2018/19 UniPD - T. Vardanega

3.c Task interactions and blocking (recap, exercises and extensions)

Credits to A. Burns and A. Wellings

| Simple locking /1

■ To illustrate an initial example of priority inversion, consider the execution of the task set shown below, under *simple locking* (with binary semaphores)

Task	Priority	Execution sequence	Release time
A	1 (low)	eQQQQe	0
В	2	ee	2
С	3	eVVe	2
D	4 (high)	eeQVe	4

<u>Legend</u>: e: one unit of execution; Q (or V): one unit of use of resource R_q (or R_v)

2018/19 UniPD - T. Vardanega Real-Time Systems 18

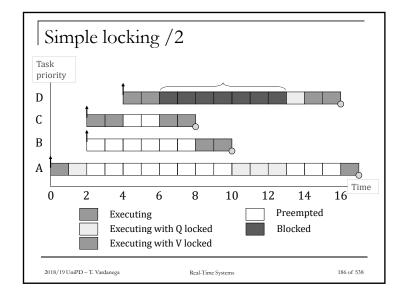
Task interactions and blocking

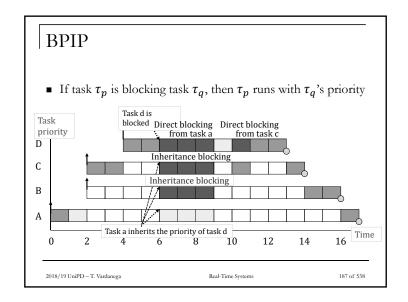
- If a task has to wait for a lower-priority task to complete some required computation before being able to proceed, then the priority model is, in some sense, being undermined
 - □ That task is said to suffer priority inversion
- In that situation, the task waiting for a lowerpriority task is said to be *blocked*
 - □ The blocked state is other than preempted or suspended

2018/19 UniPD - T. Vardanega

Real-Time Systems

184 of 538





Incorporating blocking in response time $R_i = C_i + B_i + I_i$ $R_i = C_i + B_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$ $w_i^{n+1} = C_i + B_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n}{T_j} \right\rceil C_j$

Real-Time Systems

Bounding direct blocking under BPIP

- If the system has $\{r_{j=1,\dots,K}\}$ critical sections that can lead to a task τ_i being blocked under BPIP then the maximum number of times that τ_i can be blocked is K
- The upper bound on the blocking time $B_i(rc)$ for τ_i that contends for K critical sections is

$$B_i(rc) = \sum_{j=1}^{K} use(r_j, i) \times C_{max}(r_j)$$

- $use(r_j,i)=1$ if r_j is used by at least one task $\tau_l\colon\pi_l<\pi_i$ and one task $\tau_h\colon\pi_h\geq\pi_i\mid 0$ otherwise
- The worst case for task τ_i with BPIP is to block for the longest duration of contending use on access to <u>all</u> the resources it needs

2018/19 UniPD - T. Vardanega

Real-Time Systems

100 5 520

Ceiling priority protocols

- Two variants
 - □ Basic Priority Ceiling Protocol (aka "Original CPP")
 - □ Ceiling Priority Protocol (aka "Immediate CPP")
- When using them on a single processor
 - A high-priority task can only be blocked by lower-priority tasks at most once per job
 - Deadlocks are prevented by construction
 - □ Transitive blocking is prevented by construction
 - Mutual exclusive access to resources is ensured by the protocol itself, hence locks are *not* needed

2018/19 UniPD - T. Vardanega

Real-Time Systems

190 of 538

2018/19 UniPD - T. Vardanega

2018/19 UniPD - T. Vardanega

BPCP

- Each task τ_i has an assigned *static* priority
- Each resource r_k has a *static* ceiling attribute defined as the maximum priority of the tasks that may use it
- τ_i has a *dynamic* current priority $\pi_i(t)$ at time t, set to the maximum of its assigned priority and any priorities it has inherited at t from blocking higher-priority tasks
- τ_i can lock a resource r_k iff $\pi_i(t) > max_j(\pi_{r_j})$ for all r_j currently locked (excluding those that τ_i locks itself) at t
 - floor The blocking B_i suffered by au_i is bounded by the longest critical section with ceiling $\pi_{r_k} > \pi_i$
 - $\square B_i = max_{k=1}^K(use(r_k, i) \times C_{max}(r_k))$

