2018/19 UniPD - T. Vardanega

7.a Multicore systems —
initial reckoning

Credits to various authors (acknowledged in place)

05/05/2019

| Fundamental issues = 4
= \\‘ - ’/:/
4 -
m Hardwarte architecture taxonomy i _‘ o B

=] Hornogeneous VS. heterogeneous processors

m Research focused first on SMP (symmetric multiprocessors) which make a
much simpler problem

m Attention is now shifting to heterogeneous processors, which are
becoming dominant in a variety of application domains

m Scheduling approach
o Global / pattitioned, or alternatives between these extremes
m Partitioning = allocation problem followed by single-CPU scheduling
m Optimality criteria are shattered
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than partitioned

2018/19 UniPD — T. Vardanega Real-Time Systems 360 of 539

Hardware architecture taxonomy

m A multiprocessor (or multi-core) is #ghtly coupled

0 Global status and workload information on all processors
(cores) can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler

0 When each processor (core) has its own scheduler, the
decisions and actions of all schedulers are coherent

m Scheduling in this model is an NP-hard problem
m A distributed system is loosely coupled
o Itis too costly to keep global status

0 Thete usually is a dispatcher / schedulet per processot

2018/19 UniPD — T. Vardanega Real-Time Systems 361 of 539

RPaal-Tima [v/etame

What 1s changing in the
HW world?

Credits to Tucker Taft

Ada

The GNAT Pro Company

2018/19 UniPD - T. Vardanega 05/05/2019

What’s the matter with the processor HW? Why are all moving to multi/manycore?
= Big, unstoppable shift to multicore, manycore, = Power, power, power
heterogeneous (e.g. GPGPU), cloud computing — Speeding clock rates past 3 GHz increased power density beyond
= Associated challenge what the chips (and customer pocketbooks) could bear
— Itis already hard to write safe, correct sequential programs for — More and more computing is moving to battery-operated mobile
single-processors platforms where low power is king
— Will programming for multicores exceed our abilities? = With multi/manycore, the theoretical computing
- Very opportune goal: provide programming language performance-per-watt (PPW) can be increased by
support to make it easy and natural to write safe adding cores, perhaps slowing clock rate a bit

(including predictable), correct parallel programs — With single core, PPW began to decrease with increasing clock

— Perhaps even easier than it is to write safe, correct sequential rates, due to increased source-to-drain leakage
programs in many existing languages - Clock rate doubling came to a screeching halt by

= Is that possible? the year 2005

Parallel Lanﬁ SuEIEDrl 363 Parwt 364
The right turn in processor performance What are the implications of this right turn?
b e Clock rate
— Clock rates that were doubling about every 2 years, stalled at
100,000 about 3 GHz by 2005
— Had they continued doubling, we would now be buying laptops
| =, with clocks at about 50 GHz
[[ai Courtesy
g IEEE Computer, = Cores/chip
§ o January 2011, — Scaling to smaller features has continued
‘ - page 33 — Now using added chip real estate for additional CPU “cores”
| — The number of cores/chip has started doubling since 2005
100
| — In those 10+ years, mainstream commercial x86 chips came at
‘ 20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+
[Ciogs om0 199 2000 2005 010 2075 2020 « Almost back on Moore’s Law exponential rocket
Year of introduction
— But only if considering cores/chip x performance/core
Figure 2. Historical growth in single-processor performance
and a forecast of processor performance to 2020, based on the
ITRS d A dashed line rep (=] il if single-
processor performance had continued its historical trend.
Parallel Lang SuEEorl 365 Pw

RPaal-Tima [v/etame 9]

2018/19 UniPD - T. Vardanega

— Multiple cores
— Vector units

— GPUs or other accelerators

What else is happening to the HW?

