
2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 1

7.c Global resource sharing

Contention and blocking

 The single-runner premise on which previous
solutions were based falls apart
 Suspending on wait no longer favours earlier release of

shared resources parallelism gets in the way
 Boosting the priority of the lock holder does not help

either per-CPU priorities have no global meaning
under partitioned scheduling

 With local and global resources, suspensive wait becomes
dangerous local priority inversions (PI) may occur

 Spinning protects against PI, but wastes CPU cycles

2018/19 UniPD – T. Vardanega Real-Time Systems 456 of 539

Multiprocessor PCP /1

 P-FPS with resources bound to processors
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a resource is the synchronization

processor (SP) for that resource
 It statically knows all the use requirements of all of its resources

 The critical sections of a resource execute on its SP
 Jobs that use remote resources employ “distributed transactions”

 The processor to which a task is assigned is the local
processor (LP) for all of the jobs of that task

2018/19 UniPD – T. Vardanega Real-Time Systems 457 of 539

Multiprocessor PCP /2

 A task may use local and global resources
 Local resources reside on the LP of that task
 Resources are global when their SP differs from the

client tasks’ LP

 Resource access control protocols need actual locks
to protect against parallel contention
 Which causes lock-free algorithms to become attractive

 SPs use M-PCP to control access to their global
resources

2018/19 UniPD – T. Vardanega Real-Time Systems 458 of 539

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 2

Multiprocessor PCP /3

 The task that holds a global lock should not be
preempted locally
 All global critical sections must execute at higher ceiling

priorities than all local tasks on their SP
 This breaks independence!

 A task 𝜏 that is denied access to a global shared
resource 𝜌 suspends on its LP and waits in a priority-
based queue for that resource
 Any task 𝜏 with lower-priority than 𝜏 on the same LP may

thus acquire global resources on 𝜌’s SP, with higher ceiling
than 𝜌, thus delaying the progress of 𝜏

2018/19 UniPD – T. Vardanega Real-Time Systems 459 of 539

Multiprocessor PCP /4

 If the global resource 𝜌 being acquired by 𝜏,
resides on the same SP as 𝜌, then 𝜏 suffers an
anomalous form of PI
 The execution in 𝜌 delays the release of 𝜌

 As contention for a global resource involves
suspension, M-PCP suffers the risk of deadlock
 With global resources hosted on 1 SPs, nesting global

resources may lead to deadlock and must be disallowed
 This is why other protocols prefer 𝜏 to spin

2018/19 UniPD – T. Vardanega Real-Time Systems 460 of 539

Blocking under M-PCP

 With M-PCP, task 𝜏 is blocked by lower-priority tasks in 5 ways!
 Local blocking (once per release): when finding a local resource held by a

local lower-priority task that got running as a consequence of 𝜏’s
suspension on access to a locked global resource

 Remote blocking (once per request): when finding a global resource held by a
lower-priority task running on the global resource’s SP that it seeks

 Local preemption: when global critical sections are executed on 𝜏’s LP by
remote tasks of any priority (multiple times) and by local tasks of lower
priority (once per release)

 Remote preemption (once per request): when higher-ceiling global critical
sections execute on the SP where 𝜏’s global resource resides

 Deferred interference as local higher-priority tasks suspend on access to global
resources because of blocking effects

2018/19 UniPD – T. Vardanega Real-Time Systems 461 of 539

Multiprocessor SRP

 P-EDF with resources bound to processors
[Gai, Lipari, Di Natale, 2001]
 Normal SRP is used for controlling access to local resources

 Tasks that lock a global resource execute the critical section
at the highest local priority
 As the lock-holder cannot be pre-empted, the wait time is shorter
 But this provision breaks independence

 Tasks that request a global resource 𝜌ீ already locked, are
held in a FIFO queue on 𝜌ீ ’s SP and spin on their LP
 This policy upper-bounds the requesting task’s spin time to 𝑚 െ 1

executions of the longest critical section of 𝜌ீ
 This duration adds to the task’s WCET