2018/19 UniPD - T. Vardanega

Real-Time Systems

191 of 538

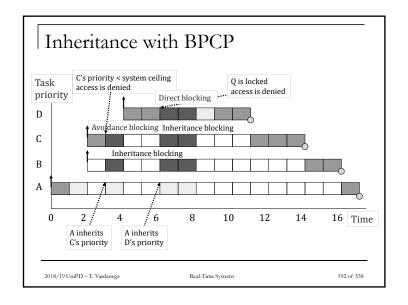
CPP

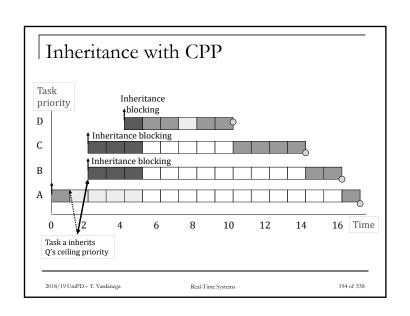
- lacktriangle Each task au_i has an assigned *static* priority
 - Perhaps determined by deadline monotonic assignment
- Each resource r_k has a static *ceiling* attribute defined as the maximum priority of the tasks that may use it
- τ_i has a *dynamic* current priority $\pi_i(t)$ at time t, that is the maximum of its own static priority and the ceiling values of any resources it is currently using
- Any job of that task will only suffer a block at release
 - Once the job starts executing all the resources it needs must be free
 - If they were not then some task would have priority ≥ than the job's hence its execution would be postponed
- Blocking computed as for BPCP

2018/19 UniPD - T. Vardanega

Real-Time Systems

193 of 538





Real-Time Systems

BPCP vs. CPP

- Although the worst-case behavior of the two ceiling priority schemes is identical (from a scheduling viewpoint), there are some points of difference
 - CPP is easier to implement than BPCP as blocking relationships need not be monitored
 - CPP leads to less context switches as blocking occurs prior to job activation
 - CPP requires more priority movements as they happen with all resource usages
 - □ BPCP changes priority only if an actual block has occurred
- CPP is called Priority Protect Protocol in POSIX and Priority Ceiling Emulation in Ada and Real-Time Java

2018/19 UniPD - T. Vardanega

Real-Time Systems

195 of 538

Extending the workload model

- Our workload model so far allows for
 - \square Constrained and implicit deadlines ($D \le T$)
 - Periodic and sporadic tasks
 - □ Aperiodic tasks under some server scheme
 - □ Task interactions with the resulting blocking being (compositionally) factored in the response time equations

2018/19 UniPD - T. Vardanega

Real-Time Systems

196 of 538

Desirable extensions

- Cooperative scheduling
- Release jitter
- Arbitrary deadlines
- Fault tolerance
- Offsets
- Optimal priority assignment

2018/19 UniPD - T. Vardanega

Real-Time Systems

197 of 538

Cooperative scheduling /1

- Full preemption may not always suit critical systems
- *Cooperative* or *deferred-preemption* scheduling splits tasks into (*fixed* or *floating*) slots
 - □ The running task **yield**s the CPU at the end of each such slot
 - □ If no *hp* task is ready then the running task continues
 - \Box The time duration of each such slot is bounded by B_{max}
 - □ Mutual exclusion must use non-preemption (else it breaks)
- Deferred preemption has two important benefits
 - □ It dominates both preemptive and non-preemptive scheduling
 - □ [Each last slot of execution is exempt from interference]

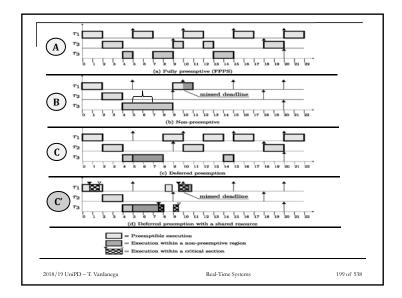
2018/19 UniPD - T. Vardanega

Real-Time Systems

198 of 538

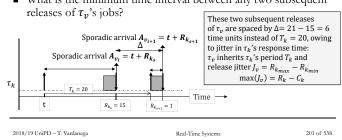
Real-Time Systems

4



Release jitter /1

- A phenomenon that affects precedence-constrained tasks □ Especially under parallelism (hence in distributed systems and multi-cores)
- **Example:** a periodic task τ_k with period $T_k = 20$ releases a sporadic task τ_v at some point of some runs of τ_k 's jobs
- What is the minimum time interval between any two subsequent releases of τ_n 's jobs?



