2018/19 UniPD

- T. Vardanega

3.b Task interactions and
blocking

‘ Inhibiting preemption /1

m In certain implementations, some processing actions
should not be preempted
a The execution of non-reentrant code shared by multiple jobs,
directly (by direct call) or indirectly (e.g., as part of a system
call), cannot tolerate preemption
m For reasons of integrity or efficiency, some system-level
activities should not be preempted
o Operations on external devices may not allow preemption
m At its simplest, preemption is inhibited by just disabling
dispatching Tl

©ré)
o How does that happen?

2018/19 UniPD —T. Vardanega Real-Time Systems 155 of 538

Inhibiting preemption /2

m A higher-priority job Jj, that, at its release time,
finds a lower-priority job J; executing with disabled
preemption, gets blocked for a time duration that
depends on J;

o Under FPS, this is a flagrant case of priority inversion

m The feasibility of J, now depends on J; too!
o Under FPS, this form of blocking for J; is determined as
Bi (‘l’lp) = maxk:len(Hk) where Hk < (=57 is
the longest non-preemptiblejexecution of job J
0 This cost is paid by of J; only once per release

2018/19 UniPD - T. Vardanega Real-Time Systems 156 of 538

Real-Time Systems

| Self suspension /1

m A job J; that invokes suspending operations or self suspends,
suffers a time penalty that worsens its response time

m J; incurs a degenerate form of blocking that can be bounded as
(Bi(ss) = max(8;) + Y=, ;—1 min(ey, max(&y)))

o max(d;) is the longest duration of self suspension by job J;

0 The), term is the cumulative interference caused by self-suspending
higher-priority jobs that become ready during the busy petiod of J;

o Every J might in fact resume from self-suspension exactly when J; does,
and therefore interfere each up to max(y) but never more than ey

m In general, a job J; that self suspends K times during execution
incurs total blocking(B; = B;(ss) + (K + 1)B;(np)

o As B;j(np) is potentially incurred at at every resumption

2018/19 UniPD —T. Vardanega Real-Time Systems 157 of 538

19/03/2019

2018/19 UniPD - T. Vardanega

‘ Self suspension /2

m Sclf suspension with independent tasks on
single-core processors causes scheduling anomalies

0 Deadlines can be missed when task utilization or
suspension delays are decreased

m Example: consider a feasible task set under EDF

a7 = {0110’ (ZPZJZ)I 6} T “ Execution includes self suspension

o 7, ={510,(1,1,1),4} © ! e O
o 13 ={7,10,(1,1,1),3} =, Lot
0 T3 would miss its deadline if 7;’s execution or

suspension lasted 1 time unit less

2018/19 UniPD —T. Vardanega Real-Time Systems 158 of 538

| Effects of self suspension /1

4

T A Al N |

A -
(@=3e=2p=7 N B N N
7
2018/19 UniPD —T. Vardanega Real-Time Systems 159 of 538

| Effects of self suspension /2

(@i piei, Dy)
vEee Tt 7, ={0,4,2.5,4},7, = {3,10,2,10} U = 0.875

el e

|
12 3 4 8 9 10 11 12

7y self-suspends for 1.5 m——— T, misses its deadline
1
| | | L L | l | | l |
] | =1 |

4 5 6 7

|
12 3 8 9 10 1 12

B3(ss) = 0+ min(2.5,1.5) = 1.5 is a pessimistic upperbound!
With @, = 3, the actual blocking for T, in [3,10) reduces to 1
But still B,(ss) =1 > 6,4(0) = 0.5

2018/19 UniPD - T. Vardanega Real-Time Systems 160 of 538

Real-Time Systems

Access contention

m Access to shared resources causes potential for
contention that needs specialized access protocols
m A resource access control protocol specifies

0 When and on what condition, a resource access request may

be granted
o The order of servicing of such requests
m Access contention situations may cause priority inversion
to arise (see following examples)

2018/19 UniPD —T. Vardanega Real-Time Systems 161 of 538

19/03/2019

2018/19 UniPD - T. Vardanega 19/03/2019

‘ Example /1 ‘ Example /2

(@upues Di) y— Maxuse of shared resource per execution (ipiei, D)
71 ={--2,20,R(4)}, 72 ={2,-, 3,17, R(4)}, 73 = {6, -, 3, 14, R(2)} 71 ={--2,20,R(2.5)}, 7, ={2, -, 3,17, R(4)}, 3 = {6, -, 3, 14, R(2)}
under EDF under EDF
71 ::e;R(4);e. T3 ::e;e;R(4);e. 73::e;e; R(2); e. Same as before except with shorter use of R py 7 -----------,
Rinuse by 71 Rinuse by 73 Rin use by 7, R released by 7, Rreleased by 7, :
T, gets blocked on access to R Rinuse by 7, R taken over by 7, R taken over by 73 !
28 R released by 73 i
T,|R| T, R T, |[R| R [T, R i
| | T,|R| T, R [R| T, R R [T,|T,|T ;
[| ! I I ;
4 8 10 12 14 16 | | | :
2 4 6 8 10 12 14 16 18 |
R released T3 completes T, completes ;
Dy, =20 Dy, =17 Dyy =14 by zjand et 5 misses its dea
! i i assigned to J3; 7y completes R
' Scheduling anomalyfe -~~~ mommomimimcn T
¥ R released by 73
2018/19 UniPD —T. Vardanega Real-Time Systems 162 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 163 of 538
‘ Assumptions and notations ‘ Example

