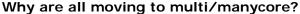

7.a Multicore systems – initial reckoning


Credits to various authors (acknowledged in place)

- Power, power, power
 - Speeding clock rates past 3 GHz increased power density beyond what the chips (and customer pocketbooks) could bear
 - More and more computing is moving to battery-operated mobile platforms where low power is king
- With multi/manycore, the theoretical computing performance-per-watt (PPW) can be increased by adding cores, perhaps slowing clock rate a bit
 - With single core, PPW began to *decrease* with increasing clock rates, due to increased source-to-drain leakage
- Clock rate doubling came to a screeching halt by the year 2005

The right turn in processor performance 1,000,000 100,000 울 10,000 Courtesy IEEE Computer, January 2011, Clock fr 1,000 page 33 1990 1995 2000 2005 2010 2015 2020 Year of introduction Figure 2. Historical growth in single-processor performance and a forecast of processor performance to 2020, based on the ITRS roadmap. A dashed line represents expectations if single-processor performance had continued its historical trend. Parallel Lang Support 36

What are the implications of this right turn?

- Clock rate
 - Clock rates that were doubling about every 2 years, stalled at about 3 GHz by 2005
 - Had they continued doubling, we would now be buying laptops with clocks at about 50 GHz
- Cores/chip
 - Scaling to smaller features has continued
 - Now using added chip real estate for additional CPU "cores"
 - The number of cores/chip has started doubling since 2005
 - In those 10+ years, mainstream commercial x86 chips came at 20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+
- · Almost back on Moore's Law exponential rocket
 - But only if considering cores/chip x performance/core

Parallel Lang Support 364

What else is happening to the HW?

- · HW is getting more complicated
- · Not just a handful of really fast processors
- · Today's fastest computers have
 - A giant network of nodes
 - Each node is itself a heterogeneous conglomeration
 - Multiple cores
 - Vector units
 - GPUs or other accelerators
- · Our challenge is to figure how to program these beasts
 - Ideally we want our programs to *scale without rewriting*, from one core up to a giant server farm or supercomputer
 - Our basic approach is to *eliminate* barriers to parallelization, and remove the *sequential* bias of our programming languages

Parallel Lang Support 367

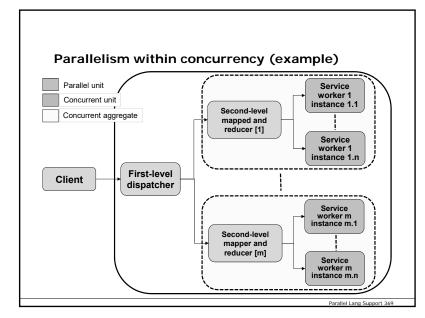
Concurrency vs. Parallelism

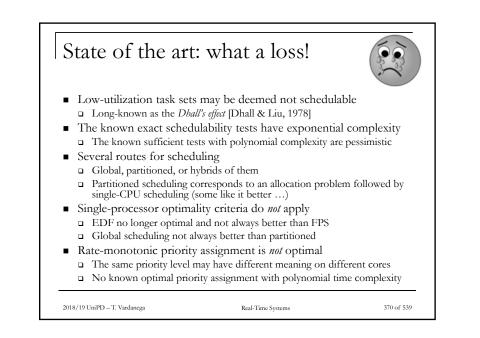
Concurrency

- Concurrent programming constructs allow the programmer to *simplify the program* by using multiple logical threads of control to reflect the natural concurrency in the problem domain
 - Heavier-weight constructs can be acceptable as they used rarely

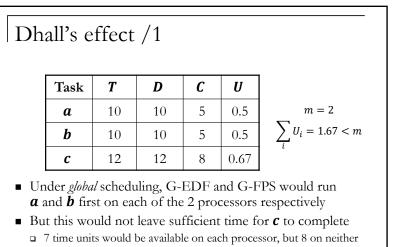
Cooperation

We are heading toward parallelism *within* concurrency


 Parallel programming constructs allow the programmer to divide and conquer a problem, using multiple threads to work in parallel on independent parts of the problem

