2018/19 UniPD - T. Vardanega

7.b Seeking the lost
optimality

Problem

Partitioned Schedulers # Optimal

m Example: 2 processors; 3 tasks, each with 2 units
of work required every 3 time units: (3,2)

Greg Levint Shelby Funk* Caitlin Sadowski?
lan Pyet Scott Brandt'

fUniversity of California *University of Georgia
Santa Cruz Athens

2018/19 UniPD — T. Vardanega Real-Time Systems 457

3 protiem

Global Schedulers May Succeed

m Example: 2 processors; 3 tasks, each with 2 units
of work required every 3 time units

Task 3 migrates between processors

cpPu1 |Task1 | lTask 3b

I

‘Task 3 |
cpPU1 |Task1 : |
0 1 2 3
cpPu2 |Task2 I }
0 1 2 3
2018/19 UniPD —T. Vardanega Real-Time Systems 398

cpu2 [Task3a) Task2 |
I

0

2018/19 UniPD — T. Vardanega

DAAl Tivrva~s OuvvAatAarmAas

1

2 3

Real-Time Systems

399

14/05/2019

2018/19 UniPD - T. Vardanega

g protiom

O protiom

Feasible Work Region

Ly
Fluid Rate Curve
work
completed =i~

g !
g |
Lt i
Fluid rate curve /- :
1

Slope W = % = U (Utilization) -} | H
Pad 1

e Actual work curve [z

- . 1 i<}

Pid Slope = 0 (not running) \ g

Pras =1 (running) I S
P 1
27 1
7 1
-7 1
s i
e 1
a I

| time

|

job release period T deadline

2018/19 UniPD —T. Vardanega Real-Time Systems 4:6@
" Prosiem

The Grand Challenge (Mark 1)

m Design an optimal scheduling algorithm for
periodic task sets on multiprocessors

O A task set is feasible if there exists a schedule
that meets all deadlines

O A scheduler is optimal if it can always
schedule any feasible task set

2018/19 UniPD —T. Vardanega Real-Time Systems 402

DAAl Tivrva~s OuvvAatAarmAas

work
work complete
completed
-
L 1
- I
Pl !
2 A
r ! <
% -7 Ll og
N - Pz
0, "- ! > g
4 - | o
5 i)
- I
= |
-7 |
- I
s |
Fie I
- I
L .
: time
[
job release period T deadline
2018/19 UniPD — T. Vardanega Real-Time Systems 46)?
" JEE Problem

Necessary and Sufficient
Conditions

m Any set of (independent) tasks needing at most
O 1 processor for each task t; (Vi U; < 1)
O m processors for all tasks (3; U; < m)
is feasible
m Proof: small scheduling intervals can approximate
the fluid rate curve (at what cost?)

O Status: solved. P-Fair (1996) was the first optimal
algorithm

2018/19 UniPD — T. Vardanega Real-Time Systems 403

14/05/2019

2018/19 UniPD - T. Vardanega

o Protiem

The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Finding a feasible schedule with the fewest
migrations is NP-Complete!

2018/19 UniPD —T. Vardanega Real-Time Systems 404

o Protiem

The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Status: Solved
o BUT the solutions are complex and confusing

m Our Contributions: A simple, unifying
theory for optimal global multiprocessor
scheduling and a simple optimal algorithm

2018/19 UniPD — T. Vardanega Real-Time Systems 405

" S
Why Greedy Algorithms Fail
On Multiprocessors

m Example (n = 3, m = 2)

Task 1: Work =9 , Period =10 | i

Task 2 : Work =9, Period =10
Task 3 Work =8, Period =40 NN | Y
0 10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

2018/19 UniPD —T. Vardanega Real-Time Systems 406

DAAl Tivrva~s OuvvAatAarmAas

" JE

Why Greedy Algorithms Fail
On Multiprocessors

Task 1 Work =9, Period =10 t—*_
Att =0, Tl{TZ Task 2: Weork =9, Period = 10
are the obvious Task 3 Work =8, Period = 40 _ ' t
greedy choice '

CPU !
CPU?2
012 3 456 7 8 9 101112
2018/19 UniPD — T. Vardanega Real-Time Systems 407

