2 0.25
c 20 5 3 (high) 0.25

m The combined utilization is 1.0
m Above the threshold for three tasks (0.78)

o Again, this task set does not pass the utilization test

m Yet the timeline shows the task set will meet all its deadlines
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‘ Timeline for task set C

Task

‘m B B B B

T T T = Time —T—*
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‘ Response time analysis /1

deadline
m T; is feasible if and only if R; < D;

suffers from higher-priority tasks

m The worst-case response time R; of task T; is first
calculated and then checked (trivially) with its

m R; = C; + I, where I; is the interference that T;
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‘ Calculating R

m Within R;, each higher priority task 7; will execute at

Ri| .
most | |times
T
0 The ceiling function [f] gives the smallest integer greater than
the fractional number f on which it acts
= E.g, the ceiling of 1/3is 1, of 6/5 is 2, and of 6/3 is 2
o Using the ceiling reflects the fact that 7; will be preempted for
a full execution of a higher-priority released exactly at 7;’s end

m The total interference suffered by 7; from 7; in R;

where P; < P;, is given by [%] G
j
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‘ Response time equation

R=C+ X R

g J
Jjehp(i) I}.

m  Where hp(i) is the set of tasks with priority higher than t;
m Solved by forming a recurrence relationship

i

W,
n+l
wh=C+ ¥ LC,
I i s ol J
Jehp(i)
- 0 1 2 . .

m The set of values W, , W, , W, ,...,W, ,.. is monotonically non-decreasing
n When w:' = wl,”']rh{- solution to the equation has been found
= ' must not be greater rh;m(jl, (e Dor C.}
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‘ Response time algorithm

for 1 in 1._.N loop -- for each task in turn
n:=0
w'=C

i If the recurrence does not converge
before T; we can still set a termination
calculate new w'™ condition that attempts to determine
if w'=w" then how long past T;, job i completes
R =w |
exit value found
end if
if w">7 then |
exit value not found |-t
end if
n:i=n+1
end loop
end loop

loop
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Example: task set D

Task Period Computation Time Priority Utilization
T C P U
a 7 3 3 (high) 0.4285...
b 12 3 2 0.25
c 20 5 1 (low) 0.25
w, =3

I
(=)

vv: =3+ {5}}3
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Example (cont’d)

w, =35
w! =5+[5—13+[5—13=11
7 12
wi=5+ “13+ 11 W3=14
7 12
wl =15+ L PO ) P
7 12
(17 17
}1,: =54 — |3+ — 1|3 =20
7 12
20 20
wi=5+|=—[3+|=—|3=20
7 12
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Revisiting task set C

Task | Period | Computation Time Priority Response Time
T C P R
a 80 40 1 (low) 80
b 40 10 2 15
c 20 5 3 (high) 5

m The combined utilization is 1.0, above the utilization threshold
for three tasks (0.78)

o Hence the utilization test fails
m But RTA shows that the task set will meet all its deadlines
o Cf. the impasse we had at pages 178-179
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‘ Response time analysis /2

m RTA is a feasibility test
o Exact, hence necessary and sufficient

m If the task set passes the test then all its tasks will
meet all their deadlines

m If it fails the test then, at run time, some tasks will
miss their deadline and FPS tells us exactly which

o Unless the computation time estimations (the WCET)
themselves turn out to be pessimistic
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| Sporadic tasks

m Sporadic tasks have a minimum inter-arrival time

o This should be preserved at run time if schedulability is
to be ensured, but how can it ?

m The RTA for FPS works perfectly well for D < T as
long as the stopping criterion becomes Win+1 > D;

m Interestingly, RT'A also works perfectly well with azy
priority ordering, as long as the task indices reflect it
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‘ Hard and soft tasks

m In many situations the WCET given for sporadic
tasks are considerably higher than the average case

m Interrupts often arrive in bursts and an abnormal
sensor reading may lead to significant additional
computation

m Measuring feasibility with WCET may lead to very
low processor utilization being frequently observed
at run time

0 We need some common sense to contain pessimism
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‘ General common-sense guidelines

= Rule 1: All tasks (hard and soft) should be schedulable using
average execution times and average arrival rates for both
periodic and sporadic tasks

0 There may therefore be situations in which it is not possible
to meet all current deadlines

0 This condition is known as a fransient overload

= Rule 2 : All hard real-time tasks should be schedulable using
WCET and worst-case artival rates of all tasks (including soft)

