
2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 1

3.c Task interactions and blocking
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings

Task interactions and blocking

 If a task has to wait for a lower-priority task to
complete some required computation before being
able to proceed, then the priority model is, in some
sense, being undermined
 That task is said to suffer priority inversion

 In that situation, the task waiting for a lower-
priority task is said to be blocked
 The blocked state is other than preempted or suspended

2018/19 UniPD – T. Vardanega Real-Time Systems 184 of 538

Simple locking /1

 To illustrate an initial example of priority inversion,
consider the execution of the task set shown below,
under simple locking (with binary semaphores)

2018/19 UniPD – T. Vardanega Real-Time Systems 185 of 538

Task Priority Execution sequence Release time

A 1 (low) eQQQQe 0

B 2 ee 2

C 3 eVVe 2

D 4 (high) eeQVe 4

Legend: e: one unit of execution; Q (or V): one unit of use of resource 𝑅௤ (or 𝑅௩)

Simple locking /2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Task
priority

A

B

C

D

0 2 4 6 8 10 12 14 16
Time

2018/19 UniPD – T. Vardanega Real-Time Systems 186 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 2

BPIP

 If task 𝜏௣ is blocking task 𝜏௤, then 𝜏௣ runs with 𝜏௤’s priority

2018/19 UniPD – T. Vardanega

0 2 4 6 8 10 12 14 16

A

B

C

D

Task
priority

Time

Inheritance blocking

Direct blocking
from task c

Task d is
blocked

Task a inherits the priority of task d

Direct blocking
from task a

Inheritance blocking

Real-Time Systems 187 of 538

Bounding direct blocking under BPIP

 If the system has 𝑟௝ୀଵ,..,௄ critical sections that can lead to a task
𝜏௜ being blocked under BPIP then the maximum number of
times that 𝜏௜ can be blocked is 𝐾

 The upper bound on the blocking time 𝐵௜ሺ𝑟𝑐ሻ for 𝜏௜ that
contends for 𝐾 critical sections is

𝐵௜ 𝑟𝑐 ൌ ෍ 𝑢𝑠𝑒ሺ𝑟௝, 𝑖ሻ ൈ 𝐶௠௔௫ሺ𝑟௝ሻ
௄

௝ୀଵ
 𝑢𝑠𝑒ሺ𝑟௝, 𝑖ሻ ൌ 1 if 𝑟௝ is used by at least one task 𝜏௟: 𝜋௟ ൏ 𝜋௜ and one task

𝜏௛: 𝜋௛ ൒ 𝜋௜ | 0 otherwise
 𝐶௠௔௫ሺ𝑟௝ሻ denotes the duration of use of 𝑟௝ by any such task 𝜏௟

 The worst case for task 𝜏௜ with BPIP is to block for the longest
duration of contending use on access to all the resources it needs

2018/19 UniPD – T. Vardanega Real-Time Systems 188 of 538

Incorporating blocking in response time

2018/19 UniPD – T. Vardanega Real-Time Systems 189 of 538

Ceiling priority protocols

 Two variants
 Basic Priority Ceiling Protocol (aka “Original CPP”)
 Ceiling Priority Protocol (aka “Immediate CPP”)

 When using them on a single processor
 A high-priority task can only be blocked by lower-priority

tasks at most once per job
 Deadlocks are prevented by construction
 Transitive blocking is prevented by construction
 Mutual exclusive access to resources is ensured by the

protocol itself, hence locks are not needed

2018/19 UniPD – T. Vardanega Real-Time Systems 190 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 3

BPCP

 Each task 𝜏௜ has an assigned static priority
 Each resource 𝑟௞ has a static ceiling attribute defined as the

maximum priority of the tasks that may use it
 𝜏௜ has a dynamic current priority 𝜋௜ 𝑡 at time 𝑡, set to the

maximum of its assigned priority and any priorities it has
inherited at 𝑡 from blocking higher-priority tasks

