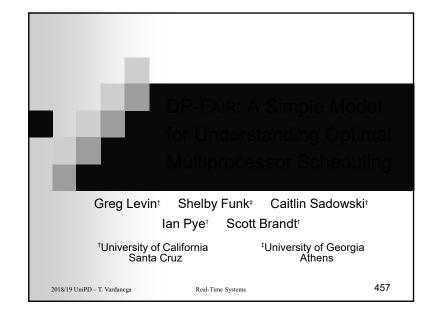
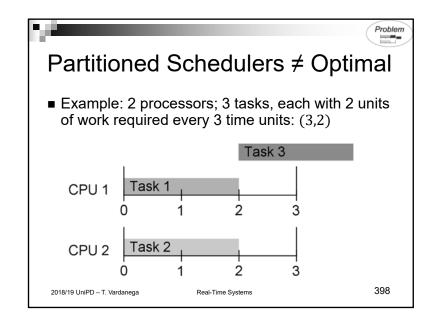
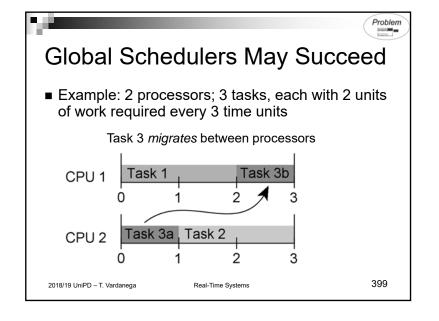
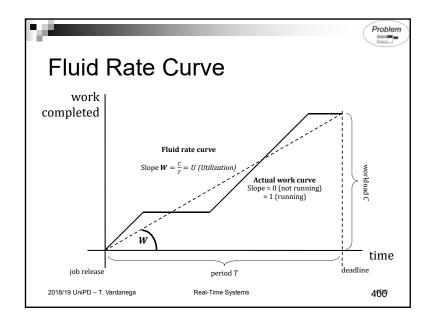
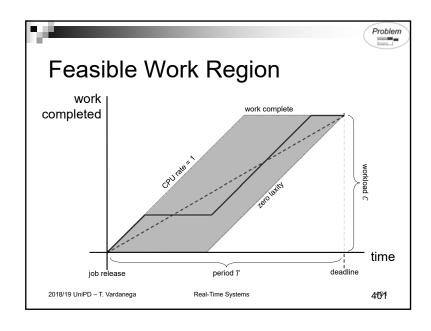
7.b Seeking the lost optimality

