
2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 1

3.b Task interactions and
blocking

Inhibiting preemption /1

 In certain implementations, some processing actions
should not be preempted
 The execution of non-reentrant code shared by multiple jobs,

directly (by direct call) or indirectly (e.g., as part of a system
call), cannot tolerate preemption

 For reasons of integrity or efficiency, some system-level
activities should not be preempted
 Operations on external devices may not allow preemption

 At its simplest, preemption is inhibited by just disabling
dispatching
 How does that happen?

2018/19 UniPD – T. Vardanega Real-Time Systems 155 of 538

Inhibiting preemption /2

 A higher-priority job 𝐽 that, at its release time,
finds a lower-priority job 𝐽 executing with disabled
preemption, gets blocked for a time duration that
depends on 𝐽
 Under FPS, this is a flagrant case of priority inversion

 The feasibility of 𝐽 now depends on 𝐽 too!
 Under FPS, this form of blocking for 𝐽 is determined as

𝐵ሺ𝑛𝑝ሻ ൌ max ୀାଵ,..,ሺ𝜃ሻ where 𝜃 𝑒 is
the longest non-preemptible execution of job 𝐽

 This cost is paid by of 𝐽 only once per release

2018/19 UniPD – T. Vardanega Real-Time Systems 156 of 538

Self suspension /1

 A job 𝐽 that invokes suspending operations or self suspends,
suffers a time penalty that worsens its response time

 𝐽 incurs a degenerate form of blocking that can be bounded as
𝐵ሺ𝑠𝑠ሻ ൌ max ሺ𝛿ሻ ∑ min ሺ𝑒, max ሺ𝛿ሻሻୀଵ,..,ିଵ
 max ሺ𝛿ሻ is the longest duration of self suspension by job 𝐽
 The ∑ term is the cumulative interference caused by self-suspending

higher-priority jobs that become ready during the busy period of 𝐽
 Every 𝐽 might in fact resume from self-suspension exactly when 𝐽 does,

and therefore interfere each up to 𝑚𝑎𝑥 𝛿 but never more than 𝑒

 In general, a job 𝐽 that self suspends 𝐾 times during execution
incurs total blocking 𝐵 ൌ 𝐵 𝑠𝑠 ሺ𝐾 1ሻ𝐵ሺ𝑛𝑝ሻ
 As 𝐵ሺ𝑛𝑝ሻ is potentially incurred at at every resumption

2018/19 UniPD – T. Vardanega Real-Time Systems 157 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 2

 Self suspension with independent tasks on
single-core processors causes scheduling anomalies
 Deadlines can be missed when task utilization or

suspension delays are decreased
 Example: consider a feasible task set under EDF
 𝜏ଵ ൌ 0,10, 2,2,2 , 6
 𝜏ଶ ൌ 5,10, 1,1,1 , 4
 𝜏ଷ ൌ 7,10, 1,1,1 , 3
 𝜏ଷ would miss its deadline if 𝜏ଵ’s execution or

suspension lasted 1 time unit less

Self suspension /2

2018/19 UniPD – T. Vardanega Real-Time Systems 158 of 538

Execution includes self suspension

ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ

Effects of self suspension /1

2018/19 UniPD – T. Vardanega Real-Time Systems 159 of 538

4

7

4

7

𝑒 ൌ 2.5, 𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2, 𝑝 ൌ 7

𝑒 ൌ 2.5, 𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2, 𝑝 ൌ 7

Effects of self suspension /2

T2

𝝉𝟏 ൌ 𝟎, 𝟒, 𝟐. 𝟓, 𝟒 , 𝝉𝟐 ൌ 𝟑, 𝟏𝟎, 𝟐, 𝟏𝟎 𝑼 ൌ 𝟎. 𝟖𝟕𝟓

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝝉𝟏 self-suspends for 1.5 𝝉𝟐 misses its deadline

𝑩𝟐 𝒔𝒔 ൌ 𝟎 𝒎𝒊𝒏 𝟐. 𝟓, 𝟏. 𝟓 ൌ 𝟏. 𝟓 is a pessimistic upperbound!
With 𝝋𝟐 ൌ 𝟑, the actual blocking for 𝝉𝟐 in [3,10) reduces to 1

But still 𝑩𝟐 𝒔𝒔 ൌ 𝟏 𝝈𝟐,𝟏ሺ𝟎ሻ ൌ 𝟎. 𝟓

2018/19 UniPD – T. Vardanega

ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ

Real-Time Systems 160 of 538

Access contention

 Access to shared resources causes potential for
contention that needs specialized access protocols