 𝜏௜ can lock a resource 𝑟௞ iff 𝜋௜ 𝑡 ൐ 𝑚𝑎𝑥௝ሺ𝜋௥ೕሻ for all 𝑟௝
currently locked (excluding those that 𝜏௜ locks itself) at 𝑡
 The blocking 𝐵௜ suffered by 𝜏௜ is bounded by the longest critical

section with ceiling 𝜋௥ೖ ൐ 𝜋௜

 𝐵௜ ൌ 𝑚𝑎𝑥௞ୀଵ
௄ ሺ𝑢𝑠𝑒 𝑟௞, 𝑖 ൈ 𝐶௠௔௫ 𝑟௞ ሻ

2018/19 UniPD – T. Vardanega Real-Time Systems 191 of 538

Inheritance with BPCP

2018/19 UniPD – T. Vardanega Real-Time Systems 192 of 538

A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

C’s priority < system ceiling
access is denied

Direct blocking

A inherits
D’s priority

Inheritance blocking

Q is locked
access is denied

A inherits
C’s priority

Avoidance blocking

CPP

 Each task 𝜏௜ has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource 𝑟௞ has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

 𝜏௜ has a dynamic current priority 𝜋௜ 𝑡 at time 𝑡, that is the
maximum of its own static priority and the ceiling values of
any resources it is currently using

 Any job of that task will only suffer a block at release
 Once the job starts executing all the resources it needs must be free
 If they were not then some task would have priority ≥ than the job’s

hence its execution would be postponed
 Blocking computed as for BPCP

2018/19 UniPD – T. Vardanega Real-Time Systems 193 of 538

Inheritance with CPP

2018/19 UniPD – T. Vardanega

A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

Task a inherits
Q’s ceiling priority

Real-Time Systems 194 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 4

BPCP vs. CPP

 Although the worst-case behavior of the two ceiling priority
schemes is identical (from a scheduling viewpoint), there are
some points of difference
 CPP is easier to implement than BPCP as blocking relationships

need not be monitored
 CPP leads to less context switches as blocking occurs prior to job

activation
 CPP requires more priority movements as they happen with all

resource usages
 BPCP changes priority only if an actual block has occurred

 CPP is called Priority Protect Protocol in POSIX and Priority Ceiling
Emulation in Ada and Real-Time Java

2018/19 UniPD – T. Vardanega Real-Time Systems 195 of 538

Extending the workload model

 Our workload model so far allows for
 Constrained and implicit deadlines (𝐷 ൑ 𝑇)
 Periodic and sporadic tasks
 Aperiodic tasks under some server scheme
 Task interactions with the resulting blocking being

(compositionally) factored in the response time equations

2018/19 UniPD – T. Vardanega Real-Time Systems 196 of 538

Desirable extensions

 Cooperative scheduling
 Release jitter
 Arbitrary deadlines
 Fault tolerance
 Offsets
 Optimal priority assignment

2018/19 UniPD – T. Vardanega Real-Time Systems 197 of 538

Cooperative scheduling /1

 Full preemption may not always suit critical systems
 Cooperative or deferred-preemption scheduling

splits tasks into (fixed or floating) slots
 The running task yields the CPU at the end of each such slot
 If no ℎ𝑝 task is ready then the running task continues
 The time duration of each such slot is bounded by 𝐵௠௔௫
 Mutual exclusion must use non-preemption (else it breaks)

 Deferred preemption has two important benefits
 It dominates both preemptive and non-preemptive scheduling
 Each last slot of execution is exempt from interference

2018/19 UniPD – T. Vardanega Real-Time Systems 198 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 5

2018/19 UniPD – T. Vardanega

A

B

C

C’

Real-Time Systems 199 of 538

 Let 𝐹௜ be the execution time of the final slot

 When the response time equation converges, that is,
when 𝑤௜

௡ ൌ 𝑤௜
௡ାଵ, the response time is given by

Cooperative scheduling /2

2018/19 UniPD – T. Vardanega Real-Time Systems 200 of 538

Release jitter /1

 A phenomenon that affects precedence-constrained tasks
 Especially under parallelism (hence in distributed systems and multi-cores)

 Example: a periodic task 𝜏௞ with period 𝑇௞ ൌ 20 releases a
sporadic task 𝜏௩ at some point of some runs of 𝜏௞ ’s jobs

 What is the minimum time interval between any two subsequent
releases of 𝜏௩’s jobs?

