
2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 1

7.a Multicore systems –
initial reckoning

Credits to various authors (acknowledged in place)

Fundamental issues

 Hardware architecture taxonomy
 Homogeneous vs. heterogeneous processors

 Research focused first on SMP (symmetric multiprocessors) which make a
much simpler problem

 Attention is now shifting to heterogeneous processors, which are
becoming dominant in a variety of application domains

 Scheduling approach
 Global / partitioned, or alternatives between these extremes

 Partitioning = allocation problem followed by single-CPU scheduling

 Optimality criteria are shattered
 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

2018/19 UniPD – T. Vardanega Real-Time Systems 360 of 539

Hardware architecture taxonomy

 A multiprocessor (or multi-core) is tightly coupled
 Global status and workload information on all processors

(cores) can be kept current at low cost
 The system may use a centralized dispatcher and scheduler
 When each processor (core) has its own scheduler, the

decisions and actions of all schedulers are coherent
 Scheduling in this model is an NP-hard problem

 A distributed system is loosely coupled
 It is too costly to keep global status
 There usually is a dispatcher / scheduler per processor

2018/19 UniPD – T. Vardanega Real-Time Systems 361 of 539

What is changing in the
HW world?

Credits to Tucker Taft

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 2

Parallel Lang Support 363

What’s the matter with the processor HW?
• Big, unstoppable shift to multicore, manycore,

heterogeneous (e.g. GPGPU), cloud computing
• Associated challenge

– It is already hard to write safe, correct sequential programs for
single-processors

– Will programming for multicores exceed our abilities?

• Very opportune goal: provide programming language
support to make it easy and natural to write safe
(including predictable), correct parallel programs
– Perhaps even easier than it is to write safe, correct sequential

programs in many existing languages

• Is that possible?

Parallel Lang Support 364

Why are all moving to multi/manycore?

• Power, power, power
– Speeding clock rates past 3 GHz increased power density beyond

what the chips (and customer pocketbooks) could bear
– More and more computing is moving to battery-operated mobile

platforms where low power is king

• With multi/manycore, the theoretical computing
performance-per-watt (PPW) can be increased by
adding cores, perhaps slowing clock rate a bit
– With single core, PPW began to decrease with increasing clock

rates, due to increased source-to-drain leakage

• Clock rate doubling came to a screeching halt by
the year 2005

Parallel Lang Support 365

The right turn in processor performance

Courtesy
IEEE Computer,
January 2011,
page 33

Parallel Lang Support 366

What are the implications of this right turn?

• Clock rate
– Clock rates that were doubling about every 2 years, stalled at

about 3 GHz by 2005
– Had they continued doubling, we would now be buying laptops

with clocks at about 50 GHz

• Cores/chip
– Scaling to smaller features has continued
– Now using added chip real estate for additional CPU “cores”
– The number of cores/chip has started doubling since 2005
– In those 10+ years, mainstream commercial x86 chips came at

20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

• Almost back on Moore’s Law exponential rocket
– But only if considering cores/chip x performance/core

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 3

Parallel Lang Support 367

What else is happening to the HW?
• HW is getting more complicated
• Not just a handful of really fast processors
• Today’s fastest computers have

– A giant network of nodes
– Each node is itself a heterogeneous conglomeration

– Multiple cores
– Vector units
– GPUs or other accelerators

• Our challenge is to figure how to program these beasts
– Ideally we want our programs to scale without rewriting, from one

core up to a giant server farm or supercomputer
– Our basic approach is to eliminate barriers to parallelization, and

remove the sequential bias of our programming languages

Parallel Lang Support 368

Concurrency vs. Parallelism

Concurrency

• Concurrent programming
constructs allow the programmer
to simplify the program by using
multiple logical threads of control
to reflect the natural concurrency
in the problem domain
• Heavier-weight constructs can be

acceptable as they used rarely

Parallelism

• Parallel programming constructs
allow the programmer to divide
and conquer a problem, using
multiple threads to work in
parallel on independent parts of
the problem
• Constructs should be light-weight

syntactically and at run time as
they are used very frequently

Cooperation Independence

We are heading toward parallelism within concurrency

Parallel Lang Support 369

Parallelism within concurrency (example)

Client First-level
dispatcher

Second-level
mapped and
reducer [1]

Service
worker 1

instance 1.1

Service
worker 1

instance 1.n

Second-level
mapper and
reducer [m]

Service
worker m

instance m.1

Service
worker m

instance m.n

Parallel unit

Concurrent unit

Concurrent aggregate

State of the art: what a loss!