= HW is getting more complicated

« Today’s fastest computers have
— A giant network of nodes

= Not just a handful of really fast processors

— Each node is itself a heterogeneous conglomeration

= Our challenge is to figure how to program these beasts
— ldeally we want our programs to scale without rewriting, from one
core up to a giant server farm or supercomputer
— Our basic approach is to eliminate barriers to parallelization, and
remove the sequential bias of our programming languages

05/05/2019

Concurrency vs. Parallelism

Concurrency

Concurrent programming
constructs allow the programmer
to simplify the program by using
multiple logical threads of control
to reflect the natural concurrency
in the problem domain

« Heavier-weight constructs can be

acceptable as they used rarely

Cooperation

Parallelism

Parallel programming constructs
allow the programmer to divide
and conquer a problem, using
multiple threads to work in
parallel on independent parts of
the problem
= Constructs should be light-weight
syntactically and at run time as
they are used very frequently

Independence

Parallel Lang Support 367

Parallel Lang Support 368

I:I Parallel unit /
‘:’ Concurrent unit

I:] Concurrent aggregate

Parallelism within concurrency (example)

. First-level

Second-level

ELLLLLLLIIISON
Service \
worker 1 |

instance 1.1

mapped and
reducer [1]

instance 1.n

Service
worker 1

Second-level

mapper and
reducer [m]

Service
worker m !
instance m.n 1
4
¥

’

Service
worker m
instance m.1

——————————

Parallel Lang Support 369

RPaal-Tima [v/etame

‘ State of the art: what a loss!

Low-utilization task sets may be deemed not schedulable

o Long-known as the Dhall’s ¢ffect [Dhall & Liu, 1978]

The known exact schedulability tests have exponential complexity
0 The known sufficient tests with polynomial complexity are pessimistic

Several routes for scheduling

o Global, pattitioned, or hybrids of them

o Partitioned scheduling corresponds to an allocation problem followed by
single-CPU scheduling (some like it better ...)

Single-processor optimality criteria do #oz apply
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than partitioned

Rate-monotonic priority assignment is 7of optimal
0 The same priority level may have different meaning on different cores
o No known optimal priority assignment with polynomial time complexity

2018/19 UniPD - T. Vardanega

Real-Time Systems

370 of 539

2018/19 UniPD - T. Vardanega 05/05/2019

| Dhall’s effect /1 | G-LLF also fails ...

Task T D C U S={n= (3’43)' T23= (34),73 = (5,10)}, Hs = 20
a 10 10 5 0'5 m:2 One CPU is idle US=Z+Z+1_0=20 _)mzz
b 10 10 5 05 ZUi —167 <m A =1 \ A I 1o A A
i T1 k T1 | I T1 \ T1 \

C 12 12 8 0.67 A =1 A1 oN 1 0 7 S A

m Under global scheduling, G-EDF and G-FPS would run = I] ledo] [o = 2
a and b first on each of the 2 processors respectively T fas ’ Vol © A S P ! ,

m But this would not leave sufficient time for € to complete ; = - el - 23 —X - - ER:

o 7 time units would be available on each processor, but 8 on neither

. m Att = 15, the remaining CPU time is Ts, = m X (Hg — t) = 10
m Deadline miss even if the total system is underutilized (!)

= Yet, the time needed is Ty = e; + e, +e3 =11

2018/19 UniPD — T. Vardanega Real-Time Systems 371 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 372 of 539
| Why does this happen? | Dhall’s effect /2

When the total utilization of a periodic task set is equal to Task | T D | C | U

.th_e. number of processors, and all task; have the same d 10 10 9 0.9 m=2

initial release time (¢t = 0), then no feasible schedule can

allow any processor to remain idle for any length of time e 10 1019] 09 Z Ui=m

m At time t = 3 (and then again at t = 15) in the LLF f 10 | 10 | 2| 02

example, one CPU is left idle for 1 time unit

m That time will be missed out later, at time t = 18,

when all three .tﬂj/é‘f will have laXIty L'=0and Only two o It needs to migrate from one CPU to the other to find room for execution
CPUs are available

m And it also needs that d and e atre willing to yield fot f to
complete in time

m Partitioned scheduling does not work here any better
m After d and e ate assigned, f has no place to run

m A proper scheduling algorithm should have noticed this
problem already at t = 3!

