2018/19 UniPD

- T. Vardanega

3.c Task interactions and blocking
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings
2 RTS /6

‘ Task interactions and blocking

m If a task has to wait for a lower-priority task to
complete some required computation before being
able to proceed, then the priority model is, in some
sense, being undermined
0 That task is said to suffer priority inversion

m In that situation, the task waiting for a lower-
priority task is said to be blocked
0 The blocked state is other than preempted ot suspended

2018/19 UniPD —T. Vardanega Real-Time Systems 184 of 538

Simple locking /1

m To illustrate an initial example of priority inversion,
consider the execution of the task set shown below,
under sizple locking (with binary semaphores)

A 1 (low) cQQQQe 0
B 2 ce 2
C 3 eVVe 2
D 4 (high) eeQVe 4

Legend: e: one unit of execution; Q (or V): one unit of use of resource R, (or R,)

2018/19 UniPD - T. Vardanega Real-Time Systems 185 of 538

Real-Time Systems

‘ Simple locking /2

Task
priority
D ':Ii_ililjJ
1
C S N) S
1
B O O
A N N N N N I ' N
Time
0 2 4 6 8 10 12 14
] Executing [] Preempted
l:l Executing with Q locked - Blocked
|:| Executing with V locked
2018/19 UniPD —T. Vardanega Real-Time Systems 186 of 538

19/03/2019

2018/19 UniPD -

T. Vardanega

BPIP

. . . e
m If task T, is blocking task T, then T;, runs with 7,’s priority

‘ Bounding direct blocking under BPIP

m [f the system has {Tj=1,-.,K} critical sections that can lead to a task
7; being blocked under BPIP then the maximum number of
times that T; can be blocked is K

m The upper bound on the blocking time B;(rc) for T; that
contends for K critical sle(ctions is

Bi(re) =)" use(r;,) X Cax ;)
Jj=1
a use(rj, i) = 1if 7j is used by at least one task 7;:7; < 7; and one task
TR 2 ;| 0 otherwise
O Crmax(1y) denotes the duration of use of 7j by any such task T;
m The worst case for task 7; with BPIP is to block for the longest
duration of contending use on access to all the resources it needs

2018/19 UniPD —T. Vardanega Real-Time Systems 188 of 538

Taskd is
Ta'sk. blocked Direct blocking Direct blocking
priority . fromtaska from task c
D
Inheritance blocking
C | _
Inheritance blocking
B L L LA L [T T)
A |I|i'||||||||||_$
Task a inherlts the priority of task d Time
0 2 4 6 8 10 12 14 16
2018/19 UniPD —T. Vardanega Real-Time Systems 187 of 538
Incorporating blocking in response time
R=C+B+I
R
R =C,+B, + —=
fefw(r) T;
w'
+1
w' =C+B + —C,
Je ,v(r) Tr
2018/19 UniPD —T. Vardanega Real-Time Systems 189 of 538

| Ceiling priority protocols

m Two variants
Q Basic Priority Ceiling Protocol (aka “Original CPP”)
a Ceiling Priority Protocol (aka “Immediate CPP”)

m When using them on a single processor

a A high-priority task can only be blocked by lower-priority
tasks at most once pet job

o Deadlocks are prevented by construction

o Transitive blocking is prevented by construction

0 Mutual exclusive access to tesources is ensured by the
protocol itself, hence locks are 70f needed

2018/19 UniPD —T. Vardanega Real-Time Systems 190 of 538

Real-Time Systems

19/03/2019

2018/19 UniPD - T. Vardanega

| BPCP

m Each task 7; has an assigned stazic priority

m Each resource 1y, has a szatic ceiling attribute defined as the
maximum priority of the tasks that may use it

m (T; has a dynamic cutrent priotity 1; (t) at time t, set to the
maximum of its assigned priority and any priorities it has
inherited at t from blocking higher-priority tasks

m 7; can lock a resource 7y iff 7r; () > max; (T[r].) for all 1;
currently locked (excluding those that 7; locks itself) at t
o The blocking B; suffered by 7; is bounded by the longest critical
section with ceiling 7, > 1;
o B = maxlf:l(use(rk: D) X Crax (1))