Cooperative scheduling /2

■ Let F_i be the execution time of the *final slot*

$$w_i^{n+1} = B_{MAX} + C_i \left(-F_i \right) + \sum_{j \in hp(i)} \left[\frac{w_i^n}{T_j} \right] C_j$$

■ When the response time equation converges, that is, when $w_i^n = w_i^{n+1}$, the response time is given by

$$R_i = w_i^n + F_i$$

2018/19 UniPD - T. Vardanega

Real-Time System

200 of 538

Release jitter /2

- Task τ_{ν} (see example) released at 0, T J, 2T J, 3T J
- Examination of the derivation of the RTA equation implies that task τ_i will suffer interference from τ_s for $\pi_i < \pi_v$
 - \square Once if $R_i \in [0, T-J)$
 - □ Twice if $R_i \in [T J, 2T J)$
 - □ Thrice if $R_i \in [2T J, 3T J)$
- Higher-priority tasks with release jitter inflict more interference
- □ The response time equation captures that increase potential as $R_i = C_i + B_i + \sum_{j \in hp(i)} \left[\frac{R_i + J_j}{T_i} \right] C_j$
- Periodic tasks can only suffer release jitter if the clock is jittery
 - $\ \square$ In that case the response time of a jittery periodic task τ_p measured relative to the *real* release time becomes $R'_p = R_p + J_p$

2018/19 UniPD - T. Vardanega

Real-Time Systems

202 of 538

Arbitrary deadlines /1

■ The RTA equation must be modified to cater for situations where D > T, in which multiple jobs of the same task compete for execution

$$\omega_i^{n+1}(q) = (q+1)C_i + \sum_{j \in hp(i)} \left[\frac{\omega_i^n(q)}{T_j} \right] C_j$$

- $R_i(q) = \omega_i^n(q) qT_i$
- \blacksquare The number q of additional releases to consider is bounded by the lowest value of $q: R_i(q) \leq T_i$
 - \square $\omega_i(q)$ represents the level-i busy period, which extends as long as qT_i falls within it
- The worst-case response time is then $R_i = max_a R_i(q)$

2018/19 UniPD - T. Vardanega

Real-Time Systems

Arbitrary deadlines /2 q+1 $\omega_i(q)$ T_i The $(q+1)^{th}$ job release of task τ_i falls in the level-*i* busy period, but this *q* is also the last index to consider as the next job release belongs in a different busy period 2018/19 UniPD - T. Vardaness Real-Time Systems 204 of 538

Arbitrary deadlines /3

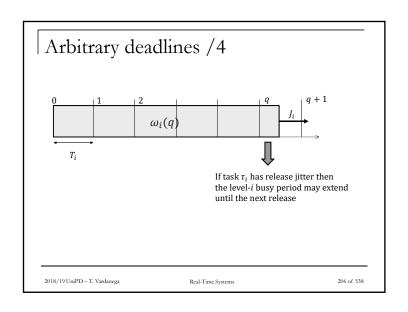
- When the formulation of the RTA equation is combined with the effect of release jitter, two alterations must be made
- First, the interference factor must be increased accordingly

 $\omega_i^{n+1}(q) = B_i + (q+1)C_i + \sum_{j \in ho(i)} \left[\frac{\omega_i^n(q) + J_i}{T_j} \right] C_j$

■ Second, if the task under analysis can suffer release jitter, then two consecutive windows could overlap if (response time plus jitter) were greater than the period $R_i(q) = \omega_i^n(q) - qT_i + J_i$

2018/19 UniPD - T. Vardanega

Real-Time Systems



Real-Time Systems

Offsets

 So far, we assumed all tasks share a common release time (aka, the critical instant)

Task	Т	D	С	R	U
$ au_a$	8	5	4	4	0.5
$ au_b$	20	9	4	8	0.2
$ au_c$	20	10	4	(16)	0.2

Deadline miss!