2018/19 UniPD — T. Vardanega Real-Time Systems 373 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 374 of 539

RPaal-Tima [v/etame A

2018/19 UniPD - T. Vardanega 05/05/2019

| The multicore scheduling landscape | Understanding the hardware
Partitioned

Bus
Y .
S $ Core
!

Instruction

ITLB| | IL1

Shared bus |/
¢4 1
Core | Core [Core][Core
1 2 3 4

Courtesy of PROXIMA

2018/19 UniPD — T. Vardanega Real-Time Systems 375 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 376 of 539
’ Hardware interference /1 ‘ Hardware interference /2
m Parallel execution on a multiprocessor causes many m The WCET of even the | [—
.. . . . g1 ith mi i
opportunities of contention for hardware resources simplest (single-path) 2 Wth mild opponent |
. > I
that are shared among the cores program running alone l
h -~ g With fierce opponent |
. . . . o T —— H
m This phenomenon increases the execution time of does not stay the same £ T i
. 3 i !
running threads by causing them to hold the CPU when other programs g '
. . I]
withont progressing (1) execute on other CPUs ~ § | | :
'
. . .]
o Unlike software interference on single CPU, where a]
thread may be held from running when being ready i H
O S
Courtesy of PRE VARTIS Execution Time
2018/19 UniPD — T. Vardanega Real-Time Systems 377 of 539 2018/19 UniPD - T. Vardanega Real-Time Systems 378 of 539

RPaal-Tima [v/etame [~

2018/19 UniPD - T. Vardanega

| Software interference /1

m What does the SW interference I; suffered by task
T; in its busy period become on a multiprocessor?
o For partitioned scheduling, obviously it reduces to the
single-processor case
o For global scheduling on an m-processor system, instead,
interference occuts on/y when mote than k > m tasks are
ready simultaneously
m Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors

2018/19 UniPD — T. Vardanega Real-Time Systems 379 of 539

05/05/2019

| Software interference /2

m A very pessimistic bound considers a/ higher-
priority tasks to interfere always

1 Rmax i
R = G, +[;zf,.ehp<k>([’;—j] G+ CJ)]

m This naive bound however is extremely pessimistic

o It can be improved, and has been, but for great
computational complexity, still without becoming exact

2018/19 UniPD - T. Vardanega Real-Time Systems 380 of 539

| Global scheduling anomalies

Credits to to B. Andersson and J. Jonsson
for their work in proc. of RTSS WiP Session, 2000, pp. 53-56
m In single-processor scheduling, the deadline miss ratio
often highly depends on the system load
0 This suggests that increasing tasks’ period should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1

Q A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time windows in which those tasks execute

= Anomaly 2

Q A decrease in one task’s processor demand may zuerease the
interference that it suffers

2018/19 UniPD — T. Vardanega Real-Time Systems 381 of 539

RPaal-Tima [v/etame

Anomaly 1: decrease in hp demand

Task | T D c U
m = 2 processors and),; U; = 1.83, but
a 2 | 067 T, is saturated because Cp + 1. = D,
b 4 2 | 0.50 hence any increase in I, for the same C,
c 12112 1 8 | 067 would make T, unschedulable
P, a | a | c a c a |
3 6 9
P, b | c b | c b ’ c
4 8

2018/19 UniPD — T. Vardanega Real-Time Systems 382 of 539

2018/19 UniPD - T. Vardanega

| Anomaly 1/b

m With T, = 4, longer period, the overall load decreases
to U = 1.67

m But in this way I, zncreases from 4 to 6 and T, misses its

deadline (!)

