
2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 1

4.b Under the hood

Context switch

 The time and space overhead incurred on preemption
should be accounted for in schedulability analysis

 Under preemption, every single job incurs at least two
context switches
 At activation, to load (or install) its execution context
 At completion, to store (clean up) the same

 The ensuing cost should be charged to the job’s WCET
 Which requires knowing the internal timing behavior of the

run-time system

2018/19 UniPD – T. Vardanega Real-Time Systems 279 of 538

Priority levels /1

 The scheduling techniques that we have studied
assume jobs to have distinct priorities
 Concrete systems may not always have sufficient priorities
 Jobs may have to share priority levels
 For jobs at the same level of priority, dispatching may be

FIFO or round-robin: the former is more fit for real-time
 If priority levels are shared, we have a worst-case

situation to contemplate in the analysis
 That job 𝐽 be released immediately after all other jobs at its

level of priority

2018/19 UniPD – T. Vardanega Real-Time Systems 280 of 538

Example: FIFO within priorities

2018/19 UniPD – T. Vardanega

𝜋ଵ

𝜏 𝜏

𝜏𝜏௦ 𝜏

low

high
FIFO

Running

Ready

𝜋 ஐೞ

Real-Time Systems 281 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 2

Priority levels /2

 Let 𝑆ሺ𝑖ሻ denote the set of jobs 𝐽 with 𝜋 ൌ 𝜋,
excluding 𝐽 itself

 The time demand equation for 𝐽 in the interval
0 ൏ 𝑡 min ሺ𝐷, 𝑝ሻ becomes

𝜔భ 𝑡 ൌ 𝑒 𝐵 𝑒∈ௌ
ௌሺሻ

𝜔భሺ𝑡ሻ

𝑝ୀଵ,..,ିଵ

𝑒

 This obviously worsens 𝐽 ’s response time
 Yet, the impact in terms of schedulability loss at system

level may not be that bad (wait and see …)

2018/19 UniPD – T. Vardanega Real-Time Systems 282 of 538

Priority levels /4

 When the assigned priorities ℛ ൌ 1, . . , Ω exceed the
available priorities ℋ ൌ 𝜋ଵ, . . , 𝜋ஐೞ , (ℛ ℋ), we
need a Ω: Ω௦ mapping function that collapses the
former into the latter (aka the priority grid)
 All assigned priorities 𝜋ଵ will take value 𝜋ଵ

 For 1 ൏ 𝑘 Ω௦, the assigned priorities in the range
ሺ𝜋ିଵ, 𝜋ሿ will take value 𝜋

 Two main techniques address this problem
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]

2018/19 UniPD – T. Vardanega Real-Time Systems 283 of 538

Priority levels /5

 Uniform mapping (𝑄 ൌ ஐ
ஐೞ

)

 𝜋 ← 𝑘, … , 𝑘𝑄 , 𝜋ାଵ ← 𝑘𝑄 1, … , ሺ𝑘 1ሻ𝑄 ; 𝑘 ൌ 1, … , Ω௦ െ 1
 Example

Ω ൌ 9, Ω௦ ൌ 3, 𝑄 ൌ ଽ
ଷ

ൌ 3, 𝜋ଵ ൌ 1, 𝜋ଶ ൌ 2, 𝜋ଷ ൌ 3
𝜋ଵ ← 1. . 3 , 𝜋ଶ ← 4. . 6 , 𝜋ଷ ← 7. . 9

 Constant ratio mapping (CRM)
 Collapses subsets of ℛ into the 𝜋 values of ℋ by keeping the ratio

𝑔 ൌ ሺగషభାଵሻ
గ

constant for 𝑖 ൌ 2, . . , Ω௦, to favor higher-priority jobs

 Example (same as above) (g ൌ ଵ
ଶ
)

𝜋ଵ ൌ 1, 𝜋ଶ ൌ 4, 𝜋ଷ ൌ 10 ⇒ 𝜋ଵ ← 1 , 𝜋ଶ ← 2. . 4 , 𝜋ଷ ← 5. . 9

2018/19 UniPD – T. Vardanega Real-Time Systems 284 of 538

Priority levels /6

2018/19 UniPD – T. Vardanega

1

2

3

4

5

6

4 ..6

7

8

9

Ω𝑠 ൌ 3

Ω𝑛

Ω𝑠
ൌ 3 1

2

3

4

5

6

7

8

9

1

𝑔 ൌ
1
2

2 .. 4

5 ..9

Uniform	mapping Constant	ratio	mapping

7 .. 9

1 ..3
𝜋ଵ

Ω𝑛 ൌ 9
𝜋ଶ

𝜋ଷ

𝜋ଵ

𝜋ସ

𝜋ଵ

Real-Time Systems 285 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 3

Priority levels /7

 Lehoczky & Sha showed that CRM degrades the
schedulable utilization of RMS gracefully
 For large 𝑛, with 𝐷 ൌ 𝑝 ∀𝑖, and 𝑔 ൌ 𝑚𝑖𝑛ଶஸஸஐೞ