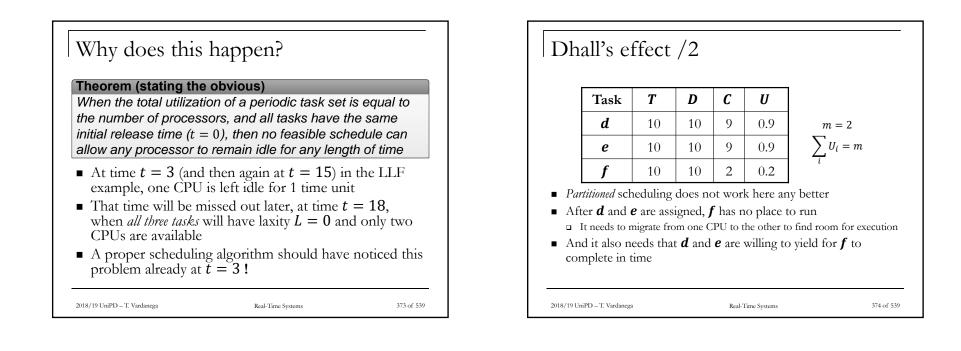

Parallelism

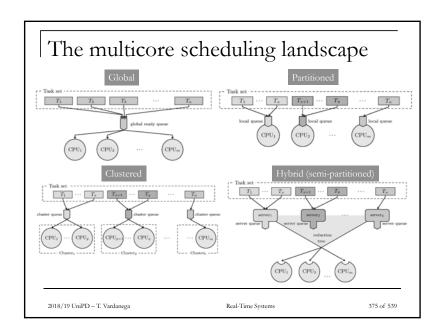
 Constructs should be light-weight syntactically and at run time as they are used very frequently

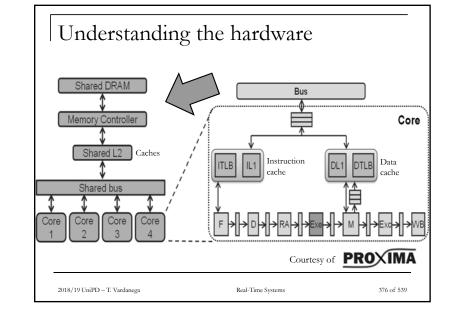

Independence

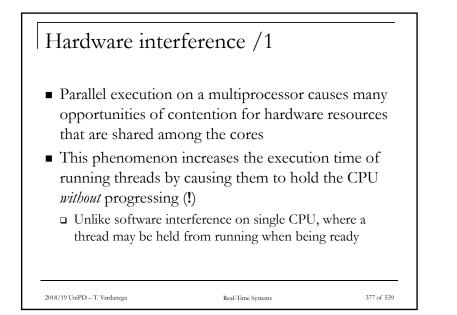
Parallel Lang Support 368

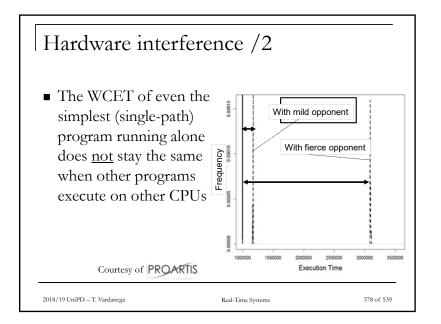
Real-Time Systems

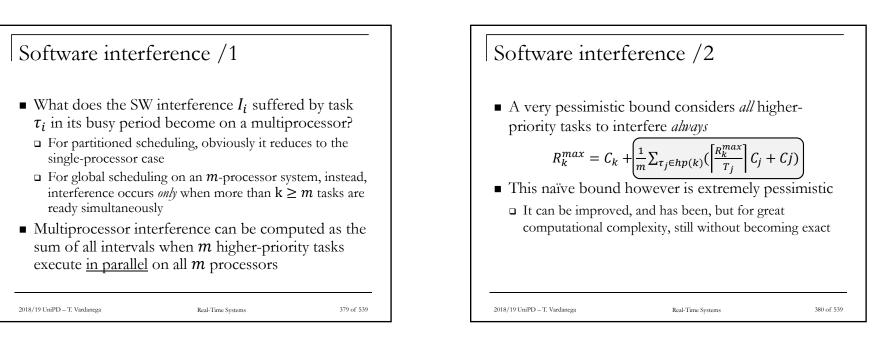

• Deadline miss even if the total system is underutilized (!)

