
2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 1

4.a Programming real-time
systems (in Ada)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

216 of 538

Workload model /1
 Static set of tasks

– Ada: tasks declared at library level (i.e, the outermost
scope), so that they have the longest lifetime

 Tasks issue jobs repeatedly
– Task duty cycle: activation, execution, suspension

 Single activation source per task
 Real-time attributes

– Release time
 Periodic: at every T time units
 Sporadic: at least T between any two subsequent releases

– Execution
 Worst case execution time (WCET) assumed to be known
 Deadline: D time units after release

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

217 of 538

Workload model /2
 Task communication

– Shared variables with mutually exclusive access
 Ada: protected objects with procedures and functions

– No conditional synchronization
 Other than for sporadic task activation
 Ada: PO with a single entry

 Scheduling model
– Fixed-priority pre-emptive

 Ada: FIFO within priorities
 Access protocol for shared objects

– Ceiling priority protocol
 Ada: Ceiling_Locking policy

For optimal determinism

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /1

218 of 538

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);

private
The_Integer : Integer := Initial_Value;

end Shared_Integer;
protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent Read

Mutually-exclusive Write

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 2

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /2

219 of 538

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /3

220 of 538

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /4

221 of 538

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Guards

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

222 of 538

Language profiling
 Enforced by means of a configuration pragma

pragma Profile (Ravenscar);

 Equivalent to a set of Ada restrictions, plus three
additional configuration pragmas
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

pragma Detect_Blocking;

 ISO/IEC TR 24718, Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems
See «Per approfondire 8»

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 3

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

223 of 538

Ravenscar restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

224 of 538

Restriction checking
 Almost all of the Ravenscar profile restrictions

are checked at compile time
 A few of them can be checked only at run time

– Potentially blocking operations in PO bodies
– Priority ceiling violation
– More than one call queued on a protected entry or a

suspension object
– Task termination

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Potentially blocking operations
 Protected entry call statement
 Delay until statement
 Call on a subprogram whose body contains a

potentially blocking operation
 Pragma Detect_Blocking requires detection of

potentially blocking operations
– Exception Program_Error raised if detected

 Signifying a grave violation of good conduct
– Blocking need not be detected if it occurs in the

domain of a call to a foreign language (e.g. into C
embedded in an Ada procedure)

225 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other run-time checks
 Priority ceiling violation
 More than one call waiting on a protected entry or a

suspension object
– Program_Error must be raised in both cases

 Signaling violation of analysis assumptions
 Task termination

– Program behavior must be documented
– Possible termination behaviors include

 Silent termination
 Holding the task in a pre-terminated state
 Call of an application-defined termination handler defined with

the Ada.Task_Termination package (C.7.3)

226 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 4

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other restrictions
 Some restrictions on the sequential part of the language

may be useful in conjunction with the Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

 For details, see: ISO/IEC TR 15382, Guide for the use
of the Ada Programming Language in High Integrity
Systems

227 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Outside of Ravenscar
 Real-time programming facilities of use

when full static assurance is not possible
– Execution-time measurement
– Execution-time timers
– Group budgets (for sporadic servers and

other resource reservation policies)
– Timing events
– Additional dispatching policies

228 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time measurement
 The CPU time consumed by tasks can be

monitored
 Per-task CPU clocks can be defined

– Set at t ൌ 0 before task activation
– The clock value increases (notionally) as the

task executes
 Actual increments occur solely at dispatching

points (sound) or at synchronous queries (silly)

229 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

230 of 538

Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 5

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time timers
 A user-defined event can fire when a CPU

clock reaches a specified value
– An event handler is automatically invoked by

the runtime at that point
– The handler is an (access to) a protected

procedure
 The educated equivalent of a callback

 Basic mechanism for execution-time
monitoring

231 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

232 of 538

Ada.Execution_Time.Timers /1
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Ada.Execution_Time.Timers /2
 Builds on execution-time clocks
 Needs an interval timer

– To update at every dispatching point
– To raise «zero events» that signify, for

example, budget overruns
 Handling sensibly those zero events

requires other sophisticated features

233 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Group budgets
 Groups of tasks with a global execution-

time budget can be defined
– Basic mechanism for server-based scheduling
 As needed to serve aperiodic arrivals

– Can be used to provide temporal isolation
among groups of tasks

234 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 6

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

235 of 538

Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_Identification.Task_Id);

...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Timing events
 Lightweight mechanism for defining code

to be executed at a specified time
– Does not require an application-level task
– Very similar to interrupt handling

 The code is defined as an event handler
– An (access to) a protected procedure

 Directly invoked by the runtime

236 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

237 of 538

Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

238 of 538

Dispatching policies
 Additional dispatching policies

– Non preemptive (explicit yield)
 Run-to-completion semantics (per partition)

– Round robin
 Within specified priority band
 Dispatch on quantum expiry deferred until end of protected

action
– Earliest Deadline First

 Within specified priority band
 Relative and absolute “deadline”
 EDF ordered ready queues
 Guaranteed form of resource locking (preemption level +

deadline)

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 7

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Priority-band dispatching
 Mixed policies can coexist within a single

partition
– Priority specific dispatching policy can be set

by configuration
– Protected objects can be used for tasks to

communicate across different policies
– Tasks do not move across bands

239 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

OOD for real-time systems
 Real-time components are objects

– Instances of predefined classes
– Internal state + interfaces

 Based on well-defined code patterns
– Cyclic & sporadic tasks
– Protected data
– Passive data