05/05/2019

2018/19 UniPD — T. Vardanega Real-Time Systems 383 of 539

| Anomaly 2: decrease in own demand

Task | T D c U
a 4 2 0.5 m = 2 processors and U = 1.8, but
b 5 3 0.6 T with I, = 3 is saturated
c 10 | 10 | 7 0.7
P, a | c a c a
4 8
P, b | | c b c
5 10
2018/19 UniPD - T. Vardanega Real-Time Systems 384 of 539

| Anomaly 2/b

m With T, = 11, longer period, the overall load decreases
toU = 1.74

m But in this way I, zncreases from 3 to 5 (!) as it becomes
visible in the second job of 7,

0 The critical-instant hypothesis no longer applies!

©

P, - EE - .
11 12 16
Pz b C b Cc b
10 13 15 18 20

2018/19 UniPD — T. Vardanega Real-Time Systems 385 of 539

RPaal-Tima [v/etame

| The defeat of greedy schedulers

m Greedy algorithms are easy to explain, study, and
implement

m They work very well on single-core processors, where
they collapse the nrgency of a job into a single value and use it to
schedule jobs greedily

m But greedy algorithms fail on multiprocessors, where
computation and parallelism are distinct dimensions

m Optimality in multicore scheduling needs to use
different principles ...

2018/19 UniPD — T. Vardanega Real-Time Systems 386 of 539

2018/19 UniPD - T. Vardanega

| P-fair scheduling [Baruah et al. 1996]

w Proportional progress is a form of proportionate fairness
also known as P-fairness
0 Each task 7; is assigned processing resources in proportion to
its weight W; = T—i so that it progresses steadily
0 Useful, e.g., for real-time multimedia applications
m At every time t, task T; must have been scheduled
either [W; X t] or [W; X t] time units

o Without loss of generality, preemption is assumed to only
occur at integral time units

0 The workload model is assumed to be periodic

2018/19 UniPD — T. Vardanega Real-Time Systems 387 of 539

| P-fair scheduling /2

m lag(S,t;,t) is the difference between the total
resource allocation that task T; should have received
in [0, t) and what it received under schedule S

m For a P-fair schedule S at time t
Q T; is abead iff lag(S,t;,t) <0
Q T; is bebind iff lag(S, 7, t) > 0
Q T; is punctual iff lag(S,t;,t) = 0

2018/19 UniPD - T. Vardanega Real-Time Systems 388 of 539

| P-fair scheduling /3

m a(x) is the characteristic (infinite) string of task T,
over {—,0,+} for t € N with
0 a,(x) = sign(W, - (¢ +1) — W, - t] = 1)
m Distance from the integral approximation of fluid rate curve
o a(x,t) is the characteristic substring
;1 ()5 (X) ... g, (x) of task T, at time t
where t' =mini:i > t:a;(x) =0
m For a P-fair schedule S at time t, task T; is
a Urgent iff T; is behind and a;(1;) # —
Q Tnegru iff T; is ahead and oty (1;) # +

a Contending otherwise

2018/19 UniPD — T. Vardanega Real-Time Systems 389 of 539

RPaal-Tima [v/etame

| Fluid Rate Curve

work
completed —i
- - I
-7 i
P I
e I
Fluid rate curve [:
1
Utilization U by 1 s
_C P : S
SlopeW—;’/ . > =
7 Actual work curve 1 2
e Slope =0 or 1 | z
Ahead e !
Behind 1
Pig . !
.-~ Contending '
T w i
- L]
] time
1
job release period T deadline
2018/19 UniPD - T. Vardanega Real-Time Systems 390 of 539