 A resource access control protocol specifies
 When and on what condition, a resource access request may

be granted
 The order of servicing of such requests

 Access contention situations may cause priority inversion
to arise (see following examples)

2018/19 UniPD – T. Vardanega Real-Time Systems 161 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 3

Example /1

2018/19 UniPD – T. Vardanega

T1T2RT3RT1

2 4 6 8 10 12

𝝉𝟏 =	{‐,	‐,	2,	20,	R(4)},	𝝉𝟐 =	{2,	‐,	3,	17,	R(4)}	,	𝝉𝟑 =	{6,	‐,	3,	14,	R(2)}	

under	EDF

𝝉𝟏 ::	e;	R(4);	e. 𝝉𝟐 ::	e;	e;	R(4);	e. 𝝉𝟑 ::	e;	e;	R(2);	e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by 𝜏ଵ

R released
by 𝜏ଵand
assigned to 𝐽ଷ,ଵ

R in use by 𝜏ଷ R in use by 𝜏ଶ

R released by 𝜏ଷ

𝜏ଷ completes 𝜏ଶ completes

𝜏ଵ completes

𝜏ଶ gets blocked on access to R

𝐷ଵ,ଵ ൌ 20 𝐷ଶ,ଵ ൌ 17 𝐷ଷ,ଵ ൌ 14

ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ

Real-Time Systems 162 of 538

Example /2

2018/19 UniPD – T. Vardanega

𝝉𝟏 =	{‐,	‐,	2,	20,	R(2.5)},	𝝉𝟐 =	{2,	‐,	3,	17,	R(4)}	,	𝝉𝟑 =	{6,	‐,	3,	14,	R(2)}	

under	EDF

Same	as	before	except	with	shorter use	of	R	by	𝝉𝟏

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

𝜏ଷ misses its deadline

R in use by 𝜏ଵ

R released by 𝜏ଵ
R taken over by 𝜏ଶ

R released by 𝜏ଶ
R taken over by 𝜏ଷ

R released by 𝜏ଷ

ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ

Scheduling	anomaly!

Real-Time Systems 163 of 538

Assumptions and notations

 In order that interference can be minimized, it is preferable
for real-time design to prescribe that
 All jobs do not self suspend (directly or indirectly)
 All jobs can be preempted

 We say that job 𝐽 is directly blocked by a lower-priority
job 𝐽 when
 𝐽 is granted exclusive access to a shared resource 𝑅
 𝐽 has requested 𝑅 and its request has not been granted

 To study the problem we may want to use a wait-for graph

2018/19 UniPD – T. Vardanega Real-Time Systems 164 of 538

Example

2018/19 UniPD – T. Vardanega Real-Time Systems 165 of 538

T1

T2

T3

T4

R1,	5

R2,	1

(2;	3)

(1;	1)

(1;	2)

[R2,1;8[R1,4;1][R1,1;5]]

Units	available	
(multiplicity)

Units	required Duration	of	use

Obviously!

Wait‐for	graph

Where T3 cumulates up to 2 resources

These	two	arcs	do	not denote	accumulation!

Resources

Tasks

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 4

Resource access control [option a]

 Inhibiting preemption in critical sections
 A job that requires access to a resource is always granted it
 A job that has been assigned a resource runs at a priority

higher than any other job
 These two clauses imply each other (why?)
 They jointly prevent deadlock situations from occurring (why?)

 They cause bounded priority inversion
 At most once per job

 We already understood why

 For a maximum duration 𝐵ሺ𝑟𝑐ሻ ൌ 𝑚𝑎𝑥ୀାଵ,..,𝐶
 For job indices in monotonically non-increasing order and 𝐶 denoting

worst-case duration of critical-section activity by job 𝐽

2018/19 UniPD – T. Vardanega Real-Time Systems 166 of 538

Critique of [a]

 This strategy causes distributed overhead
 All jobs – including those that do not compete for resource access –

incur some time penalty
 Very unfair hence not desirable

 Better if time overhead is solely incurred by the jobs that do
compete for resource access
 The priority of the job that is granted the resource must only be

higher than that of its competitor jobs
 This is the principle of the ceiling priority: we shall return to it

 The resource requirements must be statically known

2018/19 UniPD – T. Vardanega Real-Time Systems 167 of 538

Resource access control [option b]