Time

𝜏௞

Sporadic arrival 𝑨𝒗𝒊 ൌ 𝒕 ൅ 𝑹𝒌𝒔

These two subsequent releases
of 𝜏௩ are spaced by ∆ൌ 21 െ 15 ൌ 6
time units instead of 𝑇௞ ൌ 20, owing
to jitter in 𝜏௞’s response time:
𝜏௩ inherits 𝜏௞’s period 𝑇௞ and
release jitter 𝐽௩ ൌ 𝑅௞೘ೌೣ െ 𝑅௞೘೔೙

max 𝐽௩ ൌ 𝑅௞ െ 𝐶௞
𝑇௞ ൌ 20

Sporadic arrival 𝑨𝒗𝒊శ𝟏 ൌ 𝒕 ൅ 𝑹𝒌𝒔శ𝟏

t 𝑅௞ೞ ൌ 15 𝑅௞ೞశభ ൌ 1

2018/19 UniPD – T. Vardanega Real-Time Systems 201 of 538

∆

 Task 𝜏௩ (see example) released at 0, 𝑇 െ 𝐽, 2𝑇 െ 𝐽, 3𝑇 െ 𝐽
 Examination of the derivation of the RTA equation implies that

task 𝜏௜ will suffer interference from 𝜏௦ for 𝜋௜ ൏ 𝜋௩
 Once if 𝑅௜ ∈ ሾ0, 𝑇 െ 𝐽ሻ
 Twice if 𝑅௜ ∈ ሾ𝑇 െ 𝐽, 2𝑇 െ 𝐽ሻ
 Thrice if 𝑅௜ ∈ ሾ2𝑇 െ 𝐽, 3𝑇 െ 𝐽ሻ

 Higher-priority tasks with release jitter inflict more interference
 The response time equation captures that increase potential as

𝑅௜ ൌ 𝐶௜ ൅ 𝐵௜ ൅ ∑ ோ೔ା௃ೕ
்ೕ

𝐶௝௝∈௛௣ሺ௜ሻ

 Periodic tasks can only suffer release jitter if the clock is jittery
 In that case the response time of a jittery periodic task 𝜏௣ measured

relative to the real release time becomes 𝑅′௣ ൌ 𝑅௣ ൅ 𝐽௣

Release jitter /2

2018/19 UniPD – T. Vardanega Real-Time Systems 202 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 6

Arbitrary deadlines /1

 The RTA equation must be modified to cater for
situations where 𝐷 ൐ 𝑇, in which multiple jobs of the
same task compete for execution
 𝜔௜

௡ାଵ 𝑞 ൌ 𝑞 ൅ 1 𝐶௜ ൅ ∑ ఠ೔
೙ሺ௤ሻ
்ೕ

𝐶௝௝∈௛௣ሺ௜ሻ

 𝑅௜ 𝑞 ൌ 𝜔௜
௡ 𝑞 െ 𝑞𝑇௜

 The number 𝑞 of additional releases to consider is
bounded by the lowest value of 𝑞:𝑅௜ሺ𝑞ሻ ൑ 𝑇௜
 𝜔௜ሺ𝑞ሻ represents the level-i busy period, which extends as

long as 𝑞𝑇௜ falls within it

 The worst-case response time is then 𝑅௜ ൌ 𝑚𝑎𝑥௤𝑅௜ሺ𝑞ሻ

2018/19 UniPD – T. Vardanega Real-Time Systems 203 of 538

Arbitrary deadlines /2

2018/19 UniPD – T. Vardanega

𝜔௜ሺ𝑞ሻ

𝑇௜

0 1 2 𝑞

The ሺ𝑞 ൅ 1ሻ௧௛ job release of task 𝜏௜ falls in
the level-𝑖 busy period, but this 𝑞 is also the
last index to consider as the next job release
belongs in a different busy period

𝑞 ൅ 1

Real-Time Systems 204 of 538

Arbitrary deadlines /3

 When the formulation of the RTA equation is
combined with the effect of release jitter, two
alterations must be made

 First, the interference factor must be increased
accordingly

𝜔௜
௡ାଵ 𝑞 ൌ 𝐵௜ ൅ 𝑞 ൅ 1 𝐶௜ ൅ ෍

𝜔௜
௡ 𝑞 ൅ 𝑱𝒊

𝑇௝
𝐶௝

௝∈௛௣ ௜
 Second, if the task under analysis can suffer release

jitter, then two consecutive windows could overlap if
(response time plus jitter) were greater than the period