2018/19 UniPD – T. Vardanega Real-Time Systems 462 of 539

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 3

In general …

 With lock-based resource access control protocols,
locks can use either suspension or spinning

 With suspension, the calling task that cannot acquire
the lock is placed in a priority-ordered queue
 To bound blocking, PI avoidance algorithms should be used

 With spinning, the task busy-waits
 To bound blocking, the spinning task becomes

non-preemptable and its request is placed in a FIFO queue
 The lock holder may also run non-preemptively

 But this breaks independence

2018/19 UniPD – T. Vardanega Real-Time Systems 463 of 539

𝑂ሺ𝑚ሻ locking protocols : G-EDF /1

 All resources are global
 To request a resource, a task must first acquire a general

priority-queue, PQ, lock (one of 𝑚)
 If the resource is busy, the requestor waits, suspending, on a

resource-specific FIFO queue, FQ (of 𝑚 positions)
 The lock-holder inherits the highest priority of tasks waiting

in the chain of queues (FQ and PQ)
 Per-request blocking is 2𝑚 െ 1 executions of the

longest critical section for the resource
 When FQ is full with 𝑚 lp-jobs and 𝑚 hp-tasks run (including

the job of interest) that all want to acccess the same resource
 The other tasks suffer inheritance blocking

2018/19 UniPD – T. Vardanega Real-Time Systems 464 of 539

𝑂ሺ𝑚ሻ locking protocols : G-EDF /2

2018/19 UniPD – T. Vardanega Real-Time Systems 465 of 539

𝑂ሺ𝑚ሻ locking protocols : P-EDF /1

 Shared resources may be local or global
 One priority queue (PQ) per processor: the task at the head of it

acquires a token to use to contend for global resources
 Requests for G-resources wait in a per-resource FQ

 The waiting tasks suspend
 Lock-holders’ priority is inheritance-boosted from their PQ

 Blocking for all tasks has three components
 Local, when the lock-holder is a local lp-task (per release)
 Remote direct, when the requestor is last in the FQ (per request)
 Remote transitive, when a local lp-task has acquired the PQ

token and is last of the FQ (per release)

2018/19 UniPD – T. Vardanega Real-Time Systems 466 of 539

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 4

𝑂ሺ𝑚ሻ locking protocols : P-EDF /2

2018/19 UniPD – T. Vardanega Real-Time Systems 467 of 539

𝑂ሺ𝑚ሻ independence preservation /1

2018/19 UniPD – T. Vardanega

𝑚
𝑐 െ 1

𝑐 െ 1

𝑣 ൌ
𝑚
𝑐

Real-Time Systems 468 of 539

 𝛽,ൌ
𝑚
𝑐 െ 1

𝑚
𝑐 ൈ 𝑐 െ 1 𝜔 ൌ 𝑚 െ 1 𝜔

𝑂ሺ𝑚ሻ independence preservation /2

 Clusters of size 1 𝑐 𝑚
 Global scheduling per cluster, partitioned cluster assignment

 Suspension-based
 One FIFO+PRIO queue per cluster, for Ο 𝑚 blocking
 One per-resource global FIFO queue

 Head of cluster FQ copied in G-FQ and removed only after service

 Independence preserved by inter-cluster migration
 Head of G-FQ (if pre-empted) can migrate to any CPU along

the queue (hence across clusters), with priority boosted by
inheritance from a waiting task

 Blocking is per request: 𝛽, ൌ ሺ𝑚 െ 1ሻ𝜔

2018/19 UniPD – T. Vardanega Real-Time Systems 469 of 539

𝑂ሺ𝑚ሻ independence preservation /3

2018/19 UniPD – T. Vardanega Real-Time Systems 470 of 539

migration

spinning

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 5

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (with cluster size 𝑐 ൏ 𝑚),

no resource access control protocol can simultaneously
 Prevent unbounded PI blocking
 Preserve independence (you don’t suffer if you don’t contend)
 Avoid migration

 Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration (!)