 Basic priority inheritance protocol (BPIP)
 The priority of a job varies over time from that initially assigned
 The variation follows inheritance principles

 Protocol rules
 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;

at release time they take on their assigned priority
 Allocation: when job 𝐽 requires access to resource 𝑅 at time 𝑡

 If 𝑅 is free, 𝑅 is assigned to 𝐽 until release
 If 𝑅 is busy, the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked, job 𝐽 that blocks it
takes on 𝐽’s current priority as its inherited priority and retains it until 𝑅 is
released; at that point 𝐽 reverts to its previous priority

2018/19 UniPD – T. Vardanega Real-Time Systems 168 of 538

Critique of [b]

 BPIP suffers two forms of blocking
 Direct blocking owing to resource contention
 Inheritance blocking owing to priority raising

 Priority inheritance is transitive
 Direct blocking is transitive as jobs may need to acquire multiple resources

 BPIP does not prevent deadlock as cyclic blocking proceeds
from transitive direct blocking

 BPIP incurs reducible distributed overhead
 Under BPIP, a job may become blocked multiple times when competing

for more than one shared resource
 BPIP needs no prior knowledge on which resources are shared

 It is inherently dynamic, hence usable for open systems

2018/19 UniPD – T. Vardanega Real-Time Systems 169 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 5

Resource access control [option c]

 Basic priority ceiling protocol (BPCP)
 As BPIP, but with the additional constraint that all

resource requirements must be statically known
 Every resource 𝑅 is assigned a priority ceiling attribute set to

the highest priority of the jobs that require 𝑅
 At time 𝑡, the system has a ceiling 𝜋௦ሺ𝑡ሻ attribute set to the

highest priority ceiling of all resources currently in use
 If no resource is currently in use at 𝑡, 𝜋௦ሺ𝑡ሻ defaults to Ω < the

lowest priority of all jobs

2018/19 UniPD – T. Vardanega Real-Time Systems 170 of 538

BPCP protocol rules

 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

 Allocation: when job 𝐽 requests access to resource 𝑅 at time 𝑡
 If 𝑅 is assigned to another job, request is denied and 𝐽 becomes blocked
 If 𝑅 is free and 𝐽’s priority 𝜋ሺ𝑡ሻ 𝜋௦ሺ𝑡ሻ, the request is granted
 If 𝐽 owns the resource with priority ceiling 𝜋௦ሺ𝑡ሻ, the request is granted
 Otherwise the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked by job 𝐽, 𝐽
takes 𝐽’s current priority 𝜋ሺ𝑡ሻ until 𝐽 releases all resources with
priority ceiling 𝜋ሺ𝑡ሻ; at that point 𝐽’s priority reverts to the
level that preceded access to those resources

2018/19 UniPD – T. Vardanega Real-Time Systems 171 of 538

Avoidance blocking

Critique of [c] /1

 BPCP is not greedy (BPIP is!)
 Under BPCP a request for a free resource may be denied

 Hence BPCP causes each job 𝐽 to incur three distinct
forms of blocking caused by lower-priority job 𝐽

3.	Avoidance	blocking

J R Jl
1.	Direct	blocking

Jh R Jl
2.	Priority‐inheritance	blocking

J R X Jl𝝅𝑱ሺ𝒕ሻ 𝝅𝒔ሺ𝒕ሻ ൌ 𝝅𝑿 𝝅𝑱ሺ𝒕ሻ

J 𝝅𝑱𝒉 𝝅𝒋requires owns

2018/19 UniPD – T. Vardanega Real-Time Systems 172 of 538

Critique of [c] /2

 Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
 If job 𝐽 at time 𝑡 has 𝜋ሺ𝑡ሻ 𝜋௦ሺ𝑡ሻ then it must be so that
 𝐽 will never use any of the resources in use at time 𝑡
 So won’t all jobs with higher priority than 𝐽

 The system ceiling 𝜋௦ሺ𝑡ሻ determines which jobs can be
assigned a resource free at time 𝑡 without risking deadlock
 All jobs with priority higher than the system ceiling 𝜋௦ሺ𝑡ሻ

 Caveat
 To stop job 𝐽 from blocking itself in the attempt of nesting

resources, BPCP must grant its request if 𝜋ሺ𝑡ሻ 𝜋௦ሺ𝑡ሻ but 𝐽
holds the resources 𝑋 with ceiling ൌ 𝜋௦ሺ𝑡ሻ

