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7.a Multicore systems —
initial reckoning

Credits to various authors (acknowledged in place)
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| Fundamental issues = 4
= \\‘ - ’/:/
4 -
m Hardwarte architecture taxonomy i _‘ o B

=] Hornogeneous VS. heterogeneous processors

m  Research focused first on SMP (symmetric multiprocessors) which make a
much simpler problem

m  Attention is now shifting to heterogeneous processors, which are
becoming dominant in a variety of application domains

m Scheduling approach
o Global / pattitioned, or alternatives between these extremes
m  Partitioning = allocation problem followed by single-CPU scheduling
m Optimality criteria are shattered
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than partitioned
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Hardware architecture taxonomy

m A multiprocessor (or multi-core) is #ghtly coupled

0 Global status and workload information on all processors
(cores) can be kept current at low cost

0 The system may use a centralized dispatcher and scheduler

0 When each processor (core) has its own scheduler, the
decisions and actions of all schedulers are coherent

m Scheduling in this model is an NP-hard problem
m A distributed system is loosely coupled
o Itis too costly to keep global status

0 Thete usually is a dispatcher / schedulet per processot
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What 1s changing in the
HW world?

Credits to Tucker Taft
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What’s the matter with the processor HW? Why are all moving to multi/manycore?
= Big, unstoppable shift to multicore, manycore, = Power, power, power
heterogeneous (e.g. GPGPU), cloud computing — Speeding clock rates past 3 GHz increased power density beyond
= Associated challenge what the chips (and customer pocketbooks) could bear
— Itis already hard to write safe, correct sequential programs for — More and more computing is moving to battery-operated mobile
single-processors platforms where low power is king
— Will programming for multicores exceed our abilities? = With multi/manycore, the theoretical computing
- Very opportune goal: provide programming language performance-per-watt (PPW) can be increased by
support to make it easy and natural to write safe adding cores, perhaps slowing clock rate a bit

(including predictable), correct parallel programs — With single core, PPW began to decrease with increasing clock

— Perhaps even easier than it is to write safe, correct sequential rates, due to increased source-to-drain leakage
programs in many existing languages - Clock rate doubling came to a screeching halt by

= Is that possible? the year 2005

Parallel Lanﬁ SuEIEDrl 363 Parwt 364
The right turn in processor performance What are the implications of this right turn?
b e Clock rate
— Clock rates that were doubling about every 2 years, stalled at
100,000 about 3 GHz by 2005
— Had they continued doubling, we would now be buying laptops
| =, with clocks at about 50 GHz
[[ai Courtesy
g IEEE Computer, = Cores/chip
§ o January 2011, — Scaling to smaller features has continued
‘ - page 33 — Now using added chip real estate for additional CPU “cores”
| — The number of cores/chip has started doubling since 2005
100
| — In those 10+ years, mainstream commercial x86 chips came at
‘ 20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+
[ Ciogs om0 199 2000 2005 010 2075 2020 « Almost back on Moore’s Law exponential rocket
Year of introduction
— But only if considering cores/chip x performance/core
Figure 2. Historical growth in single-processor performance
and a forecast of processor performance to 2020, based on the
ITRS d A dashed line rep (=] il if single-
processor performance had continued its historical trend.
Parallel Lang SuEEorl 365 Pw
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— Multiple cores
— Vector units

— GPUs or other accelerators

What else is happening to the HW?

= HW is getting more complicated

« Today’s fastest computers have
— A giant network of nodes

= Not just a handful of really fast processors

— Each node is itself a heterogeneous conglomeration

= Our challenge is to figure how to program these beasts
— ldeally we want our programs to scale without rewriting, from one
core up to a giant server farm or supercomputer
— Our basic approach is to eliminate barriers to parallelization, and
remove the sequential bias of our programming languages
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Concurrency vs. Parallelism

Concurrency

Concurrent programming
constructs allow the programmer
to simplify the program by using
multiple logical threads of control
to reflect the natural concurrency
in the problem domain

« Heavier-weight constructs can be

acceptable as they used rarely

Cooperation

Parallelism

Parallel programming constructs
allow the programmer to divide
and conquer a problem, using
multiple threads to work in
parallel on independent parts of
the problem
= Constructs should be light-weight
syntactically and at run time as
they are used very frequently

Independence
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I:I Parallel unit /
‘:’ Concurrent unit

I:] Concurrent aggregate

Parallelism within concurrency (example)

. First-level

Second-level
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Service \
worker 1 |

instance 1.1

mapped and
reducer [1]

instance 1.n

Service
worker 1

Second-level

mapper and
reducer [m]

Service
worker m !
instance m.n 1
4
¥

’

Service
worker m
instance m.1

——————————
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‘ State of the art: what a loss!