ሺగೕషభାଵሻ
గೕ

,
the CRM’s schedulable utilization approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔 1 െ 𝑔, 𝑔 ଵ

ଶ

𝑔, 𝑔 ଵ
ଶ

 The ሺሻ
ሺଶሻ

ratio represents the relative schedulability of
CRM in relation to RMS’ utilization bound
 Example: for Ω௦ ൌ 256,Ω ൌ 100,000, and the corresponding

𝑔, CRM’s relative schedulability is 0.9986
 Hence, 256 priority levels should suffice for RMS

2018/19 UniPD – T. Vardanega Real-Time Systems 286 of 538

Real-time operating systems /1

 The RTOS knows all tasks: their jobs are the unit of CPU
assignment
 Tasks issue jobs: scheduling and dispatching applies to jobs
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 One Task Control Block (TCB) per task is stored in RAM
 The insertion of a task in a state queue (e.g., ready) is made by

placing a pointer from the queue to the corresponding TCB
 The end-of-life disposal of a task requires removing its TCB and

releasing all of its memory (its stack and its global data in the heap)
 This is onerous and suggests preferring infinite tasks

2018/19 UniPD – T. Vardanega Real-Time Systems 287 of 538

Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority

2018/19 UniPD – T. Vardanega Real-Time Systems 288 of 538

Real-time operating systems /2

 Tasks may be realized as specialized primitive entities
that live within the RTOS

 Then the model of computation is determined by the RTOS
 Outside or inside of the programming language, dependent on

the binding of it with the RTOS
 Inside, for the Ada Ravenscar Profile

 Otherwise, the MoC may be defined at the application
level using with generic support from the RTOS API
 In that case it is the user’s responsibility to ensure that the

eventual execution semantics conforms with the assumptions
made in schedulability analysis

2018/19 UniPD – T. Vardanega Real-Time Systems 289 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 4

Real-time operating systems /3

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then
makes a suspension call

 Sporadic task
 An RTOS thread whose suspension point is not released

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-event service

 Aperiodic task
 Indistinguishable from the rest other than its being placed in a

server’s backlog queue and not in the ready queue

2018/19 UniPD – T. Vardanega Real-Time Systems 290 of 538

Task states /1

2018/19 UniPD – T. Vardanega

Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least overhead?

Real-Time Systems 291 of 538

Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the
distinct forms of suspension
 A time-based queue for periodic suspensions
 An event-based queue for sporadic suspensions

 But “someone” (IoC in the OOD solution we saw earlier) shall assure
minimum separation between subsequent releases (!)

2018/19 UniPD – T. Vardanega Real-Time Systems 292 of 538

Time management /1

 A system clock consists of
 A periodic counting register
 Automatically reset to the tick size every time it reaches the

triggering edge and triggers the clock tick
 Composed of
 A HW part automatically decremented at every clock pulse

and a SW part incremented by the handler of the clock tick
 A queue of time events fired in the interval, whose

treatment is pending
 And an (immediate) interrupt handling service

2018/19 UniPD – T. Vardanega Real-Time Systems 293 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 5

Time management /2

 The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock
 The resolution should be an integer divisor of the tick

size so that the RTOS may perform tick scheduling at
every N clock ticks

 So that we have more frequent time-service interrupts
and less frequent (ଵ

ே
) clock interrupts

 Time-service interrupts maintain the system clock
 Clock interrupts are used for scheduling

2018/19 UniPD – T. Vardanega Real-Time Systems 294 of 538

Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy and the

larger the time-service interrupt overhead
 There is delicate balance between the clock accuracy

needed by the application and the clock resolution that
can be afforded by the system
 Latency is intrinsic in any query made by a task to the

software clock
 E.g., 439 clock cycles in ORK for the Leon microprocessor

(cf. www.dit.upm.es/~ork/)
 The resolution cannot be finer-grained than the

maximum latency incurred in accessing the clock (!)

