
2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 1

3.b Task interactions and
blocking

Inhibiting preemption /1

 In certain implementations, some processing actions
should not be preempted
 The execution of non-reentrant code shared by multiple jobs,

directly (by direct call) or indirectly (e.g., as part of a system
call), cannot tolerate preemption

 For reasons of integrity or efficiency, some system-level
activities should not be preempted
 Operations on external devices may not allow preemption

 At its simplest, preemption is inhibited by just disabling
dispatching
 How does that happen?

2018/19 UniPD – T. Vardanega Real-Time Systems 155 of 538

Inhibiting preemption /2

 A higher-priority job 𝐽௛ that, at its release time,
finds a lower-priority job 𝐽௟ executing with disabled
preemption, gets blocked for a time duration that
depends on 𝐽௟
 Under FPS, this is a flagrant case of priority inversion

 The feasibility of 𝐽௛ now depends on 𝐽௟ too!
 Under FPS, this form of blocking for 𝐽௜ is determined as

𝐵௜ሺ𝑛𝑝ሻ ൌ max ௞ୀ௜ାଵ,..,௡ሺ𝜃௞ሻ where 𝜃௞ ൑ 𝑒௞ is
the longest non-preemptible execution of job 𝐽௞

 This cost is paid by of 𝐽௜ only once per release

2018/19 UniPD – T. Vardanega Real-Time Systems 156 of 538

Self suspension /1

 A job 𝐽௜ that invokes suspending operations or self suspends,
suffers a time penalty that worsens its response time

 𝐽௜ incurs a degenerate form of blocking that can be bounded as
𝐵௜ሺ𝑠𝑠ሻ ൌ max ሺ𝛿௜ሻ ൅ ∑ min ሺ𝑒௞, max ሺ𝛿௞ሻሻ௞ୀଵ,..,௜ିଵ
 max ሺ𝛿௜ሻ is the longest duration of self suspension by job 𝐽௜
 The ∑ term is the cumulative interference caused by self-suspending

higher-priority jobs that become ready during the busy period of 𝐽௜
 Every 𝐽௞ might in fact resume from self-suspension exactly when 𝐽௜ does,

and therefore interfere each up to 𝑚𝑎𝑥 𝛿௞ but never more than 𝑒௞

 In general, a job 𝐽௜ that self suspends 𝐾 times during execution
incurs total blocking 𝐵௜ ൌ 𝐵௜ 𝑠𝑠 ൅ ሺ𝐾 ൅ 1ሻ𝐵௜ሺ𝑛𝑝ሻ
 As 𝐵௜ሺ𝑛𝑝ሻ is potentially incurred at at every resumption

2018/19 UniPD – T. Vardanega Real-Time Systems 157 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 2

 Self suspension with independent tasks on
single-core processors causes scheduling anomalies
 Deadlines can be missed when task utilization or

suspension delays are decreased
 Example: consider a feasible task set under EDF
 𝜏ଵ ൌ 0,10, 2,2,2 , 6
 𝜏ଶ ൌ 5,10, 1,1,1 , 4
 𝜏ଷ ൌ 7,10, 1,1,1 , 3
 𝜏ଷ would miss its deadline if 𝜏ଵ’s execution or

suspension lasted 1 time unit less

Self suspension /2

2018/19 UniPD – T. Vardanega Real-Time Systems 158 of 538

Execution includes self suspension

ሺ𝜑௜, 𝑝௜, 𝑒௜, 𝐷௜ሻ

Effects of self suspension /1

2018/19 UniPD – T. Vardanega Real-Time Systems 159 of 538

4

7

4

7

𝑒 ൌ 2.5, 𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2, 𝑝 ൌ 7

𝑒 ൌ 2.5, 𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2, 𝑝 ൌ 7

Effects of self suspension /2

T2

𝝉𝟏 ൌ 𝟎, 𝟒, 𝟐. 𝟓, 𝟒 , 𝝉𝟐 ൌ 𝟑, 𝟏𝟎, 𝟐, 𝟏𝟎 𝑼 ൌ 𝟎. 𝟖𝟕𝟓

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝝉𝟏 self-suspends for 1.5 𝝉𝟐 misses its deadline

𝑩𝟐 𝒔𝒔 ൌ 𝟎 ൅ 𝒎𝒊𝒏 𝟐. 𝟓, 𝟏. 𝟓 ൌ 𝟏. 𝟓 is a pessimistic upperbound!
With 𝝋𝟐 ൌ 𝟑, the actual blocking for 𝝉𝟐 in [3,10) reduces to 1