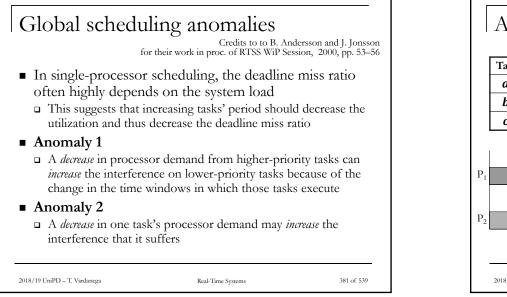

2018/19 UniPD – T. Vardanega

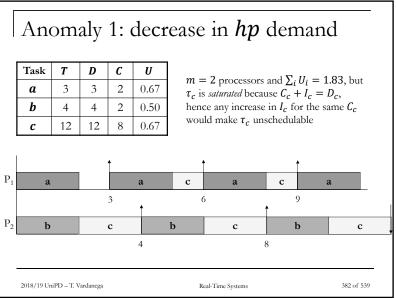

Real-Time Systems

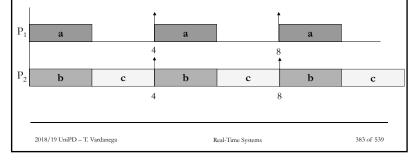

371 of 539

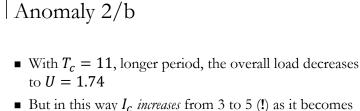

			$(3,4), \tau_3 = (5,1)$ $(5) = 2.0 \rightarrow m$		
$L_1 = 1$	e CPU is idle	τ_1	$\int_{\tau_1}^{\tau_1} \int_{\tau_1}^{0} \tau_1$		t ₁
$L_2 = 1$ τ_2			τ_2	τ_2 τ_2	τ ₂
L ₃ = 5	τ_3	0 : zero la	$\begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{y} \\ \mathbf{x}_{3} $	12	τ_3