■ What if we allowed offsets?

Task	T	D	С	О	R
$ au_a$	8	5	4	0	4
$ au_b$	20	9	4	0	8
$ au_c$	20	10	4	10	8

Arbitrary offsets are not tractable with critical-instant analysis hence we cannot use the RTA equation for it!

2018/19 UniPD – T. Vardanega

Real-Time Systems

207 of 538

Non-optimal analysis for offsets /2

- This notional task τ_n has two important properties
 - If it is feasible (when sharing a critical instant with all other tasks) then the
 two real tasks that it represents will meet their deadlines when one is given
 the half-period offset
 - If all lower priority tasks are feasible when suffering interference from τ_n
 then they will stay schedulable when the notional task is replaced by the
 two real tasks (one of which with offset)
- These properties follow from the observation that τ_n always has no less CPU utilization than the two real tasks it subsumes

Task	Т	D	С	R	U
$ au_a$	8	5	4	4	0.5
τ_n	10	10	4	8	0.4

2018/19 UniPD - T. Vardanega

Real-Time Systems

209 of 538

Non-optimal analysis for offsets /1

- Task periods are not entirely arbitrary in reality: they are likely to have some relation to one another
 - ☐ In the previous example two tasks have a common period
 - □ In this case we might give one of such tasks an offset O (tentatively set to $\frac{T}{2}$, as long as $O + D \le T$) and then analyze the resulting system with a transformation that removes the offset so that critical-instant analysis continues to apply
- Doing so with the example, tasks τ_b , τ_c (τ_c with $O_c = \frac{T_c}{2}$) are replaced by a single *notional* task with $T_n = T_c O_c$, $C_n = \max(C_b, C_c) = 4$, $D_n = T_n$ and no offset
 - □ This technique aids in the determination of a "good" offset
 - □ The RTA equation on slide 151 shows how to consider offsets, but determining the worst case with them is an intractable problem

2018/19 UniPD - T. Vardanega

Real-Time Systems

208 of 538

| Notional task parameters

$$T_n = \frac{T_a}{2} = \frac{T_b}{2}$$
 Tasks τ_a and else we would

Tasks τ_a and τ_b have the same period else we would use $Min(T_a, T_b)$ for greater pessimism

$$C_n = Max(C_a, C_b)$$

$$D_n = Min(D_a, D_b)$$

$$P_n = Max(P_a, P_b)$$
 Priority relations

This strategy can be extended to handle more than two tasks

2018/19 UniPD - T. Vardanega

Real-Time Systems

210 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Priority assignment (simulated annealing)

■ Theorem: If task p is assigned the lowest priority and is feasible then, if a feasible priority ordering exists for the complete task set, an ordering exists with task p assigned the lowest priority

2018/19 UniPD - T. Vardanega

Real-Time Systems

211 of 538

Sustainability [Baruah & Burns, 2006]

- Extends the notion of predictability for singlecore systems to wider range of relaxations of workload parameters
 - Shorter execution times
 - Longer periods
 - Less release jitter
 - Later deadlines
- Any such relaxation should preserve schedulability
 - Much like what predictability does for increase
- A sustainable scheduling algorithm does not suffer scheduling anomalies

2018/19 UniPD - T. Vardanega

Real-Time Systems

212 of 538

Summary

- Completing the survey and critique of resource access control protocols using some examples
- Relevant extensions to the simple workload model
- A simulated-annealing heuristic for the assignment of priorities

2018/19 UniPD - T. Vardanega

Real-Time Systems

213 of 538

Selected readings

A. Baldovin, E. Mezzetti, T. Vardanega
 Limited preemptive scheduling of non-independent task sets
 DOI: 10.1109/EMSOFT.2013.6658596

2018/19 UniPD - T. Vardanega

Real-Time Systems

214 of 538

Real-Time Systems