2018/19 UniPD – T. Vardanega Real-Time Systems 295 of 538

Time management /4

 Beside periodic clocks, RTOS may also support
one-shot timers aka interval timers
 They operate in a programmed (non-repetitive) way

 The RTOS scans the queue of the programmed
time events to set the time of the next interrupt due
from the interval timer
 The resolution of the interval timer is limited by the time

overhead of its handling by the RTOS
 E.g., 7,061 clock cycles in ORK for Leon

2018/19 UniPD – T. Vardanega Real-Time Systems 296 of 538

Time management /5

 The accuracy of time events is the difference between
the time of event occurrence and the time programmed

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected
 If interval timers were not used, this would correspond to

the period of time-service interrupts
 The policy used to handle the time-event queues
 LIFO vs. FIFO

 The time overhead cost of handling time events in the queue
 It follows that the release time of periodic tasks is

exposed to jitter (!)

2018/19 UniPD – T. Vardanega Real-Time Systems 297 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 6

The scheduler /1

 This is a distinct part of the RTOS that does not
execute in response to explicit application invocations
 Other than when using cooperative scheduling

 The scheduler acts every time the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming
language and the RTOS is MoC-agnostic, scheduler
“activation” is periodic in response to clock interrupts

2018/19 UniPD – T. Vardanega Real-Time Systems 298 of 538

The scheduler /2

 At every clock interrupt, the scheduler must
 Increment the execution time budget counter of the running

job to support time-based scheduling policy (e.g., LLF)
 Possibly manage the queue of time-based events pending
 Possibly manage the ready queue

 The 10 𝑚𝑠 period (aka tick size) typical of general-
purpose operating systems is too coarse for RTOS
 But higher frequency incurs larger overhead

 The scheduler should support event-driven execution
with minimum latency

2018/19 UniPD – T. Vardanega Real-Time Systems 299 of 538

Tick scheduling /1

 The scheduler can be event-driven only if the MoC is
defined within the application programming language
 The scheduler always immediately executes on the occurrence

of a scheduling event (aka dispatching point)
 If it was so then we could assume that a job is placed in the

ready queue exactly at its release time

 Several schedulers are time-driven instead
 They make scheduling decisions on the arrival of periodic

clock interrupts, with no relation to application events
 This mode of operation is termed tick scheduling

2018/19 UniPD – T. Vardanega Real-Time Systems 300 of 538

Tick scheduling /2

 The tick scheduler may acknowledge a job’s release
time up to one tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release

time arrived but not yet acknowledged” state are held
 The time and space overhead of transferring jobs from

that logical place to the ready queue is not null and must
be accounted for in the schedulability test together with
the time and space overhead of handling clock interrupts

2018/19 UniPD – T. Vardanega Real-Time Systems 301 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 7

Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎. 𝟏, 𝟒, 𝟏, 𝟒 , 𝝉𝟐 ൌ 𝟎. 𝟏, 𝟓, 𝟏. 𝟖, 𝟓 , 𝝉𝟑 ൌ 𝟎, 𝟐𝟎, 𝟓, 𝟐𝟎

𝝉𝟑 with a first no-preemption section of duration 𝟏. 𝟏 units
With RTA and event-driven scheduling 𝑹𝟏 ൌ 𝟐. 𝟏, 𝑹𝟐 ൌ 𝟑. 𝟗, 𝑹𝟑 ൌ 𝟏𝟒. 𝟒 ሺOKሻ

What with tick scheduling, clock period 𝟏 and
time overhead 𝟎. 𝟎𝟓 𝟎. 𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝝉𝟏

𝝉𝟑

Deadline miss

Release
at tick

yield𝝉𝟐

𝝉𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay

2018/19 UniPD – T. Vardanega

ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ

Real-Time Systems 302 of 538

Tick scheduling /3

 The effect of tick scheduling is captured in RTA for job 𝐽 by
 Introducing a notional task 𝜏 ൌ ሺ𝑝, 𝑒ሻ with highest priority, to

account for the 𝑒 cost of handling clock interrupts with period 𝑝
 For all jobs 𝐽 ∶ 𝜋 𝜋 , adding to 𝑒 the time overhead 𝑚 due to

moving each of them to the ready queue
 ሺ𝐾 1ሻ times for the 𝐾 times that job 𝐽 may self suspend

 For every job 𝐽: 𝜋 ൏ 𝜋 , introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝, 𝑚ሻ to account for the time cost of moving 𝐽 to the ready queue

 Computing 𝐵ሺ𝑛𝑝ሻ as function of 𝑝: 𝐽 may suffer up to 𝑝 units of
delay after becoming ready even without not-preemptive execution

 𝐵ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥ሺఏೖ
బ

ሻ 1ሻ𝑝 before including non-preemption

 Where 𝜃 is the maximum time of no-preemption execution by any job 𝐽

2018/19 UniPD – T. Vardanega Real-Time Systems 303 of 538

System calls /1

 The most part of RTOS services are executed in
response to direct or indirect invocations by tasks
 These invocations are termed system calls