𝑅௜ 𝑞 ൌ 𝜔௜
௡ 𝑞 െ 𝑞𝑇௜ ൅ 𝑱𝒊

2018/19 UniPD – T. Vardanega Real-Time Systems 205 of 538

Arbitrary deadlines /4

2018/19 UniPD – T. Vardanega

𝜔௜ሺ𝑞ሻ

𝑇௜

0 1 2 𝑞

If task 𝜏௜ has release jitter then
the level-𝑖 busy period may extend
until the next release

𝑞 ൅ 1
𝐽௜

Real-Time Systems 206 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 7

Offsets

 So far, we assumed all tasks share a common release time
(aka, the critical instant)

 What if we allowed offsets?
Arbitrary offsets are
not tractable with
critical-instant
analysis hence we
cannot use the RTA
equation for it!

2018/19 UniPD – T. Vardanega

Task T D C R U

𝜏௔ 8 5 4 4 0.5

𝜏௕ 20 9 4 8 0.2

𝜏௖ 20 10 4 16 0.2 Deadline miss!

Task T D C O R

𝜏௔ 8 5 4 0 4

𝜏௕ 20 9 4 0 8

𝜏௖ 20 10 4 10 8

Real-Time Systems 207 of 538

Non-optimal analysis for offsets /1

 Task periods are not entirely arbitrary in reality: they are
likely to have some relation to one another
 In the previous example two tasks have a common period
 In this case we might give one of such tasks an offset 𝑂 (tentatively

set to ்
ଶ

, as long as 𝑂 ൅ 𝐷 ൑ 𝑇) and then analyze the resulting
system with a transformation that removes the offset so that
critical-instant analysis continues to apply

 Doing so with the example, tasks 𝜏௕, 𝜏௖ (𝜏௖ with 𝑂௖ ൌ ೎்
ଶ

)
are replaced by a single notional task with 𝑇௡ ൌ 𝑇௖ െ 𝑂௖,
𝐶௡ ൌ max ሺ𝐶௕, 𝐶௖ሻ ൌ 4, 𝐷௡ ൌ 𝑇௡ and no offset
 This technique aids in the determination of a “good” offset
 The RTA equation on slide 151 shows how to consider offsets , but

determining the worst case with them is an intractable problem

2018/19 UniPD – T. Vardanega Real-Time Systems 208 of 538

Non-optimal analysis for offsets /2

 This notional task 𝜏௡ has two important properties
 If it is feasible (when sharing a critical instant with all other tasks) then the

two real tasks that it represents will meet their deadlines when one is given
the half-period offset

 If all lower priority tasks are feasible when suffering interference from 𝜏௡
then they will stay schedulable when the notional task is replaced by the
two real tasks (one of which with offset)

 These properties follow from the observation that 𝜏௡ always has
no less CPU utilization than the two real tasks it subsumes

2018/19 UniPD – T. Vardanega

Task T D C R U
𝜏௔ 8 5 4 4 0.5
𝜏௡ 10 10 4 8 0.4

Real-Time Systems 209 of 538

Notional task parameters

2018/19 UniPD – T. Vardanega

This strategy can be extended to handle more than two tasks

Tasks 𝜏௔ and 𝜏௕ have the same period
else we would use 𝑀𝑖𝑛ሺ𝑇௔, 𝑇௕ሻ for greater pessimism

Priority relations

Real-Time Systems 210 of 538

2018/19 UniPD - T. Vardanega 19/03/2019

Real-Time Systems 8

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is

begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

 Theorem: If task p is assigned the lowest priority and is feasible then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task p assigned the lowest priority

2018/19 UniPD – T. Vardanega Real-Time Systems 211 of 538

Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for singlecore systems
to wider range of relaxations of workload parameters
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 Any such relaxation should preserve schedulability
 Much like what predictability does for increase

 A sustainable scheduling algorithm does not suffer
scheduling anomalies

2018/19 UniPD – T. Vardanega Real-Time Systems 212 of 538

Summary

 Completing the survey and critique of resource access
control protocols using some examples

 Relevant extensions to the simple workload model
 A simulated-annealing heuristic for the assignment of

priorities

2018/19 UniPD – T. Vardanega Real-Time Systems 213 of 538

Selected readings

 A. Baldovin, E. Mezzetti, T. Vardanega
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596

2018/19 UniPD – T. Vardanega Real-Time Systems 214 of 538