Low-utilization task sets may be deemed not schedulable

o Long-known as the Dhall’s ¢ffect [Dhall & Liu, 1978]

The known exact schedulability tests have exponential complexity
0 The known sufficient tests with polynomial complexity are pessimistic

Several routes for scheduling

o Global, pattitioned, or hybrids of them

o Partitioned scheduling corresponds to an allocation problem followed by
single-CPU scheduling (some like it better ...)

Single-processor optimality criteria do #oz apply
o EDF no longer optimal and not always better than FPS
o Global scheduling not always better than partitioned

Rate-monotonic priority assignment is 7of optimal
0 The same priority level may have different meaning on different cores
o No known optimal priority assignment with polynomial time complexity
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| Dhall’s effect /1 | G-LLF also fails ...

Task T D C U S={n= (3’43)' T23= (34),73 = (5,10)}, Hs = 20
a 10 10 5 0'5 m:2 One CPU is idle US=Z+Z+1_0=20 _)mzz
b 10 10 5 05 ZUi —167 <m A =1 \ A I 1o A A
i T1 k T1 | I T1 \ T1 \

C 12 12 8 0.67 A =1 A1 oN 1 0 7 S A

m Under global scheduling, G-EDF and G-FPS would run = I ] ledo] [ o = 2
a and b first on each of the 2 processors respectively T fas ’ Vol © A S P ! ,

m But this would not leave sufficient time for € to complete ; = - el - 23 —X - - ER:

o 7 time units would be available on each processor, but 8 on neither

. . . . . m Att = 15, the remaining CPU time is Ts, = m X (Hg — t) = 10
m Deadline miss even if the total system is underutilized (!)

= Yet, the time needed is Ty = e; + e, +e3 =11
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| Why does this happen? | Dhall’s effect /2

When the total utilization of a periodic task set is equal to Task | T D | C | U

.th_e. number of processors, and all task; have the same d 10 10 9 0.9 m=2

initial release time (¢t = 0), then no feasible schedule can

allow any processor to remain idle for any length of time e 10 1019 ] 09 Z Ui=m

m At time t = 3 (and then again at t = 15) in the LLF f 10 | 10 | 2| 02

example, one CPU is left idle for 1 time unit

m That time will be missed out later, at time t = 18,

when all three .tﬂj/é‘f will have laXIty L'=0and Only two o It needs to migrate from one CPU to the other to find room for execution
CPUs are available

m And it also needs that d and e atre willing to yield fot f to
complete in time

m  Partitioned scheduling does not work here any better
m After d and e ate assigned, f has no place to run

m A proper scheduling algorithm should have noticed this
problem already at t = 3!
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| The multicore scheduling landscape | Understanding the hardware
Partitioned

Bus
Y .
S $ Core
!

Instruction

ITLB| | IL1

Shared bus |/
¢4 1
Core | Core [Core][Core
1 2 3 4

Courtesy of PROXIMA
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’ Hardware interference /1 ‘ Hardware interference /2
m Parallel execution on a multiprocessor causes many m The WCET of even the | [—
.. . . . g1 ith mi i
opportunities of contention for hardware resources simplest (single-path) 2 Wth mild opponent |
. > I
that are shared among the cores program running alone l
h -~ g With fierce opponent |
. . . . o T —— H
m This phenomenon increases the execution time of does not stay the same £ T i
. 3 i !
running threads by causing them to hold the CPU when other programs g '
. . I ]
withont progressing (1) execute on other CPUs ~ § | | :
'
. . . ]
o Unlike software interference on single CPU, where a ]
thread may be held from running when being ready i H
O S
Courtesy of PRE VARTIS Execution Time
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| Software interference /1

m What does the SW interference I; suffered by task
T; in its busy period become on a multiprocessor?
o For partitioned scheduling, obviously it reduces to the
single-processor case
o For global scheduling on an m-processor system, instead,
interference occuts on/y when mote than k > m tasks are
ready simultaneously
m Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors
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| Software interference /2

m A very pessimistic bound considers a/ higher-
priority tasks to interfere always