2018/19 UniPD – T. Vardanega Real-Time Systems 173 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 6

Critique of [c] /3

 BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

 Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
 Under BPCP when a job becomes blocked, its blocking can only be

caused by a single job
 The job that causes others to block cannot itself be blocked

 Hence BPCP does not permit transitive blocking
 Demonstration:

 The maximum possible value of that duration for job 𝐽 is
termed the blocking time 𝐵ሺ𝑟𝑐ሻ due to resource contention
 𝐵ሺ𝑟𝑐ሻ must be accounted for in the schedulability test for 𝐽

2018/19 UniPD – T. Vardanega Real-Time Systems 174 of 538

By exercise

Computing the BPCP blocking time /1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

𝑩𝒊ሺ𝒓𝒄ሻ ൌ max	value	in	row	i across	all	tablesLow

High

2018/19 UniPD – T. Vardanega Real-Time Systems 175 of 538

Computing the BPCP blocking time /2

 Table “directly blocked by” is straightforward

 Table “priority-inheritance blocked by”
 The value in cell [i, k] is the maximum value found in

(rows 1, …, i-1; column k) in Table “directly blocked by”

 Table “avoidance blocked by”
 If (desirably) jobs are assigned distinct priorities, the cells here are as

in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2018/19 UniPD – T. Vardanega Real-Time Systems 176 of 538

Resource access control [option d]

 Stack-based ceiling priority protocol
 SB-CPP beats BPCP, by allowing stack space to be shared

across jobs, thus saving precious memory resources
 It prevents a job’s stack space from fragmenting since it ensures that

none of the job’s request for resources may be denied during execution
 BPCP instead allows that

 Blocking causes stack fragmentation, not preemption (!)
 One more reason to prescribe that jobs do not self suspend

 SB-CPP also has lower algorithmic complexity in time
and space, as it needs less checks against 𝜋௦ 𝑡

2018/19 UniPD – T. Vardanega Real-Time Systems 177 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 7

SB-CPP protocol rules [Baker, 1991]

 Computation of and updates to ceiling 𝜋௦ሺ𝑡ሻ:
 When all resources are free, 𝜋௦ሺ𝑡ሻ ൌ Ω
 𝜋௦ሺ𝑡ሻ is updated any time 𝑡 a resource is assigned or released

 Scheduling: on its release time job 𝐽 stays blocked until
its assigned priority 𝜋ሺ𝑡ሻ 𝜋௦ሺ𝑡ሻ
 Jobs that are not blocked are dispatched to execution by

preemptive priority-driven scheduling
 Allocation: whenever a job issues a request for a

resource, the request is granted

2018/19 UniPD – T. Vardanega Real-Time Systems 178 of 538

Critique of [d]

 Under SB-CPP, a job 𝐽 can only begin execution when
the resources it may need are free
 Otherwise 𝜋ሺ𝑡ሻ 𝜋௦ሺ𝑡ሻ cannot hold

 Under SB-CPP, a job 𝐽 that may get preempted does
not become blocked on resumption
 The preempting job cannot contend resources with 𝐽

 SB-CPP prevents deadlock from occurring

 Under SB-CPP, 𝐵ሺ𝑟𝑐ሻ for any job 𝐽 is computed in
the same way as with BPCP

2018/19 UniPD – T. Vardanega Real-Time Systems 179 of 538

Resource access control [option e]

 Ceiling priority protocol (base version)
 CPP does not use the system ceiling 𝜋௦ሺ𝑡ሻ although the

resources continue to have a ceiling priority attribute
 Scheduling:

 A job that does not hold any resource executes at the level of
its assigned priority

 Jobs are scheduled under FPS with FIFO_within_priorities
 A job that holds any resources has its current priority set to

the highest value among the ceiling priority of those resources
 Allocation: Whenever a job issues a request for a

resource, the request is granted

2018/19 UniPD – T. Vardanega Real-Time Systems 180 of 538

Summary

 Issues arising from task interactions under
preemptive priority-based scheduling

 Survey of resource access control protocols
 Critique of the surveyed protocols

2018/19 UniPD – T. Vardanega Real-Time Systems 181 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 8

Selected readings

 L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time
synchronization
DOI: 10.1109/12.57058

 T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time
Processes
DOI: 10.1109/REAL.1990.128747

2018/19 UniPD – T. Vardanega Real-Time Systems 182 of 538