2018/19 UniPD —T. Vardanega Real-Time Systems 191 of 538

 Inheritance with BPCP

Task C’s priority < system ceiling Qis locked

o access is denied
priority Direct blocking ***

D e T T

access is denied

Avo;:dance blocking Inheritance blocking
c | B [B T]

Inheritance blocking
B T -

A inherits A inherits
C’s priority D’s priority

2018/19 UniPD —T. Vardanega Real-Time Systems

192 of 538

|cpp

m Each task 7; has an assigned szazic priority
0 Perhaps determined by deadline monotonic assignment

m Each resoutce 1 has a static cez/ing attribute defined as the
maximum priority of the tasks that may use it

m (T; has a dynamic current priority m;(t) at time ¢, that is the
maximum of its own static priority and the ceiling values of
any resources it is currently using

m Any job of that task will only suffer a block at release
0 Once the job starts executing all the resources it needs must be free

o If they were not then some task would have priority = than the job’s
hence its execution would be postponed

m Blocking computed as for BPCP

2018/19 UniPD - T. Vardanega Real-Time Systems 193 of 538

Real-Time Systems

 Inheritance with CPP

Task
priority Inheritance

blocking
b tlilili@

Inheritance blocking
¢ — [[[T]

Inheritance blocking
o) T
[]

LA O N N 1
|

0 !z 4 6 8 10

Task a inherits
Q’s ceiling priority

2018/19 UniPD —T. Vardanega Real-Time Systems

194 of 538

19/03/2019

2018/19 UniPD - T. Vardanega

| BPCP vs. CPP

m Although the worst-case behavior of the two ceiling priority
schemes is identical (from a scheduling viewpoint), there are
some points of difference
o CPP is easier to implement than BPCP as blocking relationships
need not be monitored

o CPP leads to /ess context switches as blocking occurs prior to job
activation

o CPP requires more priority movements as they happen with a//
resource usages

o BPCP changes priority only if an actual block has occurred

m CPP is called Priority Protect Protocol in POSIX and Priority Ceiling
Emmnlation in Ada and Real-Time Java

2018/19 UniPD —T. Vardanega Real-Time Systems 195 of 538

‘ Extending the workload model

m Our workload model so far allows for
o Constrained and implicit deadlines (D < T)
a Periodic and sporadic tasks
o Aperiodic tasks under some server scheme

o Task interactions with the resulting blocking being
(compositionally) factored in the response time equations

2018/19 UniPD —T. Vardanega Real-Time Systems 196 of 538

‘ Desirable extensions

m Cooperative scheduling

Release jitter

Arbitrary deadlines
Fault tolerance
Offsets

Optimal priority assighment

2018/19 UniPD - T. Vardanega Real-Time Systems 197 of 538

Real-Time Systems

| Coopetrative scheduling /1

m Full preemption may not always suit critical systems

m Cooperative or deferred-preemption scheduling
splits tasks into (fixed ot floating) slots
0 The running task yields the CPU at the end of each such slot
a If no hp task is ready then the running task continues
0 The time duration of each such slot is bounded by By, g,
0 Mutual exclusion must use non-preemption (else it breaks)

m Deferred preemption has two important benefits

o It dominates both preemptive and non-preemptive scheduling

a (Each last slot of execution is exempt from interference)]