 Low-utilization task sets may be deemed not schedulable
 Long-known as the Dhall’s effect [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential complexity
 The known sufficient tests with polynomial complexity are pessimistic

 Several routes for scheduling
 Global, partitioned, or hybrids of them
 Partitioned scheduling corresponds to an allocation problem followed by

single-CPU scheduling (some like it better …)
 Single-processor optimality criteria do not apply

 EDF no longer optimal and not always better than FPS
 Global scheduling not always better than partitioned

 Rate-monotonic priority assignment is not optimal
 The same priority level may have different meaning on different cores
 No known optimal priority assignment with polynomial time complexity

2018/19 UniPD – T. Vardanega Real-Time Systems 370 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 4

Dhall’s effect /1

 Under global scheduling, G-EDF and G-FPS would run
𝒂 and 𝒃 first on each of the 2 processors respectively

 But this would not leave sufficient time for 𝒄 to complete
 7 time units would be available on each processor, but 8 on neither

 Deadline miss even if the total system is underutilized (!)

Task 𝑻 𝑫 𝑪 𝑼
𝒂 10 10 5 0.5

𝒃 10 10 5 0.5

𝒄 12 12 8 0.67

𝑚 ൌ 2

 𝑈 ൌ 1.67 ൏ 𝑚

2018/19 UniPD – T. Vardanega Real-Time Systems 371 of 539

𝑆 ൌ 𝜏ଵ ൌ 3,4 , 𝜏ଶ ൌ 3,4 , 𝜏ଷ ൌ 5,10 , 𝐻ௌ ൌ 20

𝑈௦ ൌ
3
4

3
4

5
10 ൌ 2.0 → 𝑚 ൌ 2

 At 𝑡 ൌ 15, the remaining CPU time is 𝑇ோ ൌ 𝑚 ൈ 𝐻ௌ െ 𝑡 ൌ 𝟏𝟎
 Yet, the time needed is 𝑇ே ൌ 𝑒ଵ 𝑒ଶ 𝑒ଷ ൌ 𝟏𝟏

G-LLF also fails …

2018/19 UniPD – T. Vardanega Real-Time Systems 372 of 539

𝜏ଷ

𝜏ଶ

𝜏ଵ

𝜏ଶ

𝜏ଵ

𝜏ଶ𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଵ𝜏ଵ

3 4 7 8

𝐿ଵ ൌ 1

𝐿ଶ ൌ 1

𝐿ଷ ൌ 5 2

1

1

6 10

0 1

0

1 0

0

9 12

5 3

1

1

0

15

One CPU is idle

𝟎 : zero laxity

Theorem (stating the obvious)
When the total utilization of a periodic task set is equal to
the number of processors, and all tasks have the same
initial release time (𝑡 ൌ 0), then no feasible schedule can
allow any processor to remain idle for any length of time

Why does this happen?

 At time 𝑡 ൌ 3 (and then again at 𝑡 ൌ 15) in the LLF
example, one CPU is left idle for 1 time unit

 That time will be missed out later, at time 𝑡 ൌ 18,
when all three tasks will have laxity 𝐿 ൌ 0 and only two
CPUs are available

 A proper scheduling algorithm should have noticed this
problem already at 𝑡 ൌ 3 !

2018/19 UniPD – T. Vardanega Real-Time Systems 373 of 539

Dhall’s effect /2

 Partitioned scheduling does not work here any better
 After 𝒅 and 𝒆 are assigned, 𝒇 has no place to run

 It needs to migrate from one CPU to the other to find room for execution
 And it also needs that 𝒅 and 𝒆 are willing to yield for 𝒇 to

complete in time

Task 𝑻 𝑫 𝑪 𝑼
𝒅 10 10 9 0.9

𝒆 10 10 9 0.9

𝒇 10 10 2 0.2

𝑚 ൌ 2

 𝑈 ൌ 𝑚

2018/19 UniPD – T. Vardanega Real-Time Systems 374 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 5

The multicore scheduling landscape

2018/19 UniPD – T. Vardanega Real-Time Systems 375 of 539

Global Partitioned

Clustered Hybrid (semi-partitioned)

Understanding the hardware

2018/19 UniPD – T. Vardanega Real-Time Systems 376 of 539

Instruction
cache

Data
cache

Caches

Courtesy of

Hardware interference /1

 Parallel execution on a multiprocessor causes many
opportunities of contention for hardware resources
that are shared among the cores

 This phenomenon increases the execution time of
running threads by causing them to hold the CPU
without progressing (!)
 Unlike software interference on single CPU, where a

thread may be held from running when being ready

2018/19 UniPD – T. Vardanega Real-Time Systems 377 of 539

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of even the
simplest (single-path)
program running alone
does not stay the same
when other programs
execute on other CPUs