2018/19 UniPD – T. Vardanega Real-Time Systems 471 of 539

MrsP [Burns, Wellings, 2013] /1

 Rendering RTA for partitioned multiprocessors
identical to the single-processor case
 The cost of accessing global resources should be increased

to reflect the need to serialize parallel contention
 Preserving the property that, once a task starts

executing, its resources are available
 It needs global resource control protocols
 Cannot use suspension-based solutions!

2018/19 UniPD – T. Vardanega Real-Time Systems 472 of 539

MrsP [Burns, Wellings, 2013] /2

 Spinning non-preemptively may decrease feasibility
 Urgent tasks would suffer longer blocking

 Spinning at the local ceiling priority is better
 With all processors using PCP/SRP, at most one task per processor

may contend globally, which assures Ο 𝑚 blocking
 Access requests are served in FIFO order

 To bound blocking, spinning tasks “donate” their
cycles to the pre-empted lock-holder
 The lock-holder migrates to the processor of a spinning task

and runs in its stead until it either completes or migrates again

2018/19 UniPD – T. Vardanega Real-Time Systems 473 of 539

MrsP [Burns, Wellings, 2013] /3

2018/19 UniPD – T. Vardanega Real-Time Systems 474 of 539

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 6

MrsP [Burns, Wellings, 2013] /4

 For partitioned scheduling (𝑐 ൌ 1)
 Spinning-based : local wait spins at local ceiling

 Combined with PCP/SRP, this assures blocking at most once
before execution

 Allows using uniprocessor-style RTA
 Wait is per resource, increased by parallel contention

 𝛽 ൌ 𝑚𝑎𝑥ሺ𝜔
ெ௦ሻ ൌ 𝑚𝑎𝑥 ሺ𝑚 െ 1ሻ𝜔 ൌ ሺ𝑚 െ 1ሻ ൈ 𝑚𝑎𝑥 𝜔

 Earlier release obtained by migrating lock holder (if
preempted) to the CPU where the first contender in the
global FIFO is currently spinning

2018/19 UniPD – T. Vardanega Real-Time Systems 475 of 539

MrsP [Burns, Wellings, 2013] /5

 𝑅 ൌ 𝐶
ᇱ 𝐵 𝐼

 𝐵 ൌ 𝑚𝑎𝑥 𝜌, 𝑏
 𝜌 is the longest critical section of a resource used by a lower-

priority task with ceiling no less than 𝜏 ’s priority
 𝑏 is the longest duration of RTOS inhibited preemption

 𝐼 ൌ ∑ ோ
்ೕ

𝐶
ᇱ

ఢ𝒍ሺሻ

 𝐶
ᇱ ൌ 𝐶 ∑ 𝑛𝑒

 𝐶 is task 𝜏 ’s WCET outside of critical sections
 𝑛 is the number of times task 𝜏 uses shared resource 𝑗
 𝑒 𝑚 െ 1 𝜌 , with 𝜌 the longest critical section of resource 𝑗

2018/19 UniPD – T. Vardanega Real-Time Systems 476 of 539

MrsP [Burns, Wellings, 2013] /6

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

 Recent work has extended MrsP to proper nesting

2018/19 UniPD – T. Vardanega Real-Time Systems 477 of 539

MrsP [Burns, Wellings, 2013] /7

2018/19 UniPD – T. Vardanega Real-Time Systems 478 of 539

spinning

migration

s

2018/19 UniPD - T. Vardanega 22/05/2019

Real Time Systems 7

Summary

 Issues and state of the art
 Dhall’s effect: examples
 Scheduling anomalies: examples
 P-fair scheduling
 Sufficient tests for simple workload model
 Recent extensions: DP-Fair and RUN
 Incorporating global resource sharing

2018/19 UniPD – T. Vardanega Real-Time Systems 479 of 539

