2018/19 UniPD - T. Vardanega

7.c Global resource sharing

| Contention and blocking

m The single-runner premise on which previous
solutions were based falls apart
o Suspending on wait no longer favours earlier release of
shared resources € parallelism gets in the way

0 Boosting the priority of the lock holder does not help
either €& per-CPU priotities have no global meaning
under partitioned scheduling

a With local and global resources, suspensive wait becomes
dangerous € local priority inversions (PI) may occur

0 Spinning protects against PI, but wastes CPU cycles

2018/19 UniPD — T. Vardanega Real-Time Systems 456 of 539

| Multiprocessor PCP /1

m P-FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]

o The processor that hosts a resource is the synchronization
processor (SP) for that resource
m [t statically knows all the use requirements of all of its resources
o The critical sections of a resource execute on its SP
m Jobs that use remote resources employ “distributed transactions”

0 The processor to which a task is assigned is the /oca/
processor (LP) for all of the jobs of that task

2018/19 UniPD — T. Vardanega Real-Time Systems 457 of 539

DAAl Tivrva~s OuvvAatAarmAas

| Multiprocessor PCP /2

m A task may use local and global resources
0 Local resources reside on the LP of that task

o Resources are global when their SP differs from the
client tasks’ LP

m Resource access control protocols need actual locks
to protect against parallel contention
0 Which causes lock-free algorithms to become attractive

m SPs use M-PCP to control access to their global
resources

2018/19 UniPD — T. Vardanega Real-Time Systems 458 of 539

22/05/2019

2018/19 UniPD - T. Vardanega

| Multiprocessor PCP /3

m The task that holds a global lock should 77 be
preempted locally

o All global critical sections must execute at higher ceiling
priorities than all local tasks on their SP

o (This breaks independence!) A

m A task Tp thatis denied access to a global shared
resource pPg suspends on its P and waits in a priority-
based queue for that resource

0 Any task 7; with lower-priority than Ty on the same LP may
thus acquire global resources on pg’s SP, with higher ceiling
than pg, thus delaying the progress of 7,

2018/19 UniPD — T. Vardanega Real-Time Systems 459 of 539

| Multiprocessor PCP /4

m If the global resource py being acquired by 7y,
resides on the same SP as pg, then Ty, suffers an
anomalous form of PI
0 The execution in pj delays the release of pg

m As contention for a global resource involves

suspension,[M—PCP suffers the risk of deadlock]

o With global resources hosted on > 1 SPs, nesting global
resources may lead to deadlock and wust be disallowed

m This is why other protocols prefer T, to spin

2018/19 UniPD — T. Vardanega Real-Time Systems 460 of 539

| Blocking under M-PCP =

m With M-PCP, task T; is blocked by lower-priority tasks in 5 ways!

0 Local blocking (once per release): when finding a local resource held by a
local lower-priority task that got running as a consequence of T;’s
suspension on access to a locked global resource

0 Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP that it seeks

0 Local preemption: when global critical sections are executed on T;’s LP by
remote tasks of any priority (multiple times) and by local tasks of lower
priority (once per release)

a Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 7;’s global resource resides

O Deferred interference as local higher-priority tasks suspend on access to global
resoutces because of blocking effects

2018/19 UniPD — T. Vardanega Real-Time Systems 461 of 539

DAAl Tivrva~s OuvvAatAarmAas

Multiprocessor SRP

m P-EDF with resources bound to processors
[Gali, Lipari, Di Natale, 2001]
a Normal SRP is used for controlling access to local resources

m Tasks that lock a global resource execute the critical section
at the highest local priority
a As the lock-holder cannot be pre-empted, the wait time is shorter
0 But this provision breaks independence

m Tasks that request a global resource pg already locked, are
held in a FIFO queue on pg’s SP and spin on their LP

a This policy uppet-bounds the requesting task’s spin time tom — 1
executions of the longest critical section of pg

0 This duration adds to the task’s WCET

2018/19 UniPD — T. Vardanega Real-Time Systems 462 of 539

22/05/2019

2018/19 UniPD - T. Vardanega

| In general ...