2018/19 UniPD – T. Vardanega Real-Time Systems 378 of 539

Courtesy of

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 6

Software interference /1

 What does the SW interference 𝐼 suffered by task
𝜏 in its busy period become on a multiprocessor?
 For partitioned scheduling, obviously it reduces to the

single-processor case
 For global scheduling on an 𝑚-processor system, instead,

interference occurs only when more than k 𝑚 tasks are
ready simultaneously

 Multiprocessor interference can be computed as the
sum of all intervals when 𝑚 higher-priority tasks
execute in parallel on all 𝑚 processors

2018/19 UniPD – T. Vardanega Real-Time Systems 379 of 539

Software interference /2

 A very pessimistic bound considers all higher-
priority tasks to interfere always

𝑅
௫ ൌ 𝐶 ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
𝐶 𝐶𝑗ሻఛೕ∈ሺሻ

 This naïve bound however is extremely pessimistic
 It can be improved, and has been, but for great

computational complexity, still without becoming exact

2018/19 UniPD – T. Vardanega Real-Time Systems 380 of 539

Global scheduling anomalies

 In single-processor scheduling, the deadline miss ratio
often highly depends on the system load
 This suggests that increasing tasks’ period should decrease the

utilization and thus decrease the deadline miss ratio
 Anomaly 1

 A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time windows in which those tasks execute

 Anomaly 2
 A decrease in one task’s processor demand may increase the

interference that it suffers

2018/19 UniPD – T. Vardanega Real-Time Systems 381 of 539

Credits to to B. Andersson and J. Jonsson
for their work in proc. of RTSS WiP Session, 2000, pp. 53–56

Anomaly 1: decrease in ℎ𝑝 demand

Task 𝑻 𝑫 𝑪 𝑼
𝒂 3 3 2 0.67
𝒃 4 4 2 0.50
𝒄 12 12 8 0.67

𝑚 ൌ 2 processors and ∑ 𝑈 ൌ 1.83 , but
𝜏 is saturated because 𝐶 𝐼 ൌ 𝐷,
hence any increase in 𝐼 for the same 𝐶
would make 𝜏 unschedulable

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2018/19 UniPD – T. Vardanega Real-Time Systems 382 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 7

Anomaly 1/b

 With 𝑇 ൌ 4, longer period, the overall load decreases
to 𝑈 ൌ 1.67

 But in this way 𝐼 increases from 4 to 6 and 𝜏 misses its
deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2018/19 UniPD – T. Vardanega Real-Time Systems 383 of 539

Anomaly 2: decrease in own demand

Task 𝑻 𝑫 𝑪 𝑼
𝒂 4 4 2 0.5
𝒃 5 5 3 0.6
𝒄 10 10 7 0.7

𝑚 ൌ 2 processors and 𝑈 ൌ 1.8, but
𝜏 with 𝐼 ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2018/19 UniPD – T. Vardanega Real-Time Systems 384 of 539

Anomaly 2/b

 With 𝑇 ൌ 11, longer period, the overall load decreases
to 𝑈 ൌ 1.74

 But in this way 𝐼 increases from 3 to 5 (!) as it becomes
visible in the second job of 𝜏
 The critical-instant hypothesis no longer applies!

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2018/19 UniPD – T. Vardanega Real-Time Systems 385 of 539

The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and
implement

 They work very well on single-core processors, where
they collapse the urgency of a job into a single value and use it to
schedule jobs greedily

 But greedy algorithms fail on multiprocessors, where
computation and parallelism are distinct dimensions

 Optimality in multicore scheduling needs to use
different principles …

2018/19 UniPD – T. Vardanega Real-Time Systems 386 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 8

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness
also known as P-fairness
 Each task 𝜏 is assigned processing resources in proportion to

its weight 𝑊 ൌ
்

so that it progresses steadily

 Useful, e.g., for real-time multimedia applications
 At every time 𝑡, task 𝜏 must have been scheduled

either 𝑊 ൈ 𝑡 or 𝑊 ൈ 𝑡 time units
 Without loss of generality, preemption is assumed to only

occur at integral time units
 The workload model is assumed to be periodic

2018/19 UniPD – T. Vardanega Real-Time Systems 387 of 539

P-fair scheduling /2

 𝒍𝒂𝒈ሺ𝑆, 𝜏, 𝑡ሻ is the difference between the total
resource allocation that task 𝜏 should have received
in ሾ0, 𝑡ሻ and what it received under schedule 𝑆

 For a P-fair schedule 𝑆 at time 𝑡
 𝜏 is ahead iff 𝒍𝒂𝒈ሺ𝑆, 𝜏, 𝑡ሻ ൏ 0
 𝜏 is behind iff 𝒍𝒂𝒈ሺ𝑆, 𝜏, 𝑡ሻ 0
 𝜏 is punctual iff 𝒍𝒂𝒈ሺ𝑆, 𝜏, 𝑡ሻ ൌ 0