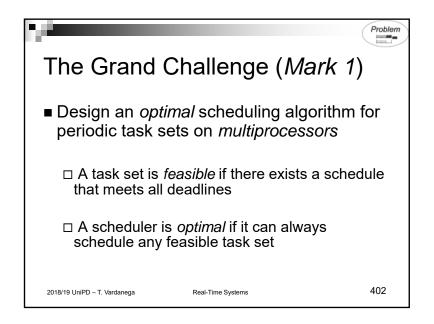


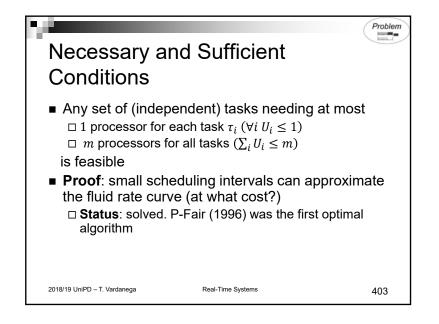




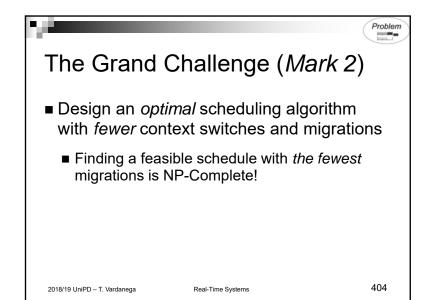


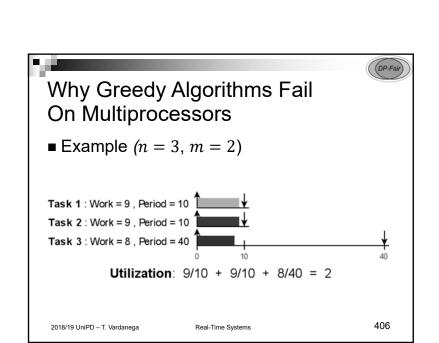


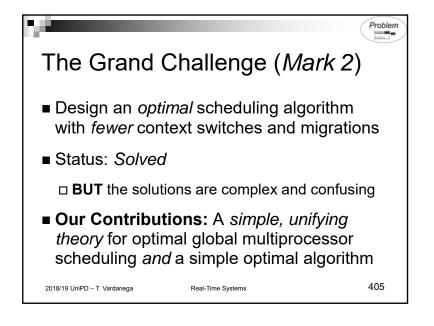


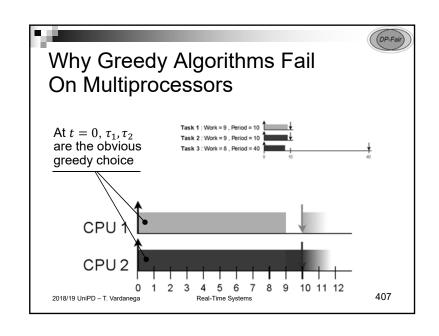


Paul Time Systems

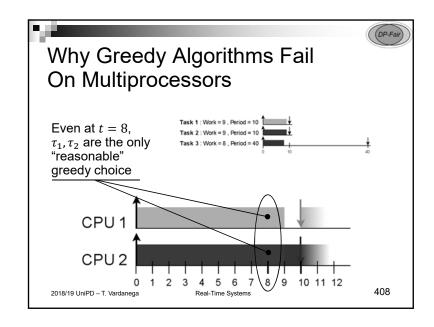


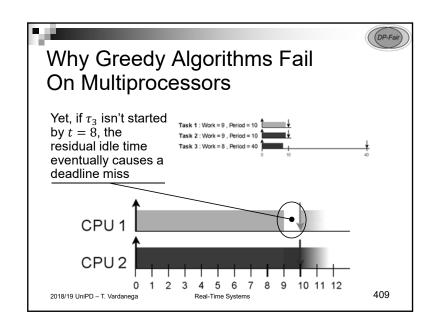


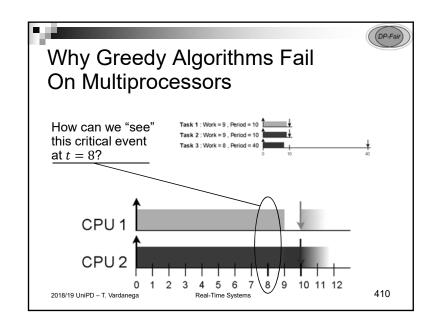


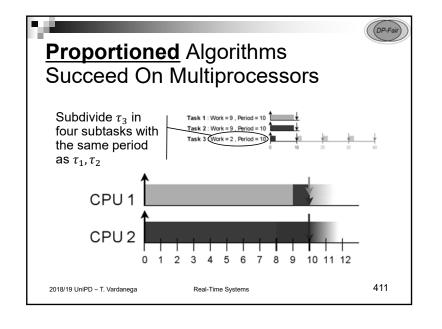


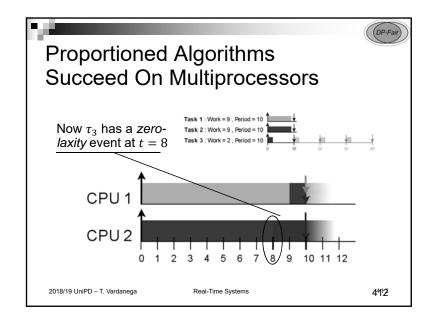
Paul Time Systems

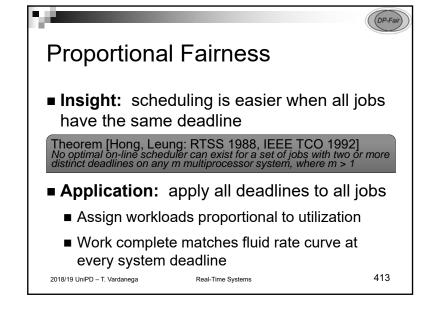


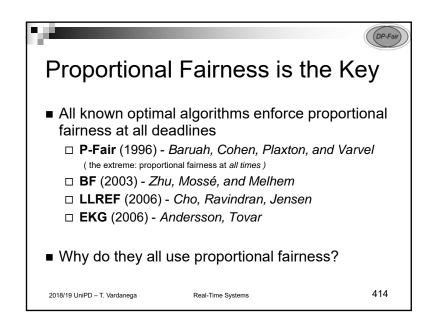


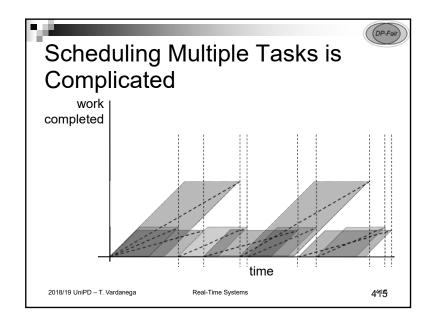


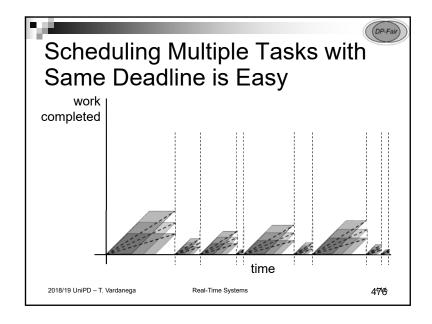


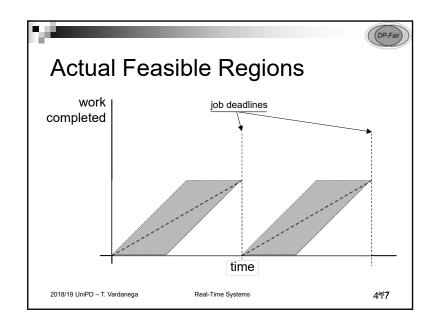


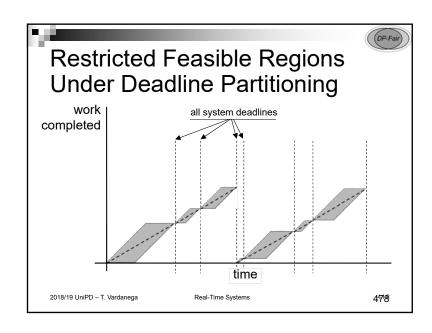








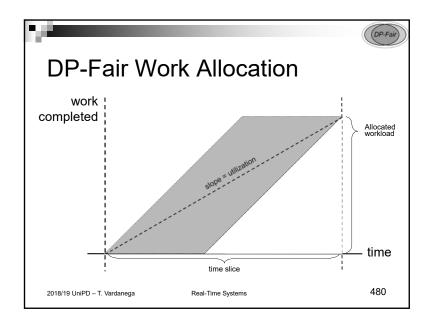


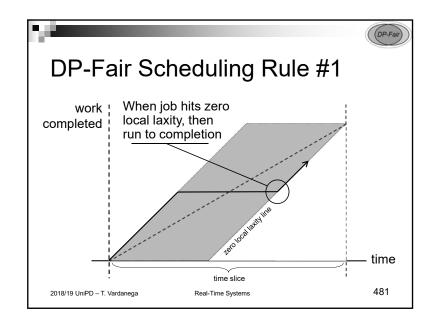


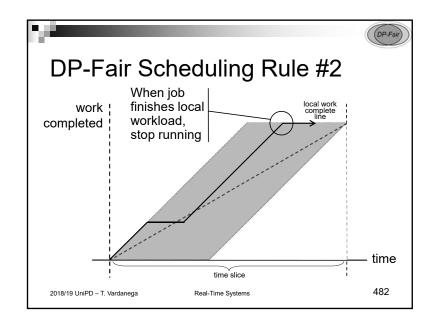
The DP-Fair Scheduling Policy
 Partition time into *slices* based on all system deadlines