1 Rmax i
R = G, +[;zf,.ehp<k>([’;—j] G+ CJ)]

m This naive bound however is extremely pessimistic

o It can be improved, and has been, but for great
computational complexity, still without becoming exact
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| Global scheduling anomalies

Credits to to B. Andersson and J. Jonsson
for their work in proc. of RTSS WiP Session, 2000, pp. 53-56
m In single-processor scheduling, the deadline miss ratio
often highly depends on the system load
0 This suggests that increasing tasks’ period should decrease the
utilization and thus decrease the deadline miss ratio
= Anomaly 1

Q A decrease in processor demand from higher-priority tasks can
increase the interference on lower-priority tasks because of the
change in the time windows in which those tasks execute

= Anomaly 2

Q A decrease in one task’s processor demand may zuerease the
interference that it suffers
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Anomaly 1: decrease in hp demand

Task | T D c U
m = 2 processors and ),; U; = 1.83, but
a 2 | 067 T, is saturated because Cp + 1. = D,
b 4 2 | 0.50 hence any increase in I, for the same C,
c 12112 1 8 | 067 would make T, unschedulable
P, a | a | c a c a |
3 6 9
P, b | c b | c b ’ c
4 8
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| Anomaly 1/b

m With T, = 4, longer period, the overall load decreases
to U = 1.67

m But in this way I, zncreases from 4 to 6 and T, misses its

deadline (!)

05/05/2019
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| Anomaly 2: decrease in own demand

Task | T D c U
a 4 2 0.5 m = 2 processors and U = 1.8, but
b 5 3 0.6 T with I, = 3 is saturated
c 10 | 10 | 7 0.7
P, a | c a c a
4 8
P, b | | c b c
5 10
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| Anomaly 2/b

m With T, = 11, longer period, the overall load decreases
toU = 1.74

m But in this way I, zncreases from 3 to 5 (!) as it becomes
visible in the second job of 7,

0 The critical-instant hypothesis no longer applies!

©

P, - EE - .
11 12 16
Pz b C b Cc b
10 13 15 18 20
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| The defeat of greedy schedulers

m Greedy algorithms are easy to explain, study, and
implement

m They work very well on single-core processors, where
they collapse the nrgency of a job into a single value and use it to
schedule jobs greedily

m But greedy algorithms fail on multiprocessors, where
computation and parallelism are distinct dimensions

m Optimality in multicore scheduling needs to use
different principles ...
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| P-fair scheduling [Baruah et al. 1996]

w Proportional progress is a form of proportionate fairness
also known as P-fairness
0 Each task 7; is assigned processing resources in proportion to
its weight W; = T—i so that it progresses steadily
0 Useful, e.g., for real-time multimedia applications
m At every time t, task T; must have been scheduled
either [W; X t] or [W; X t] time units

o Without loss of generality, preemption is assumed to only
occur at integral time units

0 The workload model is assumed to be periodic
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| P-fair scheduling /2

m lag(S,t;,t) is the difference between the total
resource allocation that task T; should have received
in [0, t) and what it received under schedule S

m For a P-fair schedule S at time t
Q T; is abead iff lag(S,t;,t) <0
Q T; is bebind iff lag(S, 7, t) > 0
Q T; is punctual iff lag(S,t;,t) = 0

2018/19 UniPD - T. Vardanega Real-Time Systems 388 of 539

| P-fair scheduling /3

m a(x) is the characteristic (infinite) string of task T,
over {—,0,+} for t € N with
0 a,(x) = sign(W, - (¢ +1) — W, - t] = 1)
m  Distance from the integral approximation of fluid rate curve
o a(x,t) is the characteristic substring
;1 ()5 (X) ... g, (x) of task T, at time t
where t' =mini:i > t:a;(x) =0
m For a P-fair schedule S at time t, task T; is
a Urgent iff T; is behind and a;(1;) # —
Q Tnegru iff T; is ahead and oty (1;) # +

a Contending otherwise
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| Fluid Rate Curve