Wait-for graph

m In order that interference can be minimized, it is preferable Units required Duration of use

for real-time design to prescribe that T, ?2: 3; Units available
a All jobs do not self suspend (directly or indirectly) 1) (multiplicity)
. »°

a All jobs can be preempted O ORy,5
m We say that job J, is directly blocked by a lower-priotity T

. <> These two arcs do not denote accumulation!

job J; when T, ©

_ 4 e O R, 1
o Jyis granted exclusive access to a shared resource R t» [R,1;8[Ry4;1][R,,1;5]]
0 Jp has requested R and its request has not been granted Where T cumulates up to 2 resources 1:2)
;
m To study the problem we may want to use a wait-for graph T4 4
Obviously!

2018/19 UniPD —T. Vardanega Real-Time Systems 164 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 165 of 538

Real-Time Systems 3

2018/19 UniPD - T. Vardanega

Resource access control [option a]

m Inhibiting preemption in critical sections
o A job that requires access to a resource is always granted it
a A job that has been assigned a resource runs at a priority
higher than any other job

m These two clauses imply each other (why?)
m They jointly prevent deadlock situations from occutring (why?)

m They cause bounded priority inversion

o At most once per job
m We already understood why

o For a maximum duration [Bi (rc) = maxk:HL__,an]

m For job indices in monotonically non-increasing order and Cj, denoting
worst-case duration of critical-section activity by job Jj

2018/19 UniPD —T. Vardanega Real-Time Systems 166 of 538

‘ Critique of |[a]

m This strategy causes distributed overhead

o Alljobs — including those that do not compete for resource access —
incur some time penalty

0 Very unfair hence not desirable

m Better if time overhead is solely incurred by the jobs that do
compete for resource access

0 The priority of the job that is granted the resource must only be
higher than that of its competitor jobs

m This is the principle of the ceiling priority: we shall return to it

0 The resource requirements must be statically known

2018/19 UniPD —T. Vardanega Real-Time Systems 167 of 538

Resource access control [option b

m Basic priority inheritance protocol (BPIP)
0 The priority of a job varies over time from that initially assigned
0 The variation follows inheritance principles

s Protocol rules

0 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;
at release time they take on their assigned priority

o Allocation: when job] requires access to resource R at time t
= If R is free, R is assigned to J until release

= If R is busy, the request is denied and] becomes blocked
o Priority inheritance: when job J becomes blocked, job J; that blocks it

takes on J’s aurrent priority as its inberited priority and retains it until R is
released; at that point J; reverts to its previous priotity

2018/19 UniPD - T. Vardanega Real-Time Systems 168 of 538

Real-Time Systems

Critique of [b]

m BPIP suffers two forms of blocking
0 Direct blocking owing to resource contention
0 Inheritance blocking owing to priority raising
m Priority inheritance is transitive
o Direct blocking is transitive as jobs may need to acquire multiple resources
m BPIP does not prevent deadlock as cyclic blocking proceeds
from transitive direct blocking
m BPIP incurs reducible distributed overhead

o Under BPIP, a job may become blocked multiple times when competing
for more than one shared resource

m BPIP needs no prior knowledge on which resources are shared
0 Itis inherently dynamic, hence usable for open systems

2018/19 UniPD —T. Vardanega Real-Time Systems 169 of 538

19/03/2019

2018/19 UniPD - T. Vardanega

Resource access control [option]

m Basic priority ceiling protocol (BPCP)

o As BPIP, but with the additional constraint that all
resource requirements must be statically known
a Every resource R is assigned a priority ceiling attribute set to
the highest priority of the jobs that require R
m At time t, the system has a ceiling 75 (t) attribute set to the
highest priority ceiling of all resources currently in use
m If no resource is currently in use at t, 5 (t) defaults to Q < the
lowest ptiority of all jobs

2018/19 UniPD —T. Vardanega Real-Time Systems 170 of 538

| BPCP protocol rules

m Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

m Allocation: when job J requests access to resource R at time ¢
o If R is assigned to another job, request is denied and J becomes blocked
a IfRis free and J’s priority 7, (t) > ms(t), the request is granted

o If] owns the resource with priority ceiling 75 (t), the request is granted

=} [Othcrwisc the request is denied and J becomes blockcd] Avoidance blocking

m Priority inheritance: when job J becomes blocked by job Ji, J;
takes J’s current priority 77, (t) until J; releases all resources with
priotity ceiling > 7;(t); at that point J;’s priority reverts to the
level that preceded access to those resources