2018/19 UniPD —T. Vardanega Real-Time Systems 198 of 538

19/03/2019

2018/19 UniPD - T. Vardanega

\®:§:|:l:| g e
Taiolllm m[llmllll | I

1
1 3 3 4 8 & 7T B D 0 1 13 13 14 18 10 17 18 10 W m m

fa) Pully (Eres)
i — 1 1 1
= e =
" '_‘_'_—L_‘_l T T e b e e e .L.l,, =

() Non prosmptive
[1 4 cat3 [—
@ T | i

B 1 % 3 4 B 6 T B 0 10 11 17 I3 14 18 16 17 8 W0 W W
{c) Daforrod preemption

@nlﬂu T owm 1 T

IR E b

() Deferved precmptbon with o shared resoures
[= Prommptibis axesution

~ Execution within o non-presmptive regon
= Exocution within n critical section

2018/19 UniPD —T. Vardanega Real-Time Systems 199 of 538

‘ Cooperative scheduling /2

m Let F; be the execution time of the final slot

ml H"‘,- v
w' =8B, +C, + >

i . ; I & i
Jehp(i) 1}.

m When the response time equation converges, that is,

when w* Wn+1 the response time is given by

R =w"+

1

2018/19 UniPD —T. Vardanega Real-Time Systems 200 of 538

Release jitter /1

m A phenomenon that affects precedence-constrained tasks
0 Especially under parallelism (hence in distributed systems and multi-cores)
» Example: a periodic task Ty with period Ty, = 20 releases a
sporadic task T;, a some point of some runs of Tj’s jobs
m What is the minimum time interval between any two subsequent

relea f T,’s jobs?
cleases ot Ty s]ObS These two subsequent releases

of 7, are spaced by A=21—-15=6

Sporadic arrival g”“l =t+Ry,,, |time unitsinstead of T), = 20, owing
-— 2 to jitter in 7;,’s response time:
Sporadic arrival A, = ¢ + Ry, 1, inherits 7;’s period Tj, and
4 m —
—)] — release jitter J, = Ry, — Rk,
T] max(J,) = Ry — Gy
k T, = 20
L f } Time —>
| t Ry, =15 Ry, =1
2018/19 UniPD — T. Vardancga Real-Time Systems 201 of 538

Real-Time Systems

Release jitter /2

m Task 7, (see example) released at 0,T — J,2T — J,3T —]
m Examination of the derivation of the RTA equation implies that
task 7; will suffer interference from 7 for m; < m,,
o OnceifR; € [0,T —]))
o Twice if R; € [T —J,2T —)
0 Thrice if R; € [2T — J,3T =)
m Higher-priority tasks with release jitter inflict more interference
0 The response time equation captures that increase potential as
Ri = Ci+ Bi + Xjenp RLT_J;]]] G
m Periodic tasks can only suffer release jitter if the clock is jittery

o In that case the response time of a jittery periodic task T;, measured
relative to the rea/ release time becomes R'y = Ry, +]

2018/19 UniPD —T. Vardanega Real-Time Systems 202 of 538

19/03/2019

2018/19 UniPD - T. Vardanega 19/03/2019

‘ Arbitrary deadlines /1 ‘ Arbitrary deadlines /2

m The RTA equation must be modified to cater for

situations where D > T, in which multiple jobs of the 9 L 2 4 i+t
same task compete for execution wi(q
n L
5 0P @) = (@ + DG+ e [4Y] G — 1
a Ri(@) = w}'(a) ~ qT; i

.. . . th .
m The number ¢ of additional releases to consider is The (q + 1)™ job release of task ; falls in
the level-i busy period, but this q is also the

bounded by the lowest value of q: Ri (q) < Ti last index to consider as the next job release

o w;(q) represents the level-i busy petiod, which extends as belongs in a different busy period
long as qT; falls within it

m The worst-case response time is then R; = max4R;(q)

2018/19 UniPD —T. Vardanega Real-Time Systems 203 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 204 of 538

‘ Arbitrary deadlines /3 Arbitrary deadlines /4

m When the formulation of the RT'A equation is

. . .. 1 2 +1
combined with the effect of release jitter, two > E] I
alterations must be made w;i(q L

m First, the interference factor must be increased
accordingly : ﬂ
n+1 wln (@ +]; Ti
o (@ =B+ (q@+1DC + — |G
. . T] If task 7; has release jitter then
jehp(

. . the level-i busy period may extend
m Sccond, if the task under analysis can suffer release until the next release

jitter, then two consecutive windows could overlap if
(response time plus jitter) were greater than the period