240 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Enforce intentions
 Static WCET analysis and response-time

analysis can be used to assert correct
temporal behavior at design time

 Platform mechanisms can be used at
run time to ensure that temporal behavior
stays within the asserted boundaries
– Clocks, timers, timing events, …

 Conveniently complementary approaches

241 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Run-time services
 The execution environment must be capable of

preserving properties asserted at model level
– Real-time clocks & timers
– Execution-time clocks & timers
– Predictable scheduling

 We assume an execution environment
implementing the Ravenscar model
– Ada 2012 with the Ravenscar profile
– Augmented with (restricted) execution-time timers

242 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 8

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

243 of 538

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Component taxonomy
 Cyclic component
 Sporadic component
 Protected data component
 Passive component

 Under inversion of control
– What differentiates a framework from a library:

the ability to enforce given design principles

244 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Cyclic component
 Clock-activated activity with fixed rate
 Attributes

– Period
– Deadline
– Worst-case execution time

 The most basic cyclic code pattern does not
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable

245 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

246 of 538

Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 9

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

247 of 538

Cyclic thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

cannot be Time_Span!

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

248 of 538

Cyclic thread (body)

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Sporadic component
 Activated by a software-mediated event

– Signaled by software or hardware interrupts
 Attributes

– Minimum inter-arrival time
– Deadline
– Worst-case execution time

 The synchronization agent of the target
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)

249 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

250 of 538

Sporadic component

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 10

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

251 of 538

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling
the Signal operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

252 of 538

Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

253 of 538

Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other components
 Protected component

– No thread, only synchronization and operations
– Straightforward direct implementation with protected

object
 Passive component

– Purely functional behavior, neither thread nor
synchronization

– Straightforward direct implementation with functional
package

254 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 11

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

255 of 538

Temporal properties
 Basic patterns only guarantee periodic or

sporadic activation
 They can be augmented to guarantee

additional temporal properties at run time
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

256 of 538

Minimum inter-arrival time /1
 Violations of the specified separation

interval may cause increased interference
on lower priority tasks
 Approach: prevent sporadic thread from

being activated earlier than stipulated
– Compute earliest (absolute) allowable

activation time
– Withhold activation (if triggered) until that time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

257 of 538

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

258 of 538

Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single point of activation

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 12

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Critique
 May incur some temporal drift as the clock is

read after task release
– Preemption may hit just after the release but before

reading the clock
– Separation may become larger than required

 Better to read the clock at the place and time
the task is released
– Within the synchronization agent
– Which is protected and thus less exposed to general

interference

259 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

260 of 538

Minimum inter-arrival time /2

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

261 of 538

Recording release time /1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

262 of 538

Recording release time /2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 13

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss
 May result from

– Higher priority tasks executing more often
than expected
 Can be prevented with inter-arrival time

enforcement
– Overruns in the same or higher priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

263 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss detection
 Can be done with the help of timing events

– A mechanism for requiring some application-level
action to be executed at a given time

– Under the Ravenscar Profile timing events can only
exist at library level

 Timing events are statically allocated
 Minor optimization possible for periodic tasks

– Which however breaks the symmetry of code patterns

264 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

265 of 538

Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

266 of 538

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 14

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

267 of 538

Thread body (streamlined)
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Watch out!
What about
the critical

instant?

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

268 of 538

Sporadic thread with deadline
miss detection (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

269 of 538

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific
OPCS.Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Cannot streamline as
the deadline cannot be
computed until
returning from Wait

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time overruns
 Tasks may execute for longer than stipulated

owing to
– Programming errors in the functional code
– Inaccurate WCET values used in feasibility analysis

 Optimistic vs. pessimistic

 WCET overruns can be detected at run time
with the help of execution-time timers
– Not included in Ravenscar
– Extended profile

270 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 15

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

271 of 538

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

272 of 538

Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Observation
 WCET overruns in sporadic tasks can be

detected similarly
 The timer should be set after the

activation
 No need for timer cancellation

273 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Multiple job types per task
 To support mode changes, threaded

objects may have modifier PI operations
– So that tasks issue other jobs than default

 Asynchronous Transfer of Control (ARM
§9.7.4) are not allowed in Ravenscar
– Hence mode change must be synchronous
– Modifier requests are queued in the OBCS

274 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 16

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

275 of 538

Cyclic thread with modifier
task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;

Request : Request_Type;

begin

loop

delay until Next_Release_Time;

OBCS.Get_Request(Request); -- may include operation parameters

case Request is

when NO_REQ => OPCS.Periodic_Activity;

when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;

end case;

Next_Release_Time := Next_Release_Time + Period;

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

276 of 538

Synchronization agent /1

-- for cyclic thread

protected type OBCS (Ceiling: Priority) is

pragma Priority(Ceiling);

procedure Put_Request(Request : Request_Type);

procedure Get_Request(out Request : Request_Type);

private

Buffer : Request_Buffer; -- bounded queue

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

277 of 538

Synchronization agent /2
-- for cyclic thread

protected body OBCS(Ceiling : Priority) is

procedure Put_Request(Request : Request_Type) is

begin

Buffer.Put(Request);

end Put_Request;

procedure Get_Request(out Request : Request_Type) is

begin

if Buffer.Empty then

Request := NO_REQ;

else

Buffer.Get(Request);

end if;

end Get_Request;

end OBCS;