14/05/2019

2018/19 UniPD - T. Vardanega 14/05/2019

00 =
Why Greedy Algorithms Fail Why Greedy Algorithms Fail
On Multiprocessors On Multiprocessors

Yet, if 5 isn’t started _
Bven at ¢ =8, sttt — by £ = 8, the i —
74,7, are the only Task3iwek=s Ao Ly | residual idle time Tasi 3 Work =3, Ferid =40 |
“reasonable” ' ' - eventually causes a '
greedy choice deadline miss

m l CF’UM

012 3 456 7 9 10 11 12 012 3 456 7 8 9 101112

2018/19 UniPD —T. Vardanega Real-Time Systems 408 2018/19 UniPD — T. Vardanega Real-Time Systems 409

CPU2

— —
Why Greedy Algorithms Fail Proportioned Algorithms
On Multiprocessors Succeed On Multiprocessors
How can we “see” Task 1 Work =9, Feriod =10 ﬁ Subdivide 73 in Task 1 Wotk=5 Pt = 10 ﬁ
. g Task 2 : Work =9, Period = 10 four subtasks Wlth Jask 2: Work =9 Period =10
taT? Zﬂgc?:al event Tk W8 =0 4 the same period "I }

as 74,7,

CPU1T i
|

01 2 3 45 6 7 8 9 101112

CF’U1T

CPU2

012 3 4567 9 10 11 12

2018/19 UniPD —T. Vardanega Real-Time Systems 410 2018/19 UniPD — T. Vardanega Real-Time Systems 411

DAAl Tivrva~s OuvvAatAarmAas A

2018/19 UniPD - T. Vardanega 14/05/2019

*
Proportional Fairness

" SN
Proportioned Algorithms
Succeed On Multiprocessors

re s vt e rageo | m Insight: scheduling is easier when all jobs
NOW 73 NS 2 Zer0- - raxz -0, v o Jmmy | have the same deadline

|aXity event at t= 8 Task 3 : Work =2 Period = 10 : ¥ ¥ ¥ L
CPU 1 T i

012345579101112

m Application: apply all deadlines to all jobs

CPU?2 m Assign workloads proportional to utilization

m Work complete matches fluid rate curve at
every system deadline

2018/19 UniPD — T. Vardanega Real-Time Systems 72 2018/19 UniPD - T. Vardanega Real-Time Systems 413

|
Scheduling Multiple Tasks is
Complicated

work
completed

Proportional Fairness is the Key

m All known optimal algorithms enforce proportional
fairness at all deadlines
O P-Fair (1996) - Baruah, Cohen, Plaxton, and Varvel

(the extreme: proportional fairness at all times)

O BF (2003) - Zhu, Mossé, and Melhem
O LLREF (2006) - Cho, Ravindran, Jensen
O EKG (2006) - Andersson, Tovar

m Why do they all use proportional fairness?

time

2018/19 UniPD — T. Vardanega Real-Time Systems 414 2018/19 UniPD — T. Vardanega Real-Time Systems 2495

DAAl Tivrva~s OuvvAatAarmAas

2018/19 UniPD - T. Vardanega 14/05/2019

" E— | | "
Scheduling Multiple Tasks with
Same Deadline is Easy

work work job deadlines
completed completed

Actual Feasible Regions

" time time

2018/19 UniPD - T. Vardanega Real-Time Systems 476 2018/19 UniPD - T. Vardanega Real-Time Systems 407

" JE " JE

Restricted Feasible Regions : : :
Under Deadline Partitioning The DP-Fair Scheduling Policy

work all system deadlines m Partition time into slices based on all system deadlines
completed . . .
m Allocate each job a per-slice workload equal to its

utilization times the length of the slice

m Schedule jobs within each slice in any way that obeys the
following three rules:

1. Always run a job with zero local laxity

2. Never run a job with no workload remaining in the slice

[: . Do not voluntarily allow more idle processor time than
D it (m =Y U;) x (length of slice)
time '

2018/19 UniPD - T. Vardanega Real-Time Systems 478 2018/19 UniPD - T. Vardanega Real-Time Systems 419

DAAl Tivrva~s OuvvAatAarmAas n

2018/19 UniPD - T. Vardanega

DP-Fair Work Allocation

work |

completed !)