 For safety reasons, the system call APIs are not directly
visible to the application
 System calls are normally hidden in procedures exported to

the programming language by compiler libraries
 Those library procedures do all of the preparatory work for

correct invocation of the designated system call on behalf of
the application

 Thanks to that “hiding”, the OS does not share memory
with the application

2018/19 UniPD – T. Vardanega Real-Time Systems 304 of 538

System calls /2

2018/19 UniPD – T. Vardanega Real-Time Systems 305 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 8

System calls /3

 In embedded systems instead, the RTOS and the
application often share memory

 Real-time embedded applications are more
trustworthy
 Hence, we do not want to pay the space and time

overhead arising from address space separation
 The RTOS must then protect its own data

structures from the risk of race condition
 RTOS services must therefore be non-preemptable

2018/19 UniPD – T. Vardanega Real-Time Systems 306 of 538

I/O issues

 The I/O subsystem of a real-time system may require
its own scheduler
 It may be an active resource, after the taxonomy we saw in the

introduction material
 Simple methods to access an I/O resource use

 Run-to-completion non-preemptive FIFO semantics
 Or some kind of time-division scheme

 Non-preemptive quantized

 Or else use priority-driven scheduling as for CPU
scheduling
 RM, EDF, LLF can be used to schedule I/O requests

2018/19 UniPD – T. Vardanega Real-Time Systems 307 of 538

Interrupt handling /1

 HW interrupts are the most efficient manner for the
processor to notify the application about the
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated

to external units like DMA (direct memory access)
 Frequency and computational load of the interrupt

handling activities vary with the interrupt source

2018/19 UniPD – T. Vardanega Real-Time Systems 308 of 538

Interrupt handling /2

 For better efficiency, the interrupt handling service
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which
code to associate to either part
 Interrupt service can also have a device-independent part and

a device-specific part

2018/19 UniPD – T. Vardanega Real-Time Systems 309 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 9

Interrupt handling /3

 When the HW interface asserts an interrupt, the
processor saves state registers (e.g., PC, PSW) in the
interrupt stack and jumps to the address of the needed
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending

(depending on the HW)

 Interrupts operate at an assigned level of priority so
that interrupt service incurs scheduling if interrupts nest

2018/19 UniPD – T. Vardanega Real-Time Systems 310 of 538

Interrupt handling /4

 Depending on the HW, the interrupt source is
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers
are restored and interrupts are enabled again

2018/19 UniPD – T. Vardanega Real-Time Systems 311 of 538

Interrupt handling /5

 The worst-case latency incurred on interrupt handling is
determined by the time needed to
1. Complete current instruction
2. Save registers
3. Clear the pipeline
4. Acquire the interrupt vector
5. Activate the trap
6. Disable interrupts (so that the immediate part of the ISR can

execute at the highest priority)
7. Save the context of the interrupted task
8. Identify the interrupt source and jump to the corresponding ISR
9. Begin execution of the selected ISR

2018/19 UniPD – T. Vardanega Real-Time Systems 312 of 538

Interrupt handling /6

 To reduce distributed overhead, the deferred part of
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to

spawn its own tasks for deferred interrupt handling

2018/19 UniPD – T. Vardanega Real-Time Systems 313 of 538

2018/19 UniPD - T. Vardanega 02/04/2019

Real-Time Systems 10

Interrupt handling /7

 Using the OOD patterns we saw earlier, the deferred
part of the ISR would map to a sporadic task released by
the immediate part of the ISR

 For better responsiveness, schemes such as slack stealing
or bandwidth preservation could be used
 So that total interference from interrupts is bounded, but a

given quota of them may receive full service within
replenishment intervals

 During those intervals, bandwidth preservation retains the
unused reserve of execution budget, which can help serve
occasional bursts

 These solutions need specialized support from the RTOS

2018/19 UniPD – T. Vardanega Real-Time Systems 314 of 538 2018/19 UniPD – T. Vardanega

Fine-grained response time analysis

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension call𝑅

 ൌ 𝐵 𝐶𝑆1 𝐶

𝑅 ൌ 𝑅
 𝐽ௐ

𝑅 is a compositional term Its RHS benefits from composable terms

Real-Time Systems 315 of 538

Summary

 Programming real-time applications
 RTOS design issues
 Context switch
 Priority levels
 Tick scheduling
 System calls
 Interrupt handling
 Time management

2018/19 UniPD – T. Vardanega Real-Time Systems 316 of 538

Selected readings

 T. Vardanega, J. Zamorano, J.A. de la Puente (2005)
On the Dynamic Semantics and the Timing Behavior of
Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2

2018/19 UniPD – T. Vardanega Real-Time Systems 317 of 538

