
2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 1

4.a Programming real-time
systems (in Ada)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

216 of 538

Workload model /1
 Static set of tasks

– Ada: tasks declared at library level (i.e, the outermost
scope), so that they have the longest lifetime

 Tasks issue jobs repeatedly
– Task duty cycle: activation, execution, suspension

 Single activation source per task
 Real-time attributes

– Release time
 Periodic: at every T time units
 Sporadic: at least T between any two subsequent releases

– Execution
 Worst case execution time (WCET) assumed to be known
 Deadline: D time units after release

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

217 of 538

Workload model /2
 Task communication

– Shared variables with mutually exclusive access
 Ada: protected objects with procedures and functions

– No conditional synchronization
 Other than for sporadic task activation
 Ada: PO with a single entry

 Scheduling model
– Fixed-priority pre-emptive

 Ada: FIFO within priorities
 Access protocol for shared objects

– Ceiling priority protocol
 Ada: Ceiling_Locking policy

For optimal determinism

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /1

218 of 538

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);

private
The_Integer : Integer := Initial_Value;

end Shared_Integer;
protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent Read

Mutually-exclusive Write

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 2

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /2

219 of 538

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /3

220 of 538

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects /4

221 of 538

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Guards

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

222 of 538

Language profiling
 Enforced by means of a configuration pragma

pragma Profile (Ravenscar);

 Equivalent to a set of Ada restrictions, plus three
additional configuration pragmas
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

pragma Detect_Blocking;

 ISO/IEC TR 24718, Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems
See «Per approfondire 8»

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 3

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

223 of 538

Ravenscar restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

224 of 538

Restriction checking
 Almost all of the Ravenscar profile restrictions

are checked at compile time
 A few of them can be checked only at run time

– Potentially blocking operations in PO bodies
– Priority ceiling violation
– More than one call queued on a protected entry or a

suspension object
– Task termination

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Potentially blocking operations
 Protected entry call statement
 Delay until statement
 Call on a subprogram whose body contains a

potentially blocking operation
 Pragma Detect_Blocking requires detection of

potentially blocking operations
– Exception Program_Error raised if detected

 Signifying a grave violation of good conduct
– Blocking need not be detected if it occurs in the

domain of a call to a foreign language (e.g. into C
embedded in an Ada procedure)

225 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other run-time checks
 Priority ceiling violation
 More than one call waiting on a protected entry or a

suspension object
– Program_Error must be raised in both cases

 Signaling violation of analysis assumptions
 Task termination

– Program behavior must be documented
– Possible termination behaviors include

 Silent termination
 Holding the task in a pre-terminated state
 Call of an application-defined termination handler defined with

the Ada.Task_Termination package (C.7.3)

226 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 4

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other restrictions
 Some restrictions on the sequential part of the language

may be useful in conjunction with the Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

 For details, see: ISO/IEC TR 15382, Guide for the use
of the Ada Programming Language in High Integrity
Systems

227 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Outside of Ravenscar
 Real-time programming facilities of use

when full static assurance is not possible
– Execution-time measurement
– Execution-time timers
– Group budgets (for sporadic servers and

other resource reservation policies)
– Timing events
– Additional dispatching policies

228 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time measurement
 The CPU time consumed by tasks can be

monitored
 Per-task CPU clocks can be defined

– Set at t ൌ 0 before task activation
– The clock value increases (notionally) as the

task executes
 Actual increments occur solely at dispatching

points (sound) or at synchronous queries (silly)

229 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

230 of 538

Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 5

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time timers
 A user-defined event can fire when a CPU

clock reaches a specified value
– An event handler is automatically invoked by

the runtime at that point
– The handler is an (access to) a protected

procedure
 The educated equivalent of a callback

 Basic mechanism for execution-time
monitoring

231 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

232 of 538

Ada.Execution_Time.Timers /1
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Ada.Execution_Time.Timers /2
 Builds on execution-time clocks
 Needs an interval timer

– To update at every dispatching point
– To raise «zero events» that signify, for

example, budget overruns
 Handling sensibly those zero events

requires other sophisticated features

233 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Group budgets
 Groups of tasks with a global execution-

time budget can be defined
– Basic mechanism for server-based scheduling
 As needed to serve aperiodic arrivals

– Can be used to provide temporal isolation
among groups of tasks

234 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 6

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

235 of 538

Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_Identification.Task_Id);

...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Timing events
 Lightweight mechanism for defining code

to be executed at a specified time
– Does not require an application-level task
– Very similar to interrupt handling

 The code is defined as an event handler
– An (access to) a protected procedure

 Directly invoked by the runtime

236 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

237 of 538

Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

238 of 538

Dispatching policies
 Additional dispatching policies

– Non preemptive (explicit yield)
 Run-to-completion semantics (per partition)

– Round robin
 Within specified priority band
 Dispatch on quantum expiry deferred until end of protected

action
– Earliest Deadline First

 Within specified priority band
 Relative and absolute “deadline”
 EDF ordered ready queues
 Guaranteed form of resource locking (preemption level +

deadline)

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 7

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Priority-band dispatching
 Mixed policies can coexist within a single

partition
– Priority specific dispatching policy can be set

by configuration
– Protected objects can be used for tasks to

communicate across different policies
– Tasks do not move across bands

239 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

OOD for real-time systems
 Real-time components are objects

– Instances of predefined classes
– Internal state + interfaces

 Based on well-defined code patterns
– Cyclic & sporadic tasks
– Protected data
– Passive data