With lock-based resoutce access control protocols,

| O (m) locking protocols : G-EDF /1

m All resources are global

locks can use either suspension or spinning

With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
o To bound blocking, PI avoidance algorithms should be used

With spinning, the task busy-waits

o To bound blocking, the spinning task becomes
non-preemptable and its request is placed in a FIFO queue

The lock holder may also run non-preemptively

0 But this breaks independence

[u]

To request a tesource, a task must first acquire a general

2018/19 UniPD — T. Vardanega Real-Time Systems 463 of 539

priority-queue, PQ, lock (one of m)
o If the resource is busy, the requestor waits, suspending, on a
resource-specific FIFO queue, FQ (of m positions)

0 The lock-holder inherits the highest priority of tasks waiting
in the chain of queues (FQ and PQ)
m Per-request blocking is 2m — 1 executions of the
longest critical section for the resource
a0 When FQ is full with m lp-jobs and m hp-tasks run (including

the job of interesi) that all want to acccess the same resource

m The other tasks suffer inheritance blocking

2018/19 UniPD — T. Vardanega Real-Time Systems 464 of 539

| O (m) locking protocols : G-EDF /2

~tackeet - 1 -

suspend:r B : '/PI\:
~E,

i

Fom Wy |
resp <rFo¢ PrIO [|
I
I
]

JLFP scheduler

2018/19 UniPD — T. Vardanega Real-Time Systems 465 of 539

DAAl Tivrva~s OuvvAatAarmAas

| O (m) locking protocols : P-EDF /1

m Shared resources may be local or global

a One priority guene (PQ) pet processor: the task at the head of it
acquires a foken to use to contend for global resources

o Requests for G-resources wait in a per-resource FQ
m The waiting tasks suspend
0 Lock-holders’ priority is inheritance-boosted from their PQ
m Blocking for all tasks has three components
a Local, when the lock-holder is a local Ip-task (per release)
a Remote direct, when the requestor is last in the FQ (per request)

a Remote transitive, when a local Ip-task has acquired the PQ
token and is last of the FQ (pet release)

2018/19 UniPD — T. Vardanega Real-Time Systems 466 of 539

22/05/2019

2018/19 UniPD - T. Vardanega

| 0 (m) locking protocols : P-EDF /2

r-partitionj - === === === == ——————— - - :
! I

; o
suspend, __/E t
“PRIO [& |
1 ™~3 I
i e !
- m - i_ ___________________________ I

resg <FiFo_|
F=partition)= == == = = e — s m e m e o
binary semaphore \'

suspend

1
and prio boosting I g
T NFPRIO_|
suspend: ™~
1

2018/19 UniPD — T. Vardanega Real-Time Systems 467 of 539

| O (m) independence preservation /1

I
c—1 P '
1,1
_,---Tl |
copy head == __/13 Ir
[i i

m I .
B = D
c ! P[_r |:
/]
v / BN - S SR S S R S SR S -
resg. FIFO [c JLFP scheduler
* reClUSter, = = = = s c e e c e — -
\'. I :
I
\ I Pu,l H
\ 1ke— o i
\ ﬂ -/i :
‘ B !
copy head ! 3 '
' = lju Il
m m =
b= [(B-1) +Ex -]og=n-Do, N
2018/19 UniPD — T. Vardanega Real-Time Systems 468 of 539

0 (m) independence preservation /2

m Clustersof size 1 <c <m
o Global scheduling per cluster, partitioned cluster assignment
w Suspension-based
o One FIFO+PRIO queue per cluster, for O(m) blocking
o One pet-resource global FIFO queue
m Head of cluster FQ copied in G-FQ and removed only after service
m Independence preserved by inter-cluster migration

o Head of G-FQ (if pre-empted) can migrate to any CPU along
the queue (hence across clusters), with priority boosted by
inheritance from a waiting task

» Blocking is per request: B, = (m — 1) wy,

2018/19 UniPD — T. Vardanega Real-Time Systems 469 of 539

| O (m) independence preservation /3

= | = t ? T

exgcuting holding res. busy wait melease request res. completion

prio

%]

¢ .-
clustersy o | spiming T
Ty T:_ N

cluster =
' | == ==

0 1 2 3 1 5 6 7 8 a9 10 11 12 13 14 time

o t = 3: task 7o suspends and task 7| resumes execution

o ¢ = 1: task 73 migrates to cluster; and preempts task 7

2018/19 UniPD — T. Vardanega Real-Time Systems 470 of 539

DAAl Tivrva~s OuvvAatAarmAas

22/05/2019

2018/19 UniPD - T. Vardanega

| [Brandenburg, 2013]

s Theorem
o Under non-global scheduling (with cluster size ¢ < m),
10 resource access control protocol can simultaneously
m Prevent unbounded PI blocking
m Preserve independence (you don’t suffer if you don’t contend)
m Avoid migration
m Seeking independence preservation and bounded Pl-blocking
requires inter-cluster job migration (!)