.
|

£

time slice

2018/19 UniPD —T. Vardanega Real-Time Systems

L
1

Allocated
workload

480

DP-Fair Scheduling Rule #1

work ! When job hits zero
completed ! local laxity, then)
1 rfun to completion .4

time slice

2018/19 UniPD — T. Vardanega Real-Time Systems

DP-Fair Scheduling Rule #2

When job
work ! finishes local Iosaluom
completed ! workload, !

stop running

time slice

2018/19 UniPD —T. Vardanega Real-Time Systems

time

482

DAAl Tivrva~s OuvvAatAarmAas

DP-Fair Scheduling Rule #3

Do not voluntarily allow idle
idle ! time in excess of this limit

time ! \/\ .

2018/19 UniPD — T. Vardanega Real-Time Systems

i 22
1 Qi
I - :
1 . |
1 o |
; > :

- !

W Allowable
: ,a"«:ﬁ’ ! E > idle time
- z

b \o®® |
! i
LI |
17 1
k . time
1 1
. time slice !

483

14/05/2019

2018/19 UniPD - T. Vardanega

" JE @
DF-Fair Guarantees Optimality

m We say that a scheduling algorithm is
DP-Fair if it follows these three rules

m Theorem: Any DP-Fair scheduling
algorithm for periodic tasks is optimal

2018/19 UniPD —T. Vardanega Real-Time Systems 424

EXAMPLE OF EXAM ASSIGNMENT:
STUDYING THE RUN ALGORITHM

PhD seminar on Real-Time Systems, University of Bologna, July 2014 |

Real-Time Systems 426

" JE @
DP-Fair Implications

m (Partition time into slices)
+ (Assign proportional workloads)

Optimal scheduling is almost trivial

O Minimally restrictive rules allow great latitude for
algorithm design and adaptability

m What is the simplest possible algorithm?

2018/19 UniPD — T. Vardanega Real-Time Systems 425

RUN Assumptions

Model parameters
. m homogeneous (symmetric) processors
. Implicit-deadline independent task t;, i € {1..n}
. n=m+kk=0
Ci

. Fixed-rate tasks U; = = YriUi<m

. Fully utilized system: no idle time (perhaps using fillers)

. Migration and preemption are assumed to have no additional
costs over ¢;

2018/19 UniPD - T. Vardanega Real-Time Systems 427

DAAl Tivrva~s OuvvAatAarmAas

14/05/2019

2018/19 UniPD - T. Vardanega 14/05/2019

Example /1 Duality
n=5 . The problem of scheduling
Legend S= {tl N (Clr Tl)ﬁ »Tn = (cn! n)} m

r 1 has a dual problem that con5|sts of schedullng

O O sk Q §'={th = (T1 = €1, T, ., Ty = (Tn = €, T}, (n = m)

. With this definition of duallty
B A processor . Laxity in primal is work remaining in the dual
k=n-m=2 A work-complete event in the primal is zero-laxity in the dual

(the excess)

