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4.b Under the hood

Context switch

 The time and space overhead incurred on preemption 
should be accounted for in schedulability analysis

 Under preemption, every single job incurs at least two 
context switches
 At activation, to load (or install) its execution context
 At completion, to store (clean up) the same

 The ensuing cost should be charged to the job’s WCET
 Which requires knowing the internal timing behavior of the 

run-time system
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Priority levels /1

 The scheduling techniques that we have studied 
assume jobs to have distinct priorities
 Concrete systems may not always have sufficient priorities
 Jobs may have to share priority levels
 For jobs at the same level of priority, dispatching may be 

FIFO or round-robin: the former is more fit for real-time
 If priority levels are shared, we have a worst-case 

situation to contemplate in the analysis
 That job 𝐽 be released immediately after all other jobs at its 

level of priority
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Example: FIFO within priorities
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Priority levels /2

 Let 𝑆ሺ𝑖ሻ denote the set of jobs 𝐽 with 𝜋 ൌ 𝜋, 
excluding 𝐽 itself

 The time demand equation for 𝐽 in the interval 
0 ൏ 𝑡  min ሺ𝐷, 𝑝ሻ becomes 

𝜔భ 𝑡 ൌ 𝑒  𝐵   𝑒∈ௌ  
ௌሺሻ


𝜔భሺ𝑡ሻ

𝑝ୀଵ,..,ିଵ

𝑒

 This obviously worsens 𝐽 ’s response time
 Yet, the impact in terms of schedulability loss at system 

level may not be that bad (wait and see …)
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Priority levels /4

 When the assigned priorities ℛ ൌ 1, . . , Ω exceed the 
available priorities ℋ ൌ 𝜋ଵ, . . , 𝜋ஐೞ , ( ℛ  ℋ ), we 
need a Ω: Ω௦ mapping function that collapses the 
former into the latter (aka the priority grid)
 All assigned priorities  𝜋ଵ will take value 𝜋ଵ

 For 1 ൏ 𝑘  Ω௦, the assigned priorities in the range 
ሺ𝜋ିଵ, 𝜋ሿ will take value 𝜋

 Two main techniques address this problem
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]
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Priority levels /5

 Uniform mapping (𝑄 ൌ ஐ
ஐೞ

)

 𝜋 ← 𝑘, … , 𝑘𝑄 , 𝜋ାଵ ← 𝑘𝑄  1, … , ሺ𝑘  1ሻ𝑄  ;  𝑘 ൌ 1, … , Ω௦ െ 1
 Example

Ω ൌ 9, Ω௦ ൌ 3, 𝑄 ൌ ଽ
ଷ

ൌ 3, 𝜋ଵ ൌ 1, 𝜋ଶ ൌ 2, 𝜋ଷ ൌ 3
𝜋ଵ ← 1. . 3 , 𝜋ଶ ← 4. . 6 , 𝜋ଷ ← 7. . 9

 Constant ratio mapping (CRM)
 Collapses subsets of ℛ into the 𝜋 values of ℋ by keeping the ratio 

𝑔 ൌ ሺగషభାଵሻ
గ

constant for 𝑖 ൌ 2, . . , Ω௦, to favor higher-priority jobs

 Example (same as above) (g ൌ ଵ
ଶ
)

𝜋ଵ ൌ 1, 𝜋ଶ ൌ 4, 𝜋ଷ ൌ 10 ⇒ 𝜋ଵ ← 1 , 𝜋ଶ ← 2. . 4 , 𝜋ଷ ← 5. . 9
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Priority levels /6
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Priority levels /7

 Lehoczky & Sha showed that CRM degrades the 
schedulable utilization of RMS gracefully
 For large 𝑛, with 𝐷 ൌ 𝑝 ∀𝑖, and 𝑔 ൌ 𝑚𝑖𝑛ଶஸஸஐೞ

ሺగೕషభାଵሻ
గೕ

, 
the CRM’s schedulable utilization approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔  1 െ 𝑔,  𝑔  ଵ

ଶ

𝑔,                           𝑔  ଵ
ଶ

 The ሺሻ
ሺଶሻ

ratio represents the relative schedulability of 
CRM in relation to RMS’ utilization bound
 Example: for Ω௦ ൌ 256,Ω ൌ 100,000, and the corresponding 

𝑔, CRM’s relative schedulability is 0.9986
 Hence, 256 priority levels should suffice for RMS
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Real-time operating systems /1

 The RTOS knows all tasks: their jobs are the unit of CPU 
assignment
 Tasks issue jobs: scheduling and dispatching applies to jobs
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 One Task Control Block (TCB) per task is stored in RAM
 The insertion of a task in a state queue (e.g., ready) is made by 

placing a pointer from the queue to the corresponding TCB
 The end-of-life disposal of a task requires removing its TCB and 

releasing all of its memory (its stack and its global data in the heap)
 This is onerous and suggests preferring infinite tasks
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Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority
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Real-time operating systems /2

 Tasks may be realized as specialized primitive entities 
that live within the RTOS