Ri(@) = wi'(q) — qT; +];

2018/19 UniPD —T. Vardanega Real-Time Systems 205 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 206 of 538

Real-Time Systems 6

2018/19 UniPD - T. Vardanega 19/03/2019

| Offsets | Non-optimal analysis for offsets /1

m So far, we assumed all tasks share a common release time m Task periods are not entirely arbitrary in reality: they are
(aka, the critical instan?) likely to have some relation to one another
o In the previous example two tasks have a common period
T 3 5 4 4 05 o In this case we might give one of such tasks an offset O (tentatively
- 20 9 4 3 02 setto -, as long as O + D < T) and then analyze the resulting

system with a transformation that removes the offset so that

Te 2 0 4 @ 0.2 Deadline miss! critical-instant analysis continues to apply

m What if we allowed offsets?

. . . T,
m Doing so with the example, tasks Tp, T, (T, with O, = ;C)

Arbitrary offsets are are replaced by a single notional task with Ty = T, — O,
not tractable with C _ C, C i 4 _
Ta 8 5 4 0 4 critical-instant n - maX(b, C) -5 Dn - Tn and no offset
Ty 20 9 4 0 8 analysis hence we o This technique aids in the determination of a “good” offset
he RTA . . .
7. 20 10 4 10 8 Z:Z;Etoflsfeo ; iil 0 The RTA equation on slide 151 shows how to consider offsets , but

determining the worst case with them is an intractable problem

2018/19 UniPD —T. Vardanega Real-Time Systems 207 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 208 of 538

| Non-optimal analysis for offsets /2 Notional task parameters

m This notional task T, has two important properties T T)

o Ifitis feasible (when sharing a critical instant with all other tasks) then the j:, =—2-_b Tasks 7, and 7, have ,the same period L
two real tasks that it represents will meet their deadlines when one is given 2 2 else we would use Min(Tg, Tp,) for greater pessimism
the half-period offset _

o Ifall lower priority tasks are feasible when suffering interference from 7, C” - Max((‘ﬂ ? Cb)
then they will stay schedulable when the notional task is replaced by the _ :
two real tasks (one of which with offset) I)H - M.'ﬁ(i‘)a ? ‘03?)

m These properties follow from the observation that T, always has R: = Max(Pa ,]1) Priority relations

no less CPU utilization than the two real tasks it subsumes

T 8 5 4 4 05 ‘ This strategy can be extended to handle more than two tasks
Tn 10 10 4 8 0.4
2018/19 UniPD - T. Vardanega Real-Time Systems 209 of 538 2018/19 UniPD —T. Vardanega Real-Time Systems 210 of 538

Real-Time Systems 7

2018/19 UniPD - T. Vardanega

‘ Priority assignment (simulated annealing)

m Theorem: If task P is assigned the lowest priority and is feasible then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task P assigned the lowest priority

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is
begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);

Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;
end loop;
exit when not OK; -- failed to find a schedulable task
end loop;

end Assign_Pri;

2018/19 UniPD —T. Vardanega Real-Time Systems 211 of 538

‘ Sustainability [Baruah & Burns, 2000]

m Extends the notion of predictability for singlecore systems
to wider range of relaxations of workload parameters
o Shortter execution times
o Longer periods
0 Less release jitter
0 Later deadlines
m Any such relaxation should preserve schedulability
0 Much like what predictability does for increase
m A sustainable scheduling algorithm does not suffer
scheduling anomalies

2018/19 UniPD —T. Vardanega Real-Time Systems 212 of 538

‘ Summary

= Completing the survey and critique of resource access
control protocols using some examples

m Relevant extensions to the simple workload model

m A simulated-annealing heuristic for the assignment of
priorities

2018/19 UniPD - T. Vardanega Real-Time Systems 213 of 538

‘ Selected readings

m A. Baldovin, E. Mezzetti, T. Vardanega
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596

2018/19 UniPD —T. Vardanega Real-Time Systems 214 of 538

Real-Time Systems

19/03/2019