And viceversa

T
m=3 . Corollary: any scheduling problem with m processors and n =
m + 1 tasks and Y.7 U; = m may be scheduled by applying EDF
to its uniprocessor dlual
. Ui =0.6 VTir i = {1, o, = 5} . If I can schedule n tasks on m processors, then | can also schedule
the same n tasks on n — m processors
YISy, =3 = 3 (fully utilized is i i i
izt Ui=o=>m= (ully utilize system) . This is so because the scheduling events in the dual map to
scheduling events in the primal
. What schedule Z for § = {{Ti}, m} ?
2018/19 UniPD - T. Vardanega Real-Time Systems 428 2018/19 UniPD — T. Vardanega Real-Time Systems 429
| The G-LLF example at page 372 ... Applying duality
3 3 5
S={1y =34),1, =34),73 =(510)}, Ug _4+4+ﬁ_20 -m=2
S={r;=034),7, =(34),73 =(510)},Hs = 20 1,5
{ri=(3) 23 (5)73 =()}, Hg SD:{Tlu=(1'4)'TZD=(1'4)'T3D:(5'10)}'USD:Z+Z+E:1'0_’mD:1
Ug=—-+-4+—=20->m=2 _
One CPU is idle s 4 4 10 N =3 N 3 N 3 2 AN 3 A
A L=t ! S I 1 0 A A 7 | , 7 | J 7 7 |
51 k 2 T | | T1 \ Tq N T1p Tip I Tip T1p
A L=t A1 oN 1 0 A A AN =3 A 3 A 3 1 A 3 2 A
T2 | y T | | T2 Wio | | T2 ¥ T2 y L I y © | A A 2N T2 I y
AN L3=5 0 : zero laxity 0 AN S 3 0 T2p T2p T2p T2p
......... . Ly =5 3 1 1 A 5 4 3 2
| | T3 i - -l —
10 12 15 | 13 T3 i T3
m Att = 15 the CPU time remaining is T = m X (Hg —t) = 10 T3p B3p T3p T3p
m Yet, the time neededis Ty = e; + e, +e3 =11 1 34 6 7 8 0112 13 1M 15
The dual (LLF) schedule leaves no idle time
2018/19 UniPD — T. Vardanega Real-Time Systems 430 of 539 2018/19 UniPD - T. Vardanega Real-Time Systems 431

DAAl Tivrva~s OuvvAatAarmAas 0

2018/19 UniPD - T. Vardanega

Example /1
r 1
’ L |
k=n-m=2
\) (the excess)
Y
m=3

. Ui =0.6 VTl',i = {1,...,7’1 = 5}

. What schedule % for S = {{z;},m}?

. XU; = 3= m = 3 (fully utilized system)

Legend

task @

processor

432

Example /2

* Consider the dual of this {n = 5,m = 3} system

- - The dual should run on m* = 2 processors

\]
T

m'=n-m=5-3=2=k

2018/19 UniPD - T. Vardanega Real-Time Systems

Y
m'=2=k

2018/19 UniPD - T. Vardanega Real-Time Systems

2018/19 UniPD —T. Vardanega Real-Time Systems
Example /3
¢
0.6] (C,»Ti):F" =U;=06
L
¢ (OB ¢ = DUAL operation
T. —c:
0.4 (Ti_CuTL) lT l=1_Ul:04-

434

Example /4

o(U,U)) = (U X Ty + U; x Ty, (T, U T)))

| Reduction l

y=c®¢

& = PACK operation

PACK PACK PACK
n* = 3
i =n"-m"= 3 2=1
m* = 2 =k
2018/19 UniPD - T. Vardanega Real-Time Systems

435

DAaAl Tivma~n OuratAaArmas

14/05/2019

AN

2018/19 UniPD - T. Vardanega

Example /6

m*=1=k*
2018/19 UniPD — T. Vardanega Real-Time Systems

mY=n"—k*=1-0=1=k"*

2018/19 UniPD - T. Vardanega Real-Time Systems

Example /5
The (n* = 3,m* = 2) system still cannot be
partitioned feasibly
Yet, applying duality to it seems promising
since the dual would need n* —m* =1
processor, which would REDUCE the problem
TO a UNIPROCESSOR case

m*=1=k*
2018/19 UniPD —T. Vardanega Real-Time Systems 436
Example /7
¢ ¢

y=c®¢

438

DAAl Tivrva~s OuvvAatAarmAas

Why does reduction terminate? /1

Lemma: y = |5 °¢ (Utr,) | < [|T|2+1]
i 1 Intuition
050 YIU;=3=>m = 3
n =4
0 k=n-m=1
lo
Uy In the dual system
YiUui=n-m=1=
0.5{ m =1=k
n* = 1 after packing
k* = 0 no leftover

2018/19 UniPD - T. Vardanega Real-Time Systems

439

14/05/2019

A A

2018/19 UniPD - T. Vardanega

Why does reduction terminate? /2

Lemma: y = |cr °0 (Uiri) | < [|T|Z+1]
* Reduction y = (c®¢) terminates
as every step of it lowers the
Y residual workload and the # of
processors needed to run it
* The packing operation (at least)

1fr N \(N\ ()