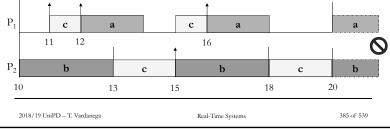


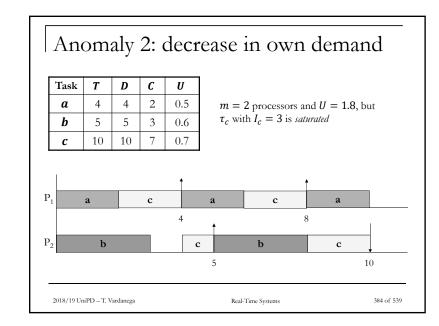


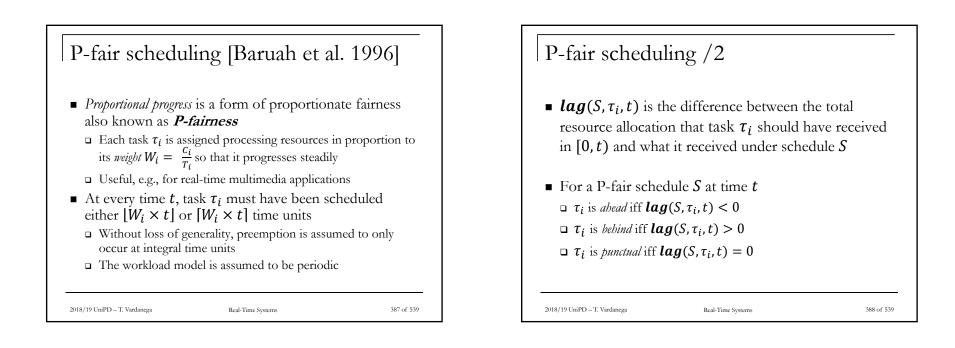


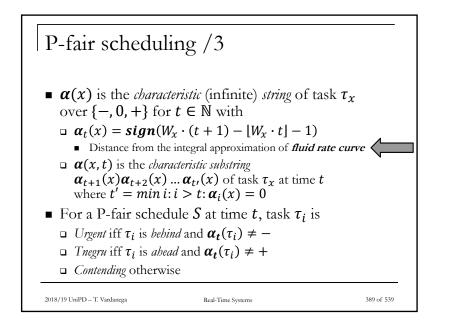


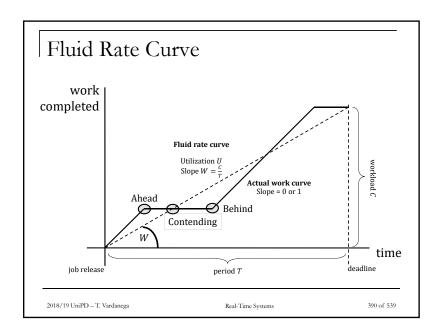


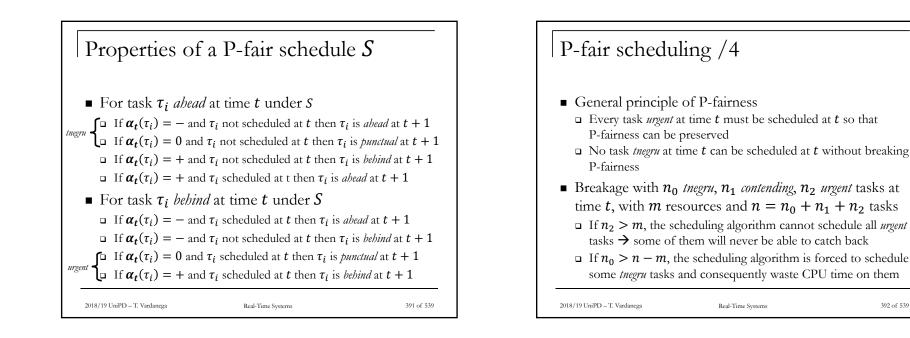

Anomaly 1/b

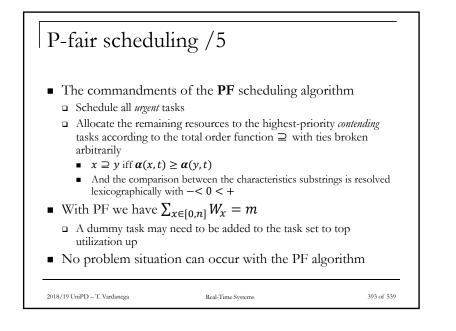

- With T_a = 4, longer period, the overall load decreases to U = 1.67
- But in this way I_c increases from 4 to 6 and τ_c misses its deadline (!)

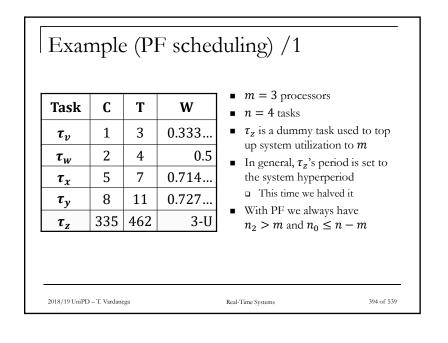



- But in this way *I_c increases* from 3 to 5 (!) as it becomes visible in the <u>second</u> job of *τ_c*
 - □ The critical-instant hypothesis no longer applies!






The defeat of greedy schedulers Greedy algorithms are easy to explain, study, and implement They work very well on single-core processors, where *they collapse the urgency of a job into a single value* and use it to schedule jobs greedily But greedy algorithms fail on multiprocessors, where *computation and parallelism are distinct dimensions*Optimality in multicore scheduling needs to use different principles ...



F	Exa	ım	pl	e (PF	sc	:h	ec	lu	lin	<u>g)</u> /	2	
			-	Г	These task	s are s	chedul	led and	they b	pecome	ahead		
		lag	$x \times p$	eriod	characteris			erist	ic string urge		urgent	contending	tnegru
t	v	w	x	y	z	v	w	x	y	2	tasks	tasks	tasks
0	0	0	0	0	0	-					{}	y > z > x > w > v	-{}-
1	1	2	-2	-3	-127	-	0	+	+	+	$\{w\}$	y > z > x > v	-{}
2	2	0	3	-6	-254	0	-	+	+	+	$\{v, x\}$	w > y > z	{}
3	0	(-2)	1	2	- 81	-	\odot) -	-			y > z > x > v	w
4	1	0	$^{-1}$	-1	-46	-	4	+	+	+	{}	y>z>x>v=w	$\overline{\langle}$
5	2	2	$\overline{)}$	-4	-173	0	0	+	+	+	$\{v, w\}$	y > z > x	$\langle \{\}$
6	0	0	2	-7	162		-	0	+	+	$\{x, z\}$	w > y > v	
7	1	-2	0	1	35	-	0	- /				y > z > x > x	$\{w\}$
8	2	0	-2	-2	-92	0	-	+	+	+	$\{v\}$	$y > z > x \neq w$	{}
9	0	2	3	-5	-219	-	0	+	+	+	$\{w, x\}$	y > z > v	{}
10	1	0	- 1	-8	116	-	-	F	0		{}	z > x > v = w	$\{y\}$
11	$^{-1}$	2	$^{-1}$	0	-11	0	0	+	-	+	$\{w\}$	y > z > x	$\{v\}$
12	0	0	- 4	$^{-3}$	-13	-		+	+	+	$\{x\}$	y > z > w > v	
13	1	2	2	-6	-265	<u>\-</u>	0	0	+	+	$\{w, x\}$	v > y > z	
14	-1	0	0	2	70	0			-	-1		y > z > x > w	$\{v\}$
15	0	2	-2	-1	-57	-	0	+	+	+	$\{w\}$	y > z > x > v	{}
16	1	0	3	-4	-184	-	-	+	+	+	$\{x\}$	y > z > v = w	{}
17	2	2	- 1	-7	-311	0	0	$\left \right\rangle$	+	+	$\{v, w\}$	x > y > z	-{}
18	0	0	-1	- 1	24		-	+	(+	7	{}	y>z>x>w>v	-{}
19	1	2	-3	-2	-103	-	0	+	A	/+-	$\{w\}$	y > z > v = x	-{}
	8/19 Un								-	l-Time S			95 of 539