 Allocate each job a per-slice workload equal to its *utilization* times the *length* of the *slice* Schedule jobs within each slice in any way that obeys the following three rules:

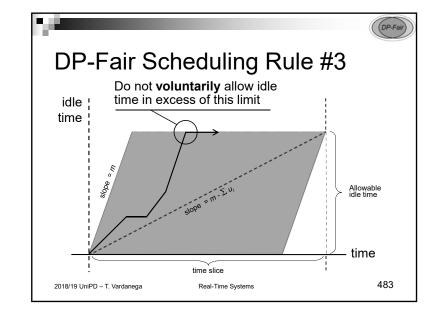
 Always run a job with zero *local laxity* Never run a job with no workload remaining in the slice
 Do not voluntarily allow more idle processor time than (*m* − ∑ *U_i*) × (*length* of *slice*)

Paul Time Systems









DF-Fair Guarantees Optimality

- We say that a scheduling algorithm is DP-Fair if it follows these three rules
- **Theorem:** Any DP-Fair scheduling algorithm for periodic tasks is optimal

2018/19 UniPD - T. Vardanega

Real-Time Systems

424

(DP-Fair)

DP-Fair Implications

- (Partition time into slices)
 - + (Assign proportional workloads)

Optimal scheduling is almost trivial

- ☐ Minimally restrictive rules allow great latitude for algorithm design and adaptability
- What is the simplest possible algorithm?