But still 𝑩𝟐 𝒔𝒔 ൌ 𝟏 ൐ 𝝈𝟐,𝟏ሺ𝟎ሻ ൌ 𝟎. 𝟓

2018/19 UniPD – T. Vardanega

ሺ𝜑௜, 𝑝௜, 𝑒௜, 𝐷௜ሻ

Real-Time Systems 160 of 538

Access contention

 Access to shared resources causes potential for
contention that needs specialized access protocols

 A resource access control protocol specifies
 When and on what condition, a resource access request may

be granted
 The order of servicing of such requests

 Access contention situations may cause priority inversion
to arise (see following examples)

2018/19 UniPD – T. Vardanega Real-Time Systems 161 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 3

Example /1

2018/19 UniPD – T. Vardanega

T1T2RT3RT1

2 4 6 8 10 12

𝝉𝟏 =	{‐,	‐,	2,	20,	R(4)},	𝝉𝟐 =	{2,	‐,	3,	17,	R(4)}	,	𝝉𝟑 =	{6,	‐,	3,	14,	R(2)}	

under	EDF

𝝉𝟏 ::	e;	R(4);	e. 𝝉𝟐 ::	e;	e;	R(4);	e. 𝝉𝟑 ::	e;	e;	R(2);	e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by 𝜏ଵ

R released
by 𝜏ଵand
assigned to 𝐽ଷ,ଵ

R in use by 𝜏ଷ R in use by 𝜏ଶ

R released by 𝜏ଷ

𝜏ଷ completes 𝜏ଶ completes

𝜏ଵ completes

𝜏ଶ gets blocked on access to R

𝐷ଵ,ଵ ൌ 20 𝐷ଶ,ଵ ൌ 17 𝐷ଷ,ଵ ൌ 14

ሺ𝜑௜, 𝑝௜, 𝑒௜, 𝐷௜ሻ

Real-Time Systems 162 of 538

Example /2

2018/19 UniPD – T. Vardanega

𝝉𝟏 =	{‐,	‐,	2,	20,	R(2.5)},	𝝉𝟐 =	{2,	‐,	3,	17,	R(4)}	,	𝝉𝟑 =	{6,	‐,	3,	14,	R(2)}	

under	EDF

Same	as	before	except	with	shorter use	of	R	by	𝝉𝟏

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

𝜏ଷ misses its deadline

R in use by 𝜏ଵ

R released by 𝜏ଵ
R taken over by 𝜏ଶ

R released by 𝜏ଶ
R taken over by 𝜏ଷ

R released by 𝜏ଷ

ሺ𝜑௜, 𝑝௜, 𝑒௜, 𝐷௜ሻ

Scheduling	anomaly!

Real-Time Systems 163 of 538

Assumptions and notations

 In order that interference can be minimized, it is preferable
for real-time design to prescribe that
 All jobs do not self suspend (directly or indirectly)
 All jobs can be preempted

 We say that job 𝐽௛ is directly blocked by a lower-priority
job 𝐽௟ when
 𝐽௟ is granted exclusive access to a shared resource 𝑅
 𝐽௛ has requested 𝑅 and its request has not been granted

 To study the problem we may want to use a wait-for graph

2018/19 UniPD – T. Vardanega Real-Time Systems 164 of 538

Example

2018/19 UniPD – T. Vardanega Real-Time Systems 165 of 538

T1

T2

T3

T4

R1,	5

R2,	1

(2;	3)

(1;	1)

(1;	2)

[R2,1;8[R1,4;1][R1,1;5]]

Units	available	
(multiplicity)

Units	required Duration	of	use

Obviously!

Wait‐for	graph

Where T3 cumulates up to 2 resources

These	two	arcs	do	not denote	accumulation!

Resources

Tasks

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 4

Resource access control [option a]

 Inhibiting preemption in critical sections
 A job that requires access to a resource is always granted it
 A job that has been assigned a resource runs at a priority

higher than any other job
 These two clauses imply each other (why?)
 They jointly prevent deadlock situations from occurring (why?)