0 No hard real-time task will therefore miss its deadline

a If Rule 2 incurs unacceptably low utilizations for non-worst-
case jobs then WCET values or arrival rates must be reduced
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‘ Handing aperiodic tasks /1

m They do 7ot have minimum inter-atrival times
o And consequently no deadline
0 We may be interested in the system being responsive to them (in cyclic

scheduling we would use slack stealing for them)

m We can run aperiodic tasks at a priority below the priorities
assigned to hard tasks
0 Ina preemptive system, they won’t steal resources from hard tasks

m But this does not provide adequate support to soft tasks which
would often miss their deadlines

m We need another kind of solution ...
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Handing aperiodic tasks /2

m In addition to preserving hard tasks and giving fair
opportunities to soft tasks, we need a solution that
minimizes
o The response time of the job a7 #he head of the aperiodic queue
o Or the average response time of as zany aperiodic jobs as possible

for a given queuing discipline

m Possible solutions
0 Execute the aperiodic jobs in the background -

Execute the aperiodic jobs by interrupting the petiodic jobs \&

Use slack stealing

O 0O O

Use dedicated servers ".’
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‘ Handing aperiodic tasks /3

m Slack stealing

o Difficult to implement for preemptive systems
m  The slack o(t) is a 7ot a constant for them
m Itis a function of the time t at which it is computed

0 The slack stealer is ready when the aperiodic queue is not
empty; it is suspended otherwise

0 When ready and o(t) > 0, the slack stealer is assigned the
highest priority; the lowest when g(t) = 0

o Static computation of o(t) for some t is useful but only when
the release jitter in the system is very low

[ »  Under EDF, a(t = 0) = min;{0;(0)} where 0;(0) = D; — ]

Zk:l,..,i ey for all jobs released in the hyperperiod starting at t = 0
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‘ Computing the slack under EDF

T;=1(4,2), T,=(6,2.75) - EDF scheduling: QG pir e X)

K dy iz Jia Tiy Jis g
— . | 0/, | | T
o 1 2 3 4 5 & T 8 ] 10 1" 12
v Jys f, 2 iz (<]
L 1 [ L L | L |

T 1 2 3 4 L1 7 8 9 U] n )2

f

011(0) =D, —C,=4-2=2
031(0) =Dy —C—C, =6—-2—-275=1.25

012(0) =Dy, —2XC; —C; =8—-2x2—275=1.25
022(0) =Dy, —2XC; —2XC; =12-2%x2—-2%275=2.5

015(0) =Dy, =3 X C; —2XC, =12-3x2—2x&750.5 |—

2018/19 UniPD —T. Vardanega Real-Time Systems 136 of 538

‘ Computing the slack under FPS /1

m The amount of slack that an FPS system has in a
time interval may depend on when the slack is used

m To minimise the response time of an aperiodic job
Ja the decision on when to schedule it must
consider the execution time of J,

o No slack stealing algorithm under FPS can minimise the

response time of every aperiodic job even with prior
knowledge of their arrival and execution times

0 Better not be greedy in using the available slack
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‘ Computing the slack under FPS /2

m The slack of periodic jobs of T; should be
computed based on their ¢ffective deadline Df

a For a job of 7;, it should be computed at the beginning
of the level-i — 1 busy petiod that precedes D; so that
Df < D;

m The initial slack g; j(0) of every periodic job J;;
(the j™ job of task J;) in H is determined as

i [Df;
max | 0, D —Z T Cy
k=1| Tk
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‘ Slack stealing defeats optimality

m Greed is no good: to minimize the response time of
an aperiodic job, it may be necessary to schedule it
later, even if slack is currently available
o For any periodic task set, under any FPS, and any
aperiodic queuing policy, 7o valid algorithm exists that
minimizes the response time of @/ aperiodic jobs

o Similarly, no valid algorithm exists that minimizes the
average response time of the aperiodic jobs

T.-5. Tia, ). W.-8. Lin, and M. Shankar, “Algorithms and Optimality of Scheduling
Aperiodic Requests in Fixed-Priosity Preemptive Systems” Journal of Real-Time
Systems, 10(1), pp. 23-43, 1906
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‘ Handing aperiodic tasks /4

m Periodic server (PS) — general model

a A notional (Tps, Cps) periodic task scheduled at the
highest priority to only execute aperiodic jobs
m The PS has a budget Cps time units and a replenishment
period of length Ty,¢

m  When the PS is scheduled and executes aperiodic jobs, it
consumes its budget at the rate of 1 unit per unit of time
® Budget is exhausted when Cps = 0 and replenished periodically

a The PS is backlogged when the aperiodic job queue is
nonempty and it is idle otherwise
m Eligible for execution only when ready, backlogged and Cp,s > 0
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‘ Handing aperiodic tasks /5

m Polling server, a simple (naive) kind of PS
o Itis given a fixed budget that it uses to serve aperiodic
task requests that is replenished at every period
0 The budget is immediately consumed if the server is
scheduled while idle
a It is not bandwidth preserving, hence inefficient