2018/19 UniPD - T. Vardanega

Real-Time Systems

425

427

EXAMPLE OF EXAM ASSIGNMENT: STUDYING THE RUN ALGORITHM

PhD seminar on Real-Time Systems, University of Bologna, July 2014

Real-Time Systems

RUN Assumptions

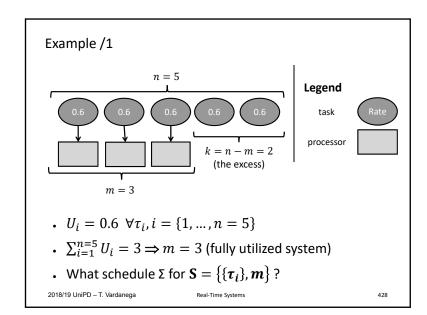
Model parameters

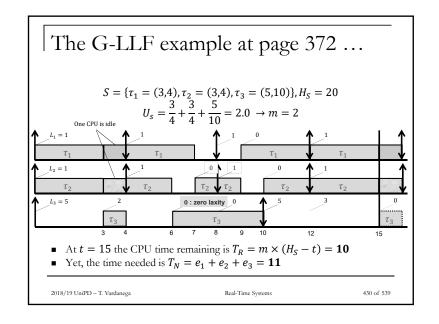
- *m* homogeneous (symmetric) processors
- Implicit-deadline independent task $\tau_i, i \in \{1...n\}$
- $n = m + k, k \ge 0$
- Fixed-rate tasks $U_i = \frac{C_i}{T_i}$ $\sum_{i=1}^n U_i \leq m$
- Fully utilized system: no idle time (perhaps using fillers)
- Migration and preemption are assumed to have no additional costs over c_i

2018/19 UniPD - T. Vardanega

Real-Time Systems

426





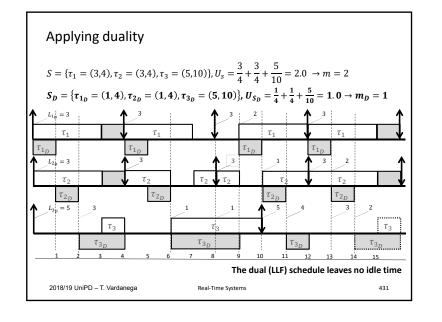
Duality

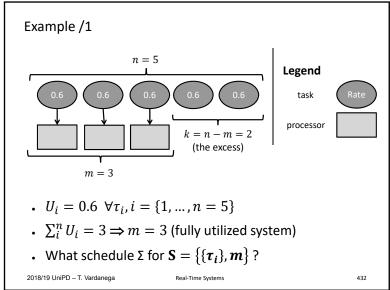
- . The problem of scheduling $\begin{array}{l} \mathbf{S} = \{\tau_1 = (c_1, T_1), \dots, \tau_n = (c_n, T_n)\}, m \\ \text{has a } \textit{dual} \text{ problem that consists of scheduling} \\ S' = \{\tau_1' = (T_1 c_1, T_1), \dots, \tau_n' = (T_n c_n, T_n)\}, (n-m) \end{array}$
- · With this definition of duality
 - Laxity in primal is work remaining in the dual
 - A work-complete event in the primal is zero-laxity in the dual
 - And viceversa
- . Corollary: any scheduling problem with $m{m}$ processors and $m{n}=m{m}+\mathbf{1}$ tasks and $\sum_1^n U_i=m{m}$ may be scheduled by applying EDF to its uniprocessor dual
 - If I can schedule n tasks on m processors, then I can also schedule the same n tasks on n-m processors
 - This is so because the scheduling events in the dual map to scheduling events in the primal