2018/19 UniPD —T. Vardanega Real-Time Systems 171 of 538

| Critique of [c] /1

m BPCP is ot greedy (BPIP is!)
o Under BPCP a request for a free resource may be denied

m Hence BPCP causes each job J to incur three distinct
forms of blocking caused by lower-priority job J;

s owns @ T, >
@-®—-® ©—-®—-®

1. Direct blocking 2, Priority-inheritance blocking

no - @—® @—@ — mo-m>mno

3. Avoidance blocking

2018/19 UniPD - T. Vardanega Real-Time Systems 172 of 538

Real-Time Systems

| Critique of [c] /2

m Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
o Ifjob J at time t has 7;(t) > ms(t) then it must be so that
m | will never use any of the resources in use at time ¢
= So won’t all jobs with higher priority than |
a The system ceiling w5 (t) determines which jobs can be
assigned a resoutce free at time t without risking deadlock
m Alljobs with priority higher than the system ceiling g(t)
m Caveat
o To stop job J from blocking itself in the attempt of nesting
resources, BPCP must grant its request if 77, () < ms () but J
holds the resources {X} with ceiling = mg(t)

2018/19 UniPD —T. Vardanega Real-Time Systems 173 of 538

19/03/2019

2018/19 UniPD - T. Vardanega 19/03/2019

‘ Critique of [c] /3 ‘ Computing the BPCP blocking time /1

Directly blocked by

J2 | J3 | 44 | J5 | JB
[2
5

s BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

m Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section

oo e
&

Priority-inheritance blocked
J2 J3 J4 J5 J&

o Under BPCP when a job becomes blocked, its blocking can only be 3]
caused by a single job : 5 E

0 The job that causes others to block cannot itself be blocked J5 a

» Hence BPCP does not permit transitive blocking T B

o Demonstration: :I 5 =

m The maximum possible value of that duration for job J; is _. = 7

termed the blocking time B;(rc) due to resource contention
a B;(rc) must be accounted for in the schedulability test for J;

| B;(rc) = max value in row i across all tables

2018/19 UniPD —T. Vardanega Real-Time Systems 174 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 175 of 538
Computing the BPCP blocking time /2 Resource access control [option d]
w Table “directly blocked by” is straightforward m Stack-based ceiling priority protocol
w Table “priority-inberitance blocked by’ a SB-CPP beats BPCP, by allowing stack space to be shared

0 The value in cell [, k] is the maximum value found in across jobs, thus saving precious memory resources

(rows 1, ..., i-1; column k) in Table “directly blocked by’ m It prevents a job’s stack space from fragmenting since it ensures that
) none of the job’s request for resources may be denied during execution

m Table “avoidance blocked @/” = BPCP instead allows that

o If (desirably) jobs are assigned distinct priorities, the cells here are as - Blocking causes stack fragmentation, not preemprion (y)

in Table “priority-inheritance blocked by” except for the jobs that do not

request resources (whose cell value is set to zero) o One more reason to prescribe that jobs do not self suspend

m SB-CPP also has lower algorithmic complexity in time
and space, as it needs less checks against g (t)

2018/19 UniPD - T. Vardanega Real-Time Systems 176 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 177 of 538

Real-Time Systems 6

2018/19 UniPD - T. Vardanega

| SB-CPP protocol rules [Baker, 1991]

» Computation of and updates to ceiling 4 (t):

0 When all resources are free, ms(t) = Q
o mg(t) is updated any time t a resource is assigned or released
m Scheduling: on its release time job J stays blocked until
its assigned priority 7, (t) > 7s(t)
0 Jobs that are not blocked are dispatched to execution by
preemptive priority-driven scheduling
m Allocation: whenever a job issues a request for a G@

resource, the request is granted T

2018/19 UniPD —T. Vardanega Real-Time Systems 178 of 538

| Critique of [d]

m Under SB-CPP, a job J can only begin execution when
the resources it may need are free

o Otherwise 7;(t) > mg(t) cannot hold

m Under SB-CPP, a job J that may get preempted does
not become blocked on resumption

0 The preempting job cannot contend resources with J
m SB-CPP prevents deadlock from occurring

m Under SB-CPP, B;(rc) for any job J; is computed in
the same way as with BPCP

2018/19 UniPD —T. Vardanega Real-Time Systems 179 of 538

Resource access control [option e]

m Ceiling priority protocol (base version)
o CPP does not use the system ceiling w4 (t) although the
resources continue to have a ceiling priority attribute

m Scheduling:

o A job that does not hold any resource executes at the level of
its assigned priority

0 Jobs are scheduled under FPS with FIFO_within_priorities

0 A job that holds any resources has its current priority set to
the highest value among the ceiling priority of those resources

L

m Allocation: Whenever a job issues a request for a (% }‘
resource, the request is granted -

2018/19 UniPD —T. Vardanega Real-Time Systems 180 of 538

‘ Summary

m Issues arising from task interactions under
preemptive priority-based scheduling

m Survey of resource access control protocols

m Critique of the surveyed protocols

2018/19 UniPD —T. Vardanega Real-Time Systems 181 of 538

Real-Time Systems

19/03/2019

2018/19 UniPD - T. Vardanega 19/03/2019

‘ Selected readings

m L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time

synchronization
DOI: 10.1109/12.57058
m T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time

Processes
DOI: 10.1109/REAIL.1990.128747

2018/19 UniPD —T. Vardanega Real-Time Systems 182 of 538

Real-Time Systems 8