work
completed —i
- - I
-7 i
P I
e I
Fluid rate curve [ :
1
Utilization U by 1 s
_C P : S
SlopeW—;’/ . > =
7 Actual work curve 1 2
e Slope =0 or 1 | z
Ahead e !
Behind 1
Pig . !
.-~ Contending '
T w i
- L]
] time
1
job release period T deadline
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| Properties of a P-fair schedule S

m For task T; abead at time t under S
o If a;(7;) = — and 7; not scheduled at t then T; is abead at t + 1
e {D If oty (t;) = 0 and 7; not scheduled at t then T; is punctnal at t + 1
If a;(7;) = + and 7; not scheduled at t then T; is behind at t + 1
If a;(7;) = + and 7; scheduled at t then T; is ahead at t + 1

o
o

m For task 7; behind at time t under S
o If a;(7;) = — and 7; scheduled at t then T; is ahead at t + 1
o If a,(7;) = — and 7; not scheduled at t then T; is behind at t + 1
b If a,(7;) = 0 and 7; scheduled at t then T; is punctual at t + 1

et {D If a;(7;) = + and 7; scheduled at t then T; is behind at t + 1
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| P-fair scheduling /4

m General principle of P-fairness
a Every task #rgent at time t must be scheduled at ¢ so that
P-fairness can be preserved
0 No task #egru at time t can be scheduled at ¢ without breaking
P-fairness

m Breakage with ng fnegru, ny contending, Ny urgent tasks at
time t, with m resources and n = ng + nqy + n, tasks
a If ny > m, the scheduling algorithm cannot schedule all wrgent
tasks = some of them will never be able to catch back

a Ifng > n —m, the scheduling algorithm is forced to schedule
some #egru tasks and consequently waste CPU time on them
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| P-fair scheduling /5

m The commandments of the PF scheduling algorithm
o Schedule all wrgent tasks
o Allocate the remaining resources to the highest-priority contending
tasks according to the total order function 2 with ties broken
arbitrarily
s x2yiffa(xt) = a(y,t)
m  And the comparison between the characteristics substrings is resolved
lexicographically with —< 0 < +
m With PF we have er[o_n] W, =m

0 A dummy task may need to be added to the task set to top
utilization up

= No problem situation can occur with the PF algorithm
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| Example (PF scheduling) /1

®m m = 3 processors
Task C T w m 1 =4 tasks
T, 1 3 0.333...| = 7;isadummy task used to top
up system utilization to m
Tw 2 4 0.5 = In general, T,’s period is set to
Ty 5 7 0.714... the system hyperperiod
T, 8 11 0.727... =} ‘Thls time we halved it
m  With PF we always have
1, 335|462 3-U ny, >mandnyg <n—m
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| Example (PF scheduling) /2
-| These tasks are scheduled and they become ahead
lag = period T characteristic string || dontending Ctnegro
t v u i 1 sleJw]xuw] = asks tasks tasks
0 0 0 0 = | =l =] =] = i y>z>rlw>e {}
1 1 2[-2] -3 -0+ |+] + {w} yrz>r>v {}
2 2 0 3| -6 Ol =]+ ]+ + [ {v.=} w>y>z {F
3 02D 1 2 -y -1-1- {} y>i>r>uv ur
4 HRNEE! - | &[+|+] + i yricro>v=w
5 2 2 N=3 | =4 oo\ [+ [+ + [ {v. e} y>:>a
G of o] a|-7 1=\ ol+] + [ {51 w =y > v
7 1|=2] o 1 ol -1T-1- z {w}
= 2 0] -z |2 0| - \+ |+ ]| + {3
9 o] 2| 3|-5 o[\ [+]+ {}
10 1| o] 1]|-= — =t o] = {v}
11 | =1 2] -1 0 oo |4 -1+ {v}
12 o o 4| -3 - = A+ [+ {1
13 1 2 2| =6 — |0 :\ + | + 17
4] —1|] 0| 0| 2 o -1-1-1- {r}
5 o 2| =21 - No [+ K+ + )
16 1 0 3| -4 -+ [+ [+ T} y>:>v=w
T 2] 2| 1| -7 00N | W] + e wy Y
1% 0 0 =1 1 -1 -1 {} yri>ro>w>uw
19 1 2| =3 -2 -lol+ N1+ {w} y>:i>v=ur
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