0 Wy halves the number of tasks to
schedule
1f
¢ Termination theorem: after a
0.5 finite number p of reduction
steps, the system is reduced to a
0 uniprocessor with full workload
2018/19 UniPD —T. Vardanega Real-Time Systems 440

How does RUN work /1

* A pair of basic operators
— DUAL ()
— PACK (o)
* The REDUCE (y = o © @) operation lowers (~ halves)
the size of the problem at every step
* Theorem (validity of the dual): X valid < ~* valid
* Since every dual task represents the idle time of its
primary, finding a feasible schedule for the dual
(which is easier) determines a feasible schedule for
its primary

2018/19 UniPD — T. Vardanega Real-Time Systems 441

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

L. OFF-LINE;
A. Generate a reduction sequence for T
B. Invert the sequence to form a server tree;
C. For each proper subsystem 7" of T;
Define the client/server at each virtual level;
II. ON-LINE;
Upon a scheduling event: ;
A. If the event is a job release event at level 0;
1. Update deadline sets of servers on path up to root;
2. Create jobs for each of these servers accordingly;
B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to
schedule at level 0;
C. Assign the m chosen jobs to processors, according to some task-to-processor
assignment scheme;

2018/19 UniPD - T. Vardanega Real-Time Systems 442

DAAl Tivrva~s OuvvAatAarmAas

Example: off-line phase

Ss = 0(Uy, Us) = ((0.4 + 0.2) x min(5,10)), (5 U 10)) = (0.6,5), Cs, = 3

a
3
K
2
04 04 N
[10}°¢ *"Iu|‘|:' & 20)*
1 S j‘ .\‘.S 4 /I’
| | @ (dual)
0
I_I o (pack)
2018/19 UniPD - T. Vardanega Real-Time Systems 443

14/05/2019

AN

2018/19 UniPD - T. Vardanega

Example: on-line phase (at time t = 7)

5 [s [= 57 |leveld
5 | 51 st],
5t 15: l 5._| 5 |f||xf.l’
T] T | T .| T
i I * ievel
T | T
5 © 10
2018/19 UniPD —T. Vardanega Real-Time Systems 444

RUN implementation

Q For real
> On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
» Relying on standard RTOS support

O Main implementation choices and challenges
» Scheduling on the reduction tree
- How to organize the data structure
- How to perform virtual scheduling and trigger tree updates
- Intrinsic influence of the packing policy
» Mixing global and local scheduling
- Global release event queue vs. local level-0 ready queue
- Handling simultaneous scheduling events
Job release, budget exhaustion (possibly from different sub-trees)
» Meeting the full-utilization requirement
- Variability of tasks’ WCET and less-than-full utilization

AT PROXIMA |

DAAl Tivrva~s OuvvAatAarmAas

PROXIMA

Putting RUN into practice

Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega (™
University of Padua, ltaly % .~/

26" EUROMICRO Conference on Real-time Systems (ECRTS)
Madrid, 9 July 2014

This project and the research leading to these results
has received funding from the European
Community's Seventh Framework Programme [FP7 /

WwWw.proxima-project.eu

2007-2013] under grant agreement 611085

Empirical evaluation

0 Empirical evaluation instead of simulation-based

U Focus on scheduling interference
» Cost of scheduling primitives
» Incurred preemptions and migrations

0 RUN compared against P-EDF and G-EDF
» RUN shares something in common with both
»> Much better than Pfair (S-PD2 in LITMUSRT)
- RUN has superior performance for preemptions and migrations

I PROXIMA

14/05/2019

AN

2018/19 UniPD - T. Vardanega

Experimental setup
Q LITMUSRT on an 8-core AMD Opteron™ 2356

O Collected measurements for RUN, P-EDF, G-EDF
» Hundreds of automatically generated task sets
» Harmonic and non-harmonic, with global utilization @ 50%-100%
> Representative of small up to large tasks

U Two-step process
» Preliminary empirical determination of overheads

Collect Determine Perform
measurements per-job actual
on overheads upper bound evaluation