2018/19 UniPD — T. Vardanega Real-Time Systems 471 of 539

| MrsP [Burns, Wellings, 2013] /1

m Rendering RTA for partitioned multiprocessors
zdentical to the single-processor case
0 The cost of accessing global resources should be zncreased
to reflect the need to serialize parallel contention
m Preserving the property that, once a task starts
executing, its resources are available
o It needs global resource control protocols

o Cannot use suspension-based solutions!

2018/19 UniPD — T. Vardanega Real-Time Systems 472 of 539

| MrsP [Burns, Wellings, 2013] /2

m Spinning non-preemptively may decrease feasibility
o Utrgent tasks would suffer longer blocking
m Spinning at the /oca/ ceiling priority is better

o With all processots using PCP/SRP, at most one task per processor
may contend globally, which assures O(m) blocking

0 Access requests are served in FIFO order

m To bound blocking, spinning tasks “donate” their
cycles to the pre-empted lock-holder

0 The lock-holder migrates to the processor of a spinning task
and runs in its stead until it either completes or migrates again

2018/19 UniPD — T. Vardanega Real-Time Systems 473 of 539

DAAl Tivrva~s OuvvAatAarmAas

| MrsP [Burns, Wellings, 2013] /3

r~partition] - == ~= === = e -o--
l
spinning at }

own ceilin%/__ i :/’ 2/ 1;1\’
ST

m 4 _/-/ _______________________
resp <fF0 |
™~ - -partition,;-——---------- -~

5 |

i
2 :
N - \ X
spinning at .\ U A Pm |\
own ceiling N - /'

, e

2018/19 UniPD — T. Vardanega Real-Time Systems 474 of 539

22/05/2019

2018/19 UniPD - T. Vardanega 22/05/2019

| MisP [Burns, Wellings, 2013] /4 | MrsP [Burns, Wellings, 2013] /5
m For partitioned scheduling (¢ = 1) m R;=C/+B;+];
w Spinning-based : local wait spins at local ceiling » B; = max{p,, b}
o Combined with PCP/SRP, this assures blocking at most once a py is the longest critical section of a resource used by a lower-
before execution priority task with ceiling no less than T;’s priority
. . o b is the longest duration of RTOS inhibited preemption
m Allows using uniprocessot-style RTA 8 preemp
.o . . _ R; ’
m Wait is per resource, increased by parallel contention ® [= Yienpi(p) [T—]] G
a B = max(wi™P) = max,((m — Dwy) = (m — 1) x maxy(w) ,
m Farlier release obtained by migrating lock holder (if C s J CJ T outside of critical sei
preempted) to the CPU where the first contender in the 2 Cuis task 7y's WCET outside of eritical sections .
lobal FIEO is curtently spinnin o n; is the number of times task T; uses shared resource j
glo y sp g o e < (m— 1)pj, with p; the longest critical section of resource j
2018/19 UniPD — T. Vardanega Real-Time Systems 475 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 476 of 539

MrsP [Burns, Wellings, 2013] /6 | MrsP [Burns, Wellings, 2013] /7

a | = t T T

executing holding res. busy wait release request res completion

m Resource nesting can be supported with either grousp

prio

locking or static ordering of resources

o With static ordering, resource access is allowed only with Py
order number greater than any currently held resources

0 The implementation should provide an «out of order»
exception to prevent run-time €rrors P

m The ordering solution is better than banning nesting
and has less penalty than group locking

e t = 3: task 7o startsspinning at ceiling priority

m Recent work has extended MrsP to proper nestin
prop) e t = 4: task 73 migrates to Py and executes in place of 7

2018/19 UniPD — T. Vardanega Real-Time Systems 477 of 539 2018/19 UniPD — T. Vardanega Real-Time Systems 478 of 539

DAAl Tivrva~s OuvvAatAarmAas

2018/19 UniPD - T. Vardanega 22/05/2019

| Summary

Issues and state of the art

Dhall’s effect: examples

Scheduling anomalies: examples

P-fair scheduling

Sufficient tests for simple workload model
m Recent extensions: DP-Fair and RUN

m Incorporating global resource sharing

2018/19 UniPD — T. Vardanega Real-Time Systems 479 of 539

DAAl Tivrva~s OuvvAatAarmAas 4