2018/19 UniPD – T. Vardanega Real-Time Systems 388 of 539

P-fair scheduling /3

 𝜶ሺ𝑥ሻ is the characteristic (infinite) string of task 𝜏௫
over ሼെ, 0, ሽ for 𝑡 ∈ ℕ with
 𝜶௧ 𝑥 ൌ 𝒔𝒊𝒈𝒏 𝑊௫ · 𝑡 1 െ 𝑊௫ · 𝑡 െ 1

 Distance from the integral approximation of fluid rate curve

 𝜶ሺ𝑥, 𝑡ሻ is the characteristic substring
𝜶௧ାଵ 𝑥 𝜶௧ାଶ 𝑥 … 𝜶௧ᇱ 𝑥 of task 𝜏௫ at time 𝑡
where 𝑡′ ൌ 𝑚𝑖𝑛 𝑖: 𝑖 𝑡: 𝜶ሺ𝑥ሻ ൌ 0

 For a P-fair schedule 𝑆 at time 𝑡, task 𝜏 is
 Urgent iff 𝜏 is behind and 𝜶𝒕 𝜏 ് െ
 Tnegru iff 𝜏 is ahead and 𝜶𝒕 𝜏 ്
 Contending otherwise

2018/19 UniPD – T. Vardanega Real-Time Systems 389 of 539

Fluid Rate Curve

2018/19 UniPD – T. Vardanega Real-Time Systems 390 of 539

Contending

time

work
completed

job release deadlineperiod T

w
orkload

C

Fluid	rate	curve

Utilization 𝑈
Slope 𝑊 ൌ

்
Actual	work	curve

Slope = 0 or 1
Ahead

Behind

𝑊

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 9

Properties of a P-fair schedule 𝑆

 For task 𝜏 ahead at time 𝑡 under 𝑆
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 not scheduled at 𝑡 then 𝜏 is ahead at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ 0 and 𝜏 not scheduled at 𝑡 then 𝜏 is punctual at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 not scheduled at 𝑡 then 𝜏 is behind at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 scheduled at t then 𝜏 is ahead at 𝑡 1

 For task 𝜏 behind at time 𝑡 under 𝑆
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 scheduled at 𝑡 then 𝜏 is ahead at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 not scheduled at 𝑡 then 𝜏 is behind at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ 0 and 𝜏 scheduled at 𝑡 then 𝜏 is punctual at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 scheduled at 𝑡 then 𝜏 is behind at 𝑡 1

urgent

tnegru

2018/19 UniPD – T. Vardanega Real-Time Systems 391 of 539

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time 𝑡 must be scheduled at 𝑡 so that

P-fairness can be preserved
 No task tnegru at time 𝑡 can be scheduled at 𝑡 without breaking

P-fairness

 Breakage with 𝑛 tnegru, 𝑛ଵ contending, 𝑛ଶ urgent tasks at
time 𝑡, with 𝑚 resources and 𝑛 ൌ 𝑛 𝑛ଵ 𝑛ଶ tasks
 If 𝑛ଶ 𝑚, the scheduling algorithm cannot schedule all urgent

tasks some of them will never be able to catch back
 If 𝑛 𝑛 െ 𝑚, the scheduling algorithm is forced to schedule

some tnegru tasks and consequently waste CPU time on them

2018/19 UniPD – T. Vardanega Real-Time Systems 392 of 539

P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Schedule all urgent tasks
 Allocate the remaining resources to the highest-priority contending

tasks according to the total order function ⊇ with ties broken
arbitrarily
 𝑥 ⊇ 𝑦 iff 𝜶ሺ𝑥, 𝑡ሻ 𝜶ሺ𝑦, 𝑡ሻ
 And the comparison between the characteristics substrings is resolved

lexicographically with െ൏ 0 ൏

 With PF we have ∑ 𝑊௫ ൌ 𝑚௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top

utilization up
 No problem situation can occur with the PF algorithm

2018/19 UniPD – T. Vardanega Real-Time Systems 393 of 539

Example (PF scheduling) /1

Task C T W

𝝉𝒗 1 3 0.333…
𝝉𝒘 2 4 0.5
𝝉𝒙 5 7 0.714…
𝝉𝒚 8 11 0.727…
𝝉𝒛 335 462 3-U

 𝑚 ൌ 3 processors
 𝑛 ൌ 4 tasks
 𝜏௭ is a dummy task used to top

up system utilization to 𝑚
 In general, 𝜏௭’s period is set to

the system hyperperiod
 This time we halved it

 With PF we always have
𝑛ଶ 𝑚 and 𝑛 𝑛 െ 𝑚

2018/19 UniPD – T. Vardanega Real-Time Systems 394 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

Real-Time Systems 10

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

2018/19 UniPD – T. Vardanega Real-Time Systems 395 of 539