 Then the model of computation is determined by the RTOS
 Outside or inside of the programming language, dependent on 

the binding of it with the RTOS
 Inside, for the Ada Ravenscar Profile

 Otherwise, the MoC may be defined at the application 
level using with generic support from the RTOS API
 In that case it is the user’s responsibility to ensure that the 

eventual execution semantics conforms with the assumptions 
made in schedulability analysis
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Real-time operating systems /3

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then 
makes a suspension call

 Sporadic task
 An RTOS thread whose suspension point is not released 

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-event service

 Aperiodic task
 Indistinguishable from the rest other than its being placed in a 

server’s backlog queue and not in the ready queue
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Task states /1
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Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least overhead?
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Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on 

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the 
distinct forms of suspension
 A time-based queue for periodic suspensions
 An event-based queue for sporadic suspensions

 But “someone” (IoC in the OOD solution we saw earlier) shall assure 
minimum separation between subsequent releases (!)
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Time management /1

 A system clock consists of
 A periodic counting register
 Automatically reset to the tick size every time it reaches the 

triggering edge and triggers the clock tick
 Composed of 
 A HW part automatically decremented at every clock pulse 

and a SW part incremented by the handler of the clock tick
 A queue of time events fired in the interval, whose 

treatment is pending
 And an (immediate) interrupt handling service
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Time management /2

 The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock
 The resolution should be an integer divisor of the tick 

size so that the RTOS may perform tick scheduling at 
every N clock ticks

 So that we have more frequent time-service interrupts 
and less frequent (ଵ

ே
) clock interrupts

 Time-service interrupts maintain the system clock
 Clock interrupts are used for scheduling
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Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy and the 

larger the time-service interrupt overhead
 There is delicate balance between the clock accuracy 

needed by the application and the clock resolution that 
can be afforded by the system
 Latency is intrinsic in any query made by a task to the 

software clock
 E.g., 439 clock cycles in ORK for the Leon microprocessor

(cf. www.dit.upm.es/~ork/)
 The resolution cannot be finer-grained than the 

maximum latency incurred in accessing the clock (!)
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Time management /4

 Beside periodic clocks, RTOS may also support 
one-shot timers aka interval timers
 They operate in a programmed (non-repetitive) way

 The RTOS scans the queue of the programmed 
time events to set the time of the next interrupt due 
from the interval timer
 The resolution of the interval timer is limited by the time 

overhead of its handling by the RTOS
 E.g., 7,061 clock cycles in ORK for Leon 
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Time management /5

 The accuracy of time events is the difference between 
the time of event occurrence and the time programmed

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected
 If interval timers were not used, this would correspond to 

the period of time-service interrupts
 The policy used to handle the time-event queues
 LIFO vs. FIFO

 The time overhead cost of handling time events in the queue
 It follows that the release time of periodic tasks is 

exposed to jitter (!)
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The scheduler /1

 This is a distinct part of the RTOS that does not
execute in response to explicit application invocations
 Other than when using cooperative scheduling

 The scheduler acts every time the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming 
language and the RTOS is MoC-agnostic, scheduler 
“activation” is periodic in response to clock interrupts
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The scheduler /2

 At every clock interrupt, the scheduler must
 Increment the execution time budget counter of the running 

job to support time-based scheduling policy (e.g., LLF)
 Possibly manage the queue of time-based events pending
 Possibly manage the ready queue

 The  10 𝑚𝑠 period (aka tick size) typical of general-
purpose operating systems is too coarse for RTOS
 But higher frequency incurs larger overhead

 The scheduler should support event-driven execution 
with minimum latency
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Tick scheduling /1

 The scheduler can be event-driven only if the MoC is 
defined within the application programming language
 The scheduler always immediately executes on the occurrence 

of a scheduling event (aka dispatching point)
 If it was so then we could assume that a job is placed in the 

ready queue exactly at its release time

 Several schedulers are time-driven instead
 They make scheduling decisions on the arrival of periodic 

clock interrupts, with no relation to application events
 This mode of operation is termed tick scheduling
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Tick scheduling /2

 The tick scheduler may acknowledge a job’s release 
time up to one tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release 

time arrived but not yet acknowledged” state are held
 The time and space overhead of transferring jobs from 

that logical place to the ready queue is not null and must 
be accounted for in the schedulability test together with 
the time and space overhead of handling clock interrupts
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Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎. 𝟏, 𝟒, 𝟏, 𝟒 , 𝝉𝟐 ൌ 𝟎. 𝟏, 𝟓, 𝟏. 𝟖, 𝟓 , 𝝉𝟑 ൌ 𝟎, 𝟐𝟎, 𝟓, 𝟐𝟎

𝝉𝟑 with a first no-preemption section of duration 𝟏. 𝟏 units
With RTA and event-driven scheduling 𝑹𝟏 ൌ 𝟐. 𝟏, 𝑹𝟐 ൌ 𝟑. 𝟗, 𝑹𝟑 ൌ 𝟏𝟒. 𝟒 ሺOKሻ

What with tick scheduling, clock period 𝟏 and 
time overhead 𝟎. 𝟎𝟓  𝟎. 𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝝉𝟏

𝝉𝟑

Deadline miss

Release 
at tick

yield𝝉𝟐

𝝉𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay
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ሺ𝜑, 𝑝, 𝑒, 𝐷ሻ
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Tick scheduling /3

 The effect of tick scheduling is captured in RTA for job 𝐽 by
 Introducing a notional task 𝜏 ൌ ሺ𝑝, 𝑒ሻ with highest priority, to 

account for the 𝑒 cost of handling clock interrupts with period 𝑝
 For all jobs 𝐽 ∶ 𝜋  𝜋 , adding to 𝑒 the time overhead 𝑚 due to 

moving each of them to the ready queue
 ሺ𝐾  1ሻ times for the 𝐾 times that job 𝐽 may self suspend

 For every job 𝐽: 𝜋 ൏ 𝜋 , introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝, 𝑚ሻ to account for the time cost of moving 𝐽 to the ready queue

 Computing 𝐵ሺ𝑛𝑝ሻ as function of 𝑝:  𝐽 may suffer up to 𝑝 units of 
delay after becoming ready even without not-preemptive execution 

 𝐵ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥ሺఏೖ
బ

ሻ  1ሻ𝑝 before including non-preemption

 Where 𝜃 is the maximum time of no-preemption execution by any job 𝐽
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System calls /1

 The most part of RTOS services are executed in 
response to direct or indirect invocations by tasks
 These invocations are termed system calls

 For safety reasons, the system call APIs are not directly 
visible to the application
 System calls are normally hidden in procedures exported to 

the programming language by compiler libraries
 Those library procedures do all of the preparatory work for 

correct invocation of the designated system call on behalf of 
the application

 Thanks to that “hiding”, the OS does not share memory 
with the application
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System calls /2
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System calls /3

 In embedded systems instead, the RTOS and the 
application often share memory

 Real-time embedded applications are more 
trustworthy
 Hence, we do not want to pay the space and time 

overhead arising from address space separation
 The RTOS must then protect its own data 

structures from the risk of race condition
 RTOS services must therefore be non-preemptable
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I/O issues

 The I/O subsystem of a real-time system may require 
its own scheduler
 It may be an active resource, after the taxonomy we saw in the 

introduction material
 Simple methods to access an I/O resource use

 Run-to-completion non-preemptive FIFO semantics
 Or some kind of time-division scheme 

 Non-preemptive quantized

 Or else use priority-driven scheduling as for CPU 
scheduling
 RM, EDF, LLF can be used to schedule I/O requests
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Interrupt handling /1

 HW interrupts are the most efficient manner for the 
processor to notify the application about the 
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated 

to external units like DMA (direct memory access)
 Frequency and computational load of the interrupt 

handling activities vary with the interrupt source
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Interrupt handling /2

 For better efficiency, the interrupt handling service 
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt 

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which 
code to associate to either part
 Interrupt service can also have a device-independent part and 

a device-specific part
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Interrupt handling /3

 When the HW interface asserts an interrupt, the 
processor saves state registers (e.g., PC, PSW) in the 
interrupt stack and jumps to the address of the needed 
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions 

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending 

(depending on the HW)

 Interrupts operate at an assigned level of priority so 
that interrupt service incurs scheduling if interrupts nest
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Interrupt handling /4

 Depending on the HW, the interrupt source is 
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally 

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers 
are restored and interrupts are enabled again
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Interrupt handling /5

 The worst-case latency incurred on interrupt handling is 
determined by the time needed to
1. Complete current instruction
2. Save registers
3. Clear the pipeline
4. Acquire the interrupt vector
5. Activate the trap
6. Disable interrupts (so that the immediate part of the ISR can 

execute at the highest priority)
7. Save the context of the interrupted task
8. Identify the interrupt source and jump to the corresponding ISR
9. Begin execution of the selected ISR
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Interrupt handling /6

 To reduce distributed overhead, the deferred part of 
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data 
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to 

spawn its own tasks for deferred interrupt handling
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Interrupt handling /7

 Using the OOD patterns we saw earlier, the deferred 
part of the ISR would map to a sporadic task released by 
the immediate part of the ISR

 For better responsiveness, schemes such as slack stealing
or bandwidth preservation could be used
 So that total interference from interrupts is bounded, but a 

given quota of them may receive full service within 
replenishment intervals

 During those intervals, bandwidth preservation retains the 
unused reserve of execution budget, which can help serve 
occasional bursts

 These solutions need specialized support from the RTOS
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Fine-grained response time analysis

Blocking time
(resource access 
protocol or kernel)

“In” context switch “Out” context switch
Interference from 
the clock

Interference from 
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a 
suspension call𝑅

 ൌ 𝐵  𝐶𝑆1  𝐶

𝑅 ൌ 𝑅
  𝐽ௐ

𝑅 is a compositional term Its RHS benefits from composable terms
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Summary

 Programming real-time applications
 RTOS design issues
 Context switch
 Priority levels
 Tick scheduling
 System calls
 Interrupt handling
 Time management
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