 They cause bounded priority inversion
 At most once per job

 We already understood why

 For a maximum duration 𝐵௜ሺ𝑟𝑐ሻ ൌ 𝑚𝑎𝑥௞ୀ௜ାଵ,..,௡𝐶௞
 For job indices in monotonically non-increasing order and 𝐶௞ denoting

worst-case duration of critical-section activity by job 𝐽௞

2018/19 UniPD – T. Vardanega Real-Time Systems 166 of 538

Critique of [a]

 This strategy causes distributed overhead
 All jobs – including those that do not compete for resource access –

incur some time penalty
 Very unfair hence not desirable

 Better if time overhead is solely incurred by the jobs that do
compete for resource access
 The priority of the job that is granted the resource must only be

higher than that of its competitor jobs
 This is the principle of the ceiling priority: we shall return to it

 The resource requirements must be statically known

2018/19 UniPD – T. Vardanega Real-Time Systems 167 of 538

Resource access control [option b]

 Basic priority inheritance protocol (BPIP)
 The priority of a job varies over time from that initially assigned
 The variation follows inheritance principles

 Protocol rules
 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;

at release time they take on their assigned priority
 Allocation: when job 𝐽 requires access to resource 𝑅 at time 𝑡

 If 𝑅 is free, 𝑅 is assigned to 𝐽 until release
 If 𝑅 is busy, the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked, job 𝐽௟ that blocks it
takes on 𝐽’s current priority as its inherited priority and retains it until 𝑅 is
released; at that point 𝐽௟ reverts to its previous priority

2018/19 UniPD – T. Vardanega Real-Time Systems 168 of 538

Critique of [b]

 BPIP suffers two forms of blocking
 Direct blocking owing to resource contention
 Inheritance blocking owing to priority raising

 Priority inheritance is transitive
 Direct blocking is transitive as jobs may need to acquire multiple resources

 BPIP does not prevent deadlock as cyclic blocking proceeds
from transitive direct blocking

 BPIP incurs reducible distributed overhead
 Under BPIP, a job may become blocked multiple times when competing

for more than one shared resource
 BPIP needs no prior knowledge on which resources are shared

 It is inherently dynamic, hence usable for open systems

2018/19 UniPD – T. Vardanega Real-Time Systems 169 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 5

Resource access control [option c]

 Basic priority ceiling protocol (BPCP)
 As BPIP, but with the additional constraint that all

resource requirements must be statically known
 Every resource 𝑅 is assigned a priority ceiling attribute set to

the highest priority of the jobs that require 𝑅
 At time 𝑡, the system has a ceiling 𝜋௦ሺ𝑡ሻ attribute set to the

highest priority ceiling of all resources currently in use
 If no resource is currently in use at 𝑡, 𝜋௦ሺ𝑡ሻ defaults to Ω < the

lowest priority of all jobs

2018/19 UniPD – T. Vardanega Real-Time Systems 170 of 538

BPCP protocol rules

 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

 Allocation: when job 𝐽 requests access to resource 𝑅 at time 𝑡
 If 𝑅 is assigned to another job, request is denied and 𝐽 becomes blocked
 If 𝑅 is free and 𝐽’s priority 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ, the request is granted
 If 𝐽 owns the resource with priority ceiling 𝜋௦ሺ𝑡ሻ, the request is granted
 Otherwise the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked by job 𝐽௟, 𝐽௟
takes 𝐽’s current priority 𝜋௃ሺ𝑡ሻ until 𝐽௟ releases all resources with
priority ceiling ൐ 𝜋௃ሺ𝑡ሻ; at that point 𝐽௟’s priority reverts to the
level that preceded access to those resources

2018/19 UniPD – T. Vardanega Real-Time Systems 171 of 538

Avoidance blocking

Critique of [c] /1

 BPCP is not greedy (BPIP is!)
 Under BPCP a request for a free resource may be denied

 Hence BPCP causes each job 𝐽 to incur three distinct
forms of blocking caused by lower-priority job 𝐽௟

3.	Avoidance	blocking

J R Jl
1.	Direct	blocking

Jh R Jl
2.	Priority‐inheritance	blocking

J R X Jl𝝅𝑱ሺ𝒕ሻ 𝝅𝒔ሺ𝒕ሻ ൌ 𝝅𝑿 ൐ 𝝅𝑱ሺ𝒕ሻ

J 𝝅𝑱𝒉 ൐ 𝝅𝒋requires owns

2018/19 UniPD – T. Vardanega Real-Time Systems 172 of 538

Critique of [c] /2

 Avoidance blocking is what makes BPCP not greedy
and prevents deadlock from occurring
 If job 𝐽 at time 𝑡 has 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ then it must be so that
 𝐽 will never use any of the resources in use at time 𝑡
 So won’t all jobs with higher priority than 𝐽

 The system ceiling 𝜋௦ሺ𝑡ሻ determines which jobs can be
assigned a resource free at time 𝑡 without risking deadlock
 All jobs with priority higher than the system ceiling 𝜋௦ሺ𝑡ሻ