05/05/2019

2018/19 UniPD - T. Vardanega

| Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a;(7;) = — and 7; not scheduled at t then T; is abead at t + 1
e {D If oty (t;) = 0 and 7; not scheduled at t then T; is punctnal at t + 1
If a;(7;) = + and 7; not scheduled at t then T; is behind at t + 1
If a;(7;) = + and 7; scheduled at t then T; is ahead at t + 1

o
o

m For task 7; behind at time t under S
o If a;(7;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a,(7;) = — and 7; not scheduled at t then T; is behind at t + 1
b If a,(7;) = 0 and 7; scheduled at t then T; is punctual at t + 1

et {D If a;(7;) = + and 7; scheduled at t then T; is behind at t + 1

2018/19 UniPD — T. Vardanega Real-Time Systems 391 of 539

05/05/2019

| P-fair scheduling /4

m General principle of P-fairness
a Every task #rgent at time t must be scheduled at ¢ so that
P-fairness can be preserved
0 No task #egru at time t can be scheduled at ¢ without breaking
P-fairness

m Breakage with ng fnegru, ny contending, Ny urgent tasks at
time t, with m resources and n = ng + nqy + n, tasks
a If ny > m, the scheduling algorithm cannot schedule all wrgent
tasks = some of them will never be able to catch back

a Ifng > n —m, the scheduling algorithm is forced to schedule
some #egru tasks and consequently waste CPU time on them

2018/19 UniPD - T. Vardanega Real-Time Systems 392 of 539

| P-fair scheduling /5

m The commandments of the PF scheduling algorithm
o Schedule all wrgent tasks
o Allocate the remaining resources to the highest-priority contending
tasks according to the total order function 2 with ties broken
arbitrarily
s x2yiffa(xt) = a(y,t)
m And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
m With PF we have er[o_n] W, =m

0 A dummy task may need to be added to the task set to top
utilization up

= No problem situation can occur with the PF algorithm

2018/19 UniPD — T. Vardanega Real-Time Systems 393 of 539

RPaal-Tima [v/etame

| Example (PF scheduling) /1

®m m = 3 processors
Task C T w m 1 =4 tasks
T, 1 3 0.333...| = 7;isadummy task used to top
up system utilization to m
Tw 2 4 0.5 = In general, T,’s period is set to
Ty 5 7 0.714... the system hyperperiod
T, 8 11 0.727... =} ‘Thls time we halved it
m With PF we always have
1, 335|462 3-U ny, >mandnyg <n—m

2018/19 UniPD — T. Vardanega Real-Time Systems 394 of 539

2018/19 UniPD - T. Vardanega

| Example (PF scheduling) /2
-| These tasks are scheduled and they become ahead
lag = period T characteristic string || dontending Ctnegro
t v u i 1 sleJw]xuw] = asks tasks tasks
0 0 0 0 = | =l =] =] = i y>z>rlw>e {}
1 1 2[-2] -3 -0+ |+] + {w} yrz>r>v {}
2 2 0 3| -6 Ol =]+]+ + [{v.=} w>y>z {F
3 02D 1 2 -y -1-1- {} y>i>r>uv ur
4 HRNEE! - | &[+|+] + i yricro>v=w
5 2 2 N=3 | =4 oo\ [+ [+ + [{v. e} y>:>a
G of o] a|-7 1=\ ol+] + [{51 w =y > v
7 1|=2] o 1 ol -1T-1- z {w}
= 2 0] -z |2 0| - \+ |+]| + {3
9 o] 2| 3|-5 o[\ [+]+ {}
10 1| o] 1]|-= — =t o] = {v}
11 | =1 2] -1 0 oo |4 -1+ {v}
12 o o 4| -3 - = A+ [+ {1
13 1 2 2| =6 — |0 :\ + | + 17
4] —1|] 0| 0| 2 o -1-1-1- {r}
5 o 2| =21 - No [+ K+ +)
16 1 0 3| -4 -+ [+ [+ T} y>:>v=w
T 2] 2| 1| -7 00N | W] + e wy Y
1% 0 0 =1 1 -1 -1 {} yri>ro>w>uw
19 1 2| =3 -2 -lol+ N1+ {w} y>:i>v=ur
2018/19 UniPD — T. Vardanega Real-Time Systems 395 of 539

RPaal-Tima [v/etame

05/05/2019

10N