A PROXIMA |

Empirical schedulability

100 %

80 %
60 %
40 %
20 %

Unfeasible task set ratio

0 %

4 4.5 5 5.5 6 6.5 7 7.5 8
Utilization cap

BOO P-EDIF T T T T T T
00 EDF —
600 F AN —e
o . w500
O Task sets exhibiting at least one miss %y |
O RUN suffered no misses zgg: r
» Optimality and tailored overhead w0 L 1 g
0 e derdecndee il L

4 45 5 55 6 65
Utilization cap

I PROXIMA

DAAl Tivrva~s OuvvAatAarmAas

Primitive overheads and empirical bound

100 T T T T T T
RUN m—

&0
60

40

Time (us)

20

0 REL SCHED CSW CLE LAT TuP
O Expectations confirmed
» P-EDF needs lighter-weight scheduling primitives
O Tree update (TUP) triggered upon
» Budget exhaustion event
» Job release > REL includes TUP
O Empirical upper bound on RUN scheduling overhead
> OH}, = REL+SCHED+CLK +kx(TUP+SCHED+max(PRE, MIG))

k=[(3p+1)/2] and SCHED = SCHED + CSW + LAT.

I PROXIMA

O Observing average preemptions and migrations
25k r r T T T T T 25k T T T T ——
P-EDF --=-- G-EDF ——
£20k -G-EDF 4 w20k | RUN - 4
S RUN —=e 5
B15k - 4 815k [A
g =]
£10k gmk + g
T 2 sk
ok ok i i 4 1
45 5 55 6.5
100 % 100 % — —T—T
90 % | -
80 % S80% T — -
" i . E70% [
g80% 0 o 260 % |-
I (777 S 550 % -
40 % s e an% -
20% (7 G 7 4 230%F
i / 7 220 % G-EDF —-
0% i 10% F RUN —e
445 5 55 6 65 7 12747678 B 0% + 4 + L & . A
— 4 45 5 55 6 65 7 15 8
Utilization cap Utilization cap
O-level woees 1-level 2-level 000

T PROXIMA

14/05/2019

A AN

2018/19 UniPD - T. Vardanega

T PROXIMA |

Scheduling cost

60

T T — — T
P-EDF -~

50 FG-EDF —— 8
RUN -~

F40 | E

Utilization cap
Average job release

4 45 5 55 6 65 7 75 8

- r T T T T T
P-EDF -~

50 FG-EDF —— 1
S0 b RUN]
2
230 b
E
F20 F ——

e~
B e
0 1 L L 1 1 1 L

O Average cost of core scheduling primitives

4 45 5 55 6 65 7 75 8

Utilization cap offset 0, 0.5
Average schedule

Evaluation against S-PD?

T PROXIMA |

5.5 .
Utilization cap

Observed preemptions and migrations

55 6 .
Utilization cap

P-EDF ---=-- - i
400 | G-EDF —=— PN S
RUN e A .
Y300 | Plair ——- o 4
= —
E200 b e §
=
100 | E
0 e e T s ikl ki

1
4 45 5 5.5 6 6.5 T 15
Utilization cap

Per-job kernel overhead

80k T T T T T T T 70k T T T T T
70 k |- P-EDF -- 4 g0 [[GEDF ——]
.,. R T
go0k - R T L - 4
asg:' oy 1 Baok | S
L r 45 /

p g L B
gBOk i '.', 1 E0k) ¥
D0k - — J 20k 1
“ok | 4 10k QU i

0k L " i Y Ok L e il i ke b
4 45 65 7 75 8 4 45 5 65 7 75 8

DAAl Tivrva~s OuvvAatAarmAas

T PROXIMA

60 T T T T T T T 60 T T T T T T T
PEDF - -- P-EDF --=--
50 |G-EDF —— 50 G-EDF .
RUN RUN ~-=
—ap | 4
g 0
@30
£ .
F20 Fr=-
10+
0 " L 1 L 1 . 1
4 45 5 55 & 65 7 15
5 2 — 7T 17— -
ERENS H
@05 | A o
Z . T et E
6 65 7 15
. 2 ——— -
515 5
£ 1 g
305 | H
& 0 L T e =
4 45 5 55 6 65 7 715 4 45 55 6 65 7 75 8
Utilization cap Utilization cap
Harmonic task set Non-harmonic task set

14/05/2019

AL