 Caveat
 To stop job 𝐽 from blocking itself in the attempt of nesting

resources, BPCP must grant its request if 𝜋௃ሺ𝑡ሻ ൑ 𝜋௦ሺ𝑡ሻ but 𝐽
holds the resources 𝑋 with ceiling ൌ 𝜋௦ሺ𝑡ሻ

2018/19 UniPD – T. Vardanega Real-Time Systems 173 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 6

Critique of [c] /3

 BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking

 Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
 Under BPCP when a job becomes blocked, its blocking can only be

caused by a single job
 The job that causes others to block cannot itself be blocked

 Hence BPCP does not permit transitive blocking
 Demonstration:

 The maximum possible value of that duration for job 𝐽௜ is
termed the blocking time 𝐵௜ሺ𝑟𝑐ሻ due to resource contention
 𝐵௜ሺ𝑟𝑐ሻ must be accounted for in the schedulability test for 𝐽௜

2018/19 UniPD – T. Vardanega Real-Time Systems 174 of 538

By exercise

Computing the BPCP blocking time /1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

𝑩𝒊ሺ𝒓𝒄ሻ ൌ max	value	in	row	i across	all	tablesLow

High

2018/19 UniPD – T. Vardanega Real-Time Systems 175 of 538

Computing the BPCP blocking time /2

 Table “directly blocked by” is straightforward

 Table “priority-inheritance blocked by”
 The value in cell [i, k] is the maximum value found in

(rows 1, …, i-1; column k) in Table “directly blocked by”

 Table “avoidance blocked by”
 If (desirably) jobs are assigned distinct priorities, the cells here are as

in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2018/19 UniPD – T. Vardanega Real-Time Systems 176 of 538

Resource access control [option d]

 Stack-based ceiling priority protocol
 SB-CPP beats BPCP, by allowing stack space to be shared

across jobs, thus saving precious memory resources
 It prevents a job’s stack space from fragmenting since it ensures that

none of the job’s request for resources may be denied during execution
 BPCP instead allows that

 Blocking causes stack fragmentation, not preemption (!)
 One more reason to prescribe that jobs do not self suspend

 SB-CPP also has lower algorithmic complexity in time
and space, as it needs less checks against 𝜋௦ 𝑡

2018/19 UniPD – T. Vardanega Real-Time Systems 177 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 7

SB-CPP protocol rules [Baker, 1991]

 Computation of and updates to ceiling 𝜋௦ሺ𝑡ሻ:
 When all resources are free, 𝜋௦ሺ𝑡ሻ ൌ Ω
 𝜋௦ሺ𝑡ሻ is updated any time 𝑡 a resource is assigned or released

 Scheduling: on its release time job 𝐽 stays blocked until
its assigned priority 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ
 Jobs that are not blocked are dispatched to execution by

preemptive priority-driven scheduling
 Allocation: whenever a job issues a request for a

resource, the request is granted

2018/19 UniPD – T. Vardanega Real-Time Systems 178 of 538

Critique of [d]

 Under SB-CPP, a job 𝐽 can only begin execution when
the resources it may need are free
 Otherwise 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ cannot hold

 Under SB-CPP, a job 𝐽 that may get preempted does
not become blocked on resumption
 The preempting job cannot contend resources with 𝐽

 SB-CPP prevents deadlock from occurring

 Under SB-CPP, 𝐵௜ሺ𝑟𝑐ሻ for any job 𝐽௜ is computed in
the same way as with BPCP

2018/19 UniPD – T. Vardanega Real-Time Systems 179 of 538

Resource access control [option e]

 Ceiling priority protocol (base version)
 CPP does not use the system ceiling 𝜋௦ሺ𝑡ሻ although the

resources continue to have a ceiling priority attribute
 Scheduling:

 A job that does not hold any resource executes at the level of
its assigned priority

 Jobs are scheduled under FPS with FIFO_within_priorities
 A job that holds any resources has its current priority set to

the highest value among the ceiling priority of those resources
 Allocation: Whenever a job issues a request for a

resource, the request is granted

2018/19 UniPD – T. Vardanega Real-Time Systems 180 of 538

Summary

 Issues arising from task interactions under
preemptive priority-based scheduling

 Survey of resource access control protocols
 Critique of the surveyed protocols

2018/19 UniPD – T. Vardanega Real-Time Systems 181 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 8

Selected readings

 L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time
synchronization
DOI: 10.1109/12.57058

 T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time
Processes
DOI: 10.1109/REAL.1990.128747

2018/19 UniPD – T. Vardanega Real-Time Systems 182 of 538