®  An aperiodic job that arrives just after the server has been
scheduled while idle, must wait until the next replenishment time
o Bandwidth-preserving servers need additional rules for
consumption and replenishment of their budget
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Handing aperiodic tasks /6

m Deferrable Server (DS), a bandwidth-preserving PS

o DS retains its budget if no aperiodic tasks require execution
m  If an aperiodic job requires execution during the DS period, it can be
served immediately: when idle, the DS stays ready (not idle)
0 The budget is replenished at the start of the new period (1)

m If an aperiodic job arrives € time units before the end of Ty, the
request begins to be served and blocks periodic tasks

m  When the budget is replenished, new aperiodic jobs may then be
served for the full budget
o If that happens, in w(t), DS contributes a solid interference

of Cys + [t;zs] Cys, longer than 1 X Cyg per busy petiod
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‘ Handing aperiodic tasks /7

m Priority Exchange (PE), similar in principle to DS
o If PE is idle when scheduled, it exchanges its own
priority with that of the pending periodic task with
priority lower than itself and higher of all other pending
periodic tasks
0 The selected periodic task inherits PE’s higher priority
until an aperiodic task arrives or PE’s ready period ends
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‘ Handing aperiodic tasks /8

m Sporadic Server (SS), fixes the bug in DS

0 The budget is replenished only when exhausted and at a

minimum guaranteed distance from its eatlier execution
m  Hence no longer at a fixed rate

o This places a tighter bound on its interference and makes
schedulability analysis simpler and less pessimistic

m This is the default server policy in POSIX
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‘ SS rules under FPS

n  Consumption rules

0 Attime t > t, (the latest replenishment time), a backlogged SS consumes
budget only if executing, hence when no higher-priority task is ready

0 The replenishment is limited to the quantity of actual consumption
m Replenishment rules
0 t, records the time that SS’” budget was last replenished

0 t, records the time when SS first begins to execute since &,
m  t, > t, is the latest time at which a lower-priority task than SS executes

0 The next replenishment time is set to t, + T
m Exception

o If only higher-priority tasks had been busy since t,., then t, + Tgg > t, +
Tss and SS is late: hence, budget fully replenished as soon as exhausted
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SS rules unveiled

m Let t, be the time at which SS has full budget azd becomes
backlogged, and tf = t, the time at which SS becomes idle

In the [ta, tf] interval, when SS is continuously active, three

cases are possible

1. SS has consumed no capacity: ty,, . = tr + Tss = no replenishment, and
no interference in that interval

2. SS has consumed all capacity: &y, = tq + Tss = full replenishment, and
bounded interference in that interval

3. SS has consumed fractional capacity: ty, .., =t + Tss -> fractional

replenishment, and interference lower than allowed in that interval
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‘ Handing aperiodic tasks /9

m SSis more complex than PS or DS
o Its rules require keeping tab of lots of data
o Several cases to consider when making scheduling decisions

0 This complexity is acceptable because the schedulability of a SS is
easy to demonstrate

m  Under FPS, SS equates to a periodic task 75 with (ps, e5)
m EDF and LLF use a dynamic variant of SS as well as other
bandwidth-preserving server algorithms known as
o Constant ntilization server
o Total bandwidth server
0 Weighted fair quening server
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‘ Task sets with D < T

m For D =T, Rate Monotonic priority assignment
(a.k.a. ordering) is optimal

m For D < T, Deadline Monotonic priority ordering
is optimal

D, <D =F>P
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DMPO is optimal /1

m Deadline monotonic priority ordering (DMPO) is optimal

any task set Q that is schedulable by priority-driven scheme W
it is also schednlable by DNVPO

m The proof of optimality of DMPO involves transforming
the priorities of Q as assigned by W until the ordering
becomes as assigned by DMPO

m Each step of the transformation will preserve schedulability
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DMPO is optimal /2

m Let 74, T; be two tasks with adjacent priorities in @ such that
under W we have P; > P; A D; > D;

m Define scheme W' to be identical to W except that tasks 7;, T
are swapped

» Now consider the schedulability of Q under W'

» All tasks {7} with priority Py > P; will be unaffected

m All tasks {7¢} with priority P; < P; will be unaffected as they will
experience the same interference from 7; and 7;

m Task 7; which was schedulable under W, now has a higher
priority, suffers less interference, and hence must be schedulable

under W'
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DMPO is optimal /3

m Al that is left to show is that task T;, which has had its priority
lowered, is still schedulable

m Under W we have R; < Dj, D; < Dy and R; < T;

» Task 7; only interferes once during the execution of task
T;hence R, = R; <D; <Dy
o Under W' task T; completes at the time task 7; did under W
o Hence task 7; is still schedulable after the switch

m Priotity scheme W' can now be transformed to W'’ by choosing

two more tasks that are in the wrong order for DMPO and
switching them

Real-Time Systems
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‘ Summary

m A simple (periodic) workload model

m Delving into fixed-priority scheduling

m A (rapid) survey of schedulability tests

m Some extensions to the workload model

m Priority assignment techniques
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