240 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Enforce intentions
 Static WCET analysis and response-time

analysis can be used to assert correct
temporal behavior at design time

 Platform mechanisms can be used at
run time to ensure that temporal behavior
stays within the asserted boundaries
– Clocks, timers, timing events, …

 Conveniently complementary approaches

241 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Run-time services
 The execution environment must be capable of

preserving properties asserted at model level
– Real-time clocks & timers
– Execution-time clocks & timers
– Predictable scheduling

 We assume an execution environment
implementing the Ravenscar model
– Ada 2012 with the Ravenscar profile
– Augmented with (restricted) execution-time timers

242 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 8

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

243 of 538

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Component taxonomy
 Cyclic component
 Sporadic component
 Protected data component
 Passive component

 Under inversion of control
– What differentiates a framework from a library:

the ability to enforce given design principles

244 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Cyclic component
 Clock-activated activity with fixed rate
 Attributes

– Period
– Deadline
– Worst-case execution time

 The most basic cyclic code pattern does not
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable

245 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

246 of 538

Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 9

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

247 of 538

Cyclic thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

cannot be Time_Span!

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

248 of 538

Cyclic thread (body)

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Sporadic component
 Activated by a software-mediated event

– Signaled by software or hardware interrupts
 Attributes

– Minimum inter-arrival time
– Deadline
– Worst-case execution time

 The synchronization agent of the target
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)

249 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

250 of 538

Sporadic component

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 10

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

251 of 538

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling
the Signal operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

252 of 538

Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

253 of 538

Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other components
 Protected component

– No thread, only synchronization and operations
– Straightforward direct implementation with protected

object
 Passive component

– Purely functional behavior, neither thread nor
synchronization

– Straightforward direct implementation with functional
package

254 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 11

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

255 of 538

Temporal properties
 Basic patterns only guarantee periodic or

sporadic activation
 They can be augmented to guarantee

additional temporal properties at run time
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

256 of 538

Minimum inter-arrival time /1
 Violations of the specified separation

interval may cause increased interference
on lower priority tasks
 Approach: prevent sporadic thread from

being activated earlier than stipulated
– Compute earliest (absolute) allowable

activation time
– Withhold activation (if triggered) until that time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

257 of 538

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

258 of 538

Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single point of activation

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 12

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Critique
 May incur some temporal drift as the clock is

read after task release
– Preemption may hit just after the release but before

reading the clock
– Separation may become larger than required

 Better to read the clock at the place and time
the task is released
– Within the synchronization agent
– Which is protected and thus less exposed to general

interference

259 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

260 of 538

Minimum inter-arrival time /2

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

261 of 538

Recording release time /1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

262 of 538

Recording release time /2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 13

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss
 May result from

– Higher priority tasks executing more often
than expected
 Can be prevented with inter-arrival time

enforcement
– Overruns in the same or higher priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

263 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss detection
 Can be done with the help of timing events

– A mechanism for requiring some application-level
action to be executed at a given time

– Under the Ravenscar Profile timing events can only
exist at library level

 Timing events are statically allocated
 Minor optimization possible for periodic tasks

– Which however breaks the symmetry of code patterns

264 of 538

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

265 of 538

Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

266 of 538

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 14

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

267 of 538

Thread body (streamlined)
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Watch out!
What about
the critical

instant?

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

268 of 538

Sporadic thread with deadline
miss detection (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

269 of 538

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific
OPCS.Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Cannot streamline as
the deadline cannot be
computed until
returning from Wait

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time overruns
 Tasks may execute for longer than stipulated

owing to
– Programming errors in the functional code
– Inaccurate WCET values used in feasibility analysis

 Optimistic vs. pessimistic

 WCET overruns can be detected at run time
with the help of execution-time timers
– Not included in Ravenscar
– Extended profile

270 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 15

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

271 of 538

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

272 of 538

Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Observation
 WCET overruns in sporadic tasks can be

detected similarly
 The timer should be set after the

activation
 No need for timer cancellation

273 of 538 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Multiple job types per task
 To support mode changes, threaded

objects may have modifier PI operations
– So that tasks issue other jobs than default

 Asynchronous Transfer of Control (ARM
§9.7.4) are not allowed in Ravenscar
– Hence mode change must be synchronous
– Modifier requests are queued in the OBCS

274 of 538

2018/19 UniPD - T. Vardanega 26/03/2019

Real-Time Systems 16

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

275 of 538

Cyclic thread with modifier
task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;

Request : Request_Type;

begin

loop

delay until Next_Release_Time;

OBCS.Get_Request(Request); -- may include operation parameters

case Request is

when NO_REQ => OPCS.Periodic_Activity;

when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;

end case;

Next_Release_Time := Next_Release_Time + Period;

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

276 of 538

Synchronization agent /1

-- for cyclic thread

protected type OBCS (Ceiling: Priority) is

pragma Priority(Ceiling);

procedure Put_Request(Request : Request_Type);

procedure Get_Request(out Request : Request_Type);

private

Buffer : Request_Buffer; -- bounded queue

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

277 of 538

Synchronization agent /2
-- for cyclic thread

protected body OBCS(Ceiling : Priority) is

procedure Put_Request(Request : Request_Type) is

begin

Buffer.Put(Request);

end Put_Request;

procedure Get_Request(out Request : Request_Type) is

begin

if Buffer.Empty then

Request := NO_REQ;

else

Buffer.Get(Request);

end if;

end Get_Request;

end OBCS;