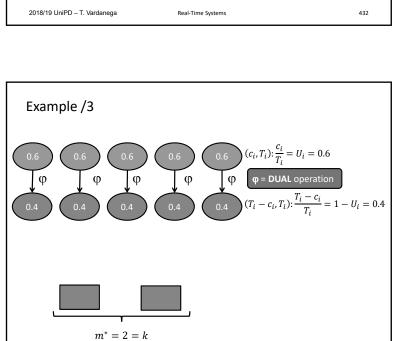
2018/19 UniPD - T. Vardanega

Real-Time Systems

429

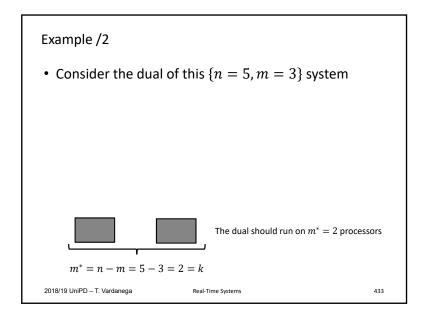


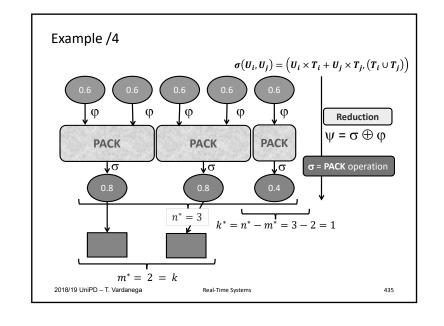




Real-Time Systems

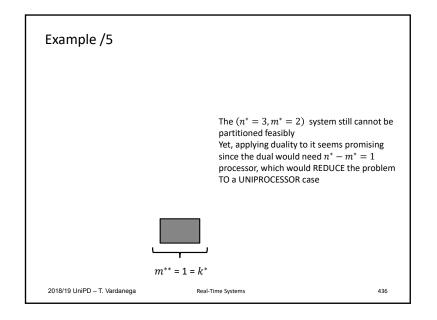
2018/19 UniPD - T. Vardanega

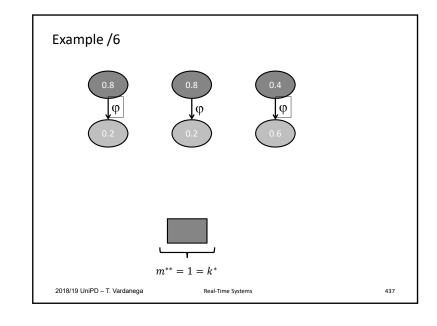


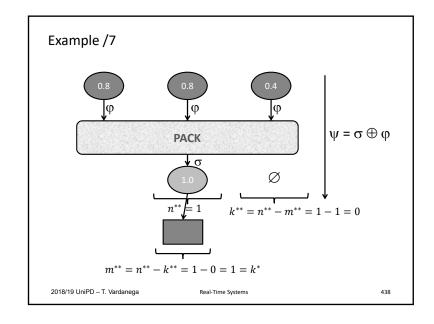


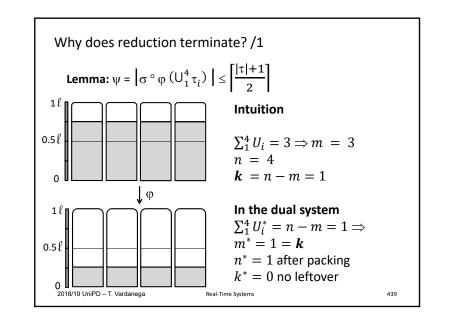
Pool Time Systems

434

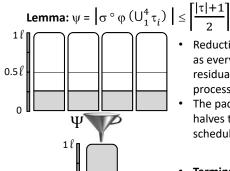








Why does reduction terminate? /2



0.5

2018/19 UniPD - T. Vardanega

- Reduction $\psi = (\sigma \oplus \varphi)$ terminates as every step of it lowers the residual workload and the # of processors needed to run it
- The packing operation (at least) halves the number of tasks to schedule
- Termination theorem: after a finite number p of reduction steps, the system is reduced to a uniprocessor with full workload

Real-Time Systems

How does RUN work /1

- A pair of basic operators
 - DUAL (φ)
 - PACK (σ)
- The REDUCE ($\psi = \sigma \oplus \varphi$) operation lowers (~ halves) the size of the problem at every step
- **Theorem** (validity of the dual): Σ valid $\Leftrightarrow \Sigma^*$ valid
- Since every dual task represents the idle time of its primary, finding a feasible schedule for the dual (which is easier) determines a feasible schedule for its primary

2018/19 UniPD - T. Vardanega

Real-Time Systems

441

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

- I. OFF-LINE;
- A. Generate a reduction sequence for \mathcal{T} ;
- B. Invert the sequence to form a server tree;
- C. For each proper subsystem \mathcal{T}' of \mathcal{T} ;
 - Define the client/server at each virtual level;

II. ON-LINE;

Upon a scheduling event: ;

- A. If the event is a job release event at level 0;
- 1. Update deadline sets of servers on path up to root;
- 2. Create jobs for each of these servers accordingly;
- B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to schedule at level 0:
- C. Assign the m chosen jobs to processors, according to some task-to-processor assignment scheme:

2018/19 UniPD - T. Vardanega

Real-Time Systems

442

Example: off